
copyright © 2020 www.onlineprogramminglessons.com For student use only 
 1 
 

C Mini Lessons                              last update: Mar 3, 2021 
 
From http://www.onlineprogramminglessons.com 
 
These C mini lessons will teach you all the C Programming statements you need to 
know, so you can write 90% of any C Program. 
 

Lesson 1     Input, Output and Variables 
Lesson 2     Functions 
Lesson 3     Structures 
Lesson 4     Operators 
Lesson 5     Programming Statements 
Lesson 6     Arrays  
Lesson 7     Pointers and Allocating Memory 
Lesson 8     Passing Arrays and Structures to Functions 
Lesson 9     Function Pointers 
Lesson 10   File Access  
Lesson 11   Recursion 
Lesson 12   Projects  
 
 

Conventions used in these lessons: 
 

bold  - headings, keywords, code 
 
italics -  code syntax 
 
underline  - important words 
 
 
 
 
 
 
 

 

http://www.onlineprogramminglessons.com/


copyright © 2020 www.onlineprogramminglessons.com For student use only 
 2 
 

Let’s get started! 
You first need to download CodeBlocks C Compiler. This is needed to edit, 
compile and run C programs. Alternately you can use your own C compiler or one 
of the online C compilers.  
 
Download CodeBlocks from this link. 
 

http://www.codeblocks.org/downloads 
 

Download and install the codeblocks-17.12mingw-setup.exe file that includes the 
C Compiler 
 
Once you installed and run CodeBlocks you will get this screen that asks you to 
select the C Compiler to use. We selected the GNU GCC Compiler and then 
pressed the “Set as Default” button. 
 
 

 
 
The following screen then appears. 

http://www.codeblocks.org/downloads


copyright © 2020 www.onlineprogramminglessons.com For student use only 
 3 
 

 
 
Lesson 1    Input, Output and Variables 
 
You first need to make a Project to store all your C lesson files. 
 
From the start menu select Create a new project or from the file menu select, 
Open New Project.   
 
Next Select Console application and then press the “Go” button.  
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 4 
 

This Console screen appears next.  
 

 
 
Press Next button 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 5 
 

Select C and then press Next button 
Using File Explorer make a Folder to hold your C lesson files called C, then enter 
CLessons as the project name. 
 

 
 
The next screen tells you what C Complier the CodeBlocks is using. 
 

 
 
You can just select Finish.  



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 6 
 

You should get something like this after expanding “Sources” folder and clicking 
on main.c in the Management window. 
 

 
 
If you are using another C compiler then you need to type in the following code:  
 
#include <stdio.h> 
 
int main() 

{ 
    printf("Hello world!\n"); 
    return 0; 
} 

 
Next you need to build the program before you can run it. From the Build menu 
select Build. 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 7 
 

 
 
If you have no errors, then you can run your program. 
Select Run from the Build menu 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 8 
 

 
 
You should get something like this: 
 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 9 
 

A C program contains programming statements that tells the computer what to 
do. These programing statements are grouped together in a function enclosed by 
curly brackets, so each programming statement can execute one by one 
sequentially. 
 
In a C program the main function is the first function to run. Here is the main 
function: 
 
          #include <stdio.h> 
 

int main() 
{ 
    printf("Hello world!\n"); 
    return 0; 
} 

 
 main is the function name and printf("Hello world!\n"); is a programming 
statement printing Hello world! on the screen 
Our first C program prints our “Hello World!” on the screen. If your compiler did 
not generate the sample program above for you then you will have to type it in 
your self, into your C compiler then build and run it.  
 
A C program starts with the folowing include statement 
 

#include <stdio.h> 
 
The #include statement is called a preprocessor it tells the C compiler to use 
function definitions from the stdio.h file.  These functions allow a program to 
print messages on the screen or get values from the key board. 
 
The other include statement #include <stdlib.h> is used for other things we will 
discuss later and not necessary to use now. 
 
The next programing statement is the main functon definition header. 
 

int main() 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 10 
 

Inside the main function definition header  we have the programming statements 
enclosed in curly brackets { } The open { curly bracket means to start the 
programming statements. The closing  }  curly bracket means to end the 
programming statements. Our first programing statement prints “Hello World” 
string message on the console screen. 
 
               { 

    printf("Hello world!\n"); 
 
printf is used to print out the message  Hello world!\n  to the screen.  The Hello 
world!\n  message is enclosed in double quotes "Hello world!\n". Anything 
enclosed in double quotes is known as a string value. The ‘\n’ at the end of the 
string means to start a  new line on the output screen. The printf statement will 
print the string message "Hello world!\n" that are specified within the round 
brackets ( ). 
 
The main function return’s a value using the return statement.  The return is a 
keyword that is used to specify what value is to be returned. The main function 
usually returns a 0 meaning every thing is okay. 
 

return 0; 
} 

Here is the main function again with the preprocessor include statement. 
 
          #include <stdio.h> 
 

int main() 
{ 
    printf("Hello world!\n"); 
    return 0; 
} 

 
The include statement is not part of the main function but is usually at the top of 
every C program. 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 11 
 

Terminology 
       
Before we proceed it is important to understand the terminology: data type, 
variables, functions, programming statements and objects. 
 
data type States what type of data value a variable is to represent and 

store. 
Variable Stores a string or numeric value represented by a name. All 

variables have a specified data type stating what type of 
data is to be stored. 

programming 
statement 

Is an instruction containing commands to perform a desired 
action, like printing a value on the screen, get a value from 
the key board or calculate a certain value. 

Function Contains programming statements that are executed 
sequentially  telling the computer what to do.  

Preprocessor Instructions to the compiler to include additional files to be 
compiled. 

 
 
variables 
 
Programing is all about storing values and doing operations on them like addition 
and subtraction. Values my be whole numbers  like 5, decimal number like 10.5 or 
a text message like "Hello World".  Text messages are enclosed in double quotes 
are also known as strings. A program use variables represented by a identifier 
name to store values. The value is actually stored  in the computer memory when 
the program runs. 
 
To use a variable you need to declare it first. A variable specifies a data type and a 
name and an optional initialized value. Data types specify what kind of data the 
variable is going to store. We use int data type for whole numbers, float or 
double data types  for decimal numbers. Double variables have more precision 
then float numbers (more accurate).  char data types to represent a single letter 
or a group of letters to represent a string  message. In the following example we 
declare the following variable age that has an int data type to store whole 
numbers.  
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 12 
 

                                     int   age = 0; 
 
 
     data type                     variable name        initialized value   
 
The variable name is age and is initialized to the value of 0, it is also good practice 
to initialize variables when you declare them to give then a default value. All 
variable declarations end in a semi colon ;. All variable names should represent 
the value it is storing. For example  age would represent somebody’s age. 
 
Text string messages are stored in char data type variables. A char data type 
represent a single letter character. To represent a string text message you need 
many letters, you need to specify how many letters you need. To represent a text 
message for a whole line we use 80 letters. The following variable represents  
name that holds 80 letters. We add 1 more letter for a termination letter. The 
length of the text message is specified in square [ ] brackets as follows. 
 
                                     char  name[81] = ""; 
 
 
     data type             variable name     number of letters   initialized value   
 
Our initialize value is an empty string represents by 2 quotes side by sides with no 
a space between them. We also use the character length of 81 rather than 80 
because we need 1 extra character for the end of string character ‘\0’ also known 
as NULL character; 
 
Now we know about variables we can use them in our program. The age variable 
will represent a persons age and the name variable will represent a persons 
name. We will get these values from the keyboard. Alternatively you can initialize 
theses variables directly, like this: 
 

int age = 24; 
char name[] = "Tom"; 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 13 
 

We can also specify the length as [] which indicates the length is automatically 
specified by the length of the initialized string. We will now ask the user to type in 
their name and then greet them. Type in the following statements in the C editor 
before and after the "Hello World" printf statement.  
 

char name[81]; 
printf("Hello world!\n"); 

     printf("Please type in your name: "); 
     scanf("%s",name); 
    printf("Nice to meet you %s\n",name); 
 
You should have something like this: 
 

 
 
The complete program looks like this: 
 
          #include <stdio.h> 

int main() 
{  
char name[81]; 

            printf("Welcome  to my program\n"); 
     printf("Please type in your name: "); 
     scanf("%s",name); 
    printf("Nice to meet you %s\n",name); 
           return 0; 
           } 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 14 
 

Now build and run your program, and enter the name “Tom”. You will get 
something like this: 

 

 
 
We will first ask the user to type in their name using the printf statement. 
 

printf("Please type in your name: "); 
 

We then obtain the user name from the keyboard. We first declare a char string 
variable called name  that will be used to store the persons name and then use  
scanf("%s",name); statement to read a char string from the keyboard. The value 
entered from the keyboard is placed in the char string variable name. Variables 
are used to store values and must be declared before using them. 
 
 char name[81]; 
 
Variables in C are written at the top of the function, although some compilers 
allow you to place them as you use them. Char string variables are used to store 
string message. The maximum length of the string message must first be 
specified, which is 80 in this case. The maximum length is enclosed in square 
brackets [ ]. The data type of the char string variable is char. Char stands for a 
character, our string message can hold up to 80 characters. The number 81 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 15 
 

represents the maximum number of characters that can fit in one line of screen, 
plus 1 extra character for the end of string character. 
The scanf statement is used to obtain values from the keyboard. The scanf 
statement must know what kind of data it is supposed to read from the keyboard. 
A format specifier is used to specify what kind of data is to be read. Format 
specifiers start with the percent character ‘%’ 
 

%c is used for char data like ‘a’ 
%s is used for char string data like “hello” 
%d is used for int whole numbers like 5 
%f is used for float decimal numbers like 10.5 
%lf is used for double decimal numbers like 10.5 

 
The %s format specifier is enclosed in double quotes followed by a comma and 
the char string variable name all enclosed in round brackets ( ). The round 
brackets introduce the format specifier, comma and the variable name. 
 

scanf("%s",name); 
 
When the scanf statement is executed, the string value that is read from the 
keyboard  is stored in the variable name.  
 
printf  is then used to print out the string message “Nice to meet you" and the 
name of the user that was stored in the variable name.  
 

   printf("Nice to meet you %s\n",name); 
 
Again, we use the format specifier ‘%s’ to tell the print statement what data type 
to print out, (string data). Notice the format specifier is specified after the “Nice 
to meet you” message, so that we can print the name of the person right after the 
message. The ‘\n’ new line is after the format specifier to start a new line. The 
name of the person is printed at the position where the format specifier is 
located. 
 

Nice to meet you Tom 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 16 
 

We now continue our program ask the user how old they are. Type in the 
following statements at the end of your program. 
 
    printf("How old are you? "); 
    scanf("%d",&age); 
    printf("You are %d years old\n",age); 
 
Put the variable age after the variable name at the top of your program right after 
the char name[81] variable. 
 
    int age = 0; 
 
Make sure you save your file before proceeding. You should have something like 
this: 
 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 17 
 

The complete program now looks like this: 
 
          #include <stdio.h> 

int main() 
{ 
char name[81]; 

            int age = 0; 
 
 
printf("Hello world!\n"); 

     printf("Please type in your name: "); 
     scanf("%s",name); 
    printf("Nice to meet you %s\n",name); 
           printf("How old are you? "); 
           scanf("%d",&age); 
           printf("You are %d years old\n",age); 
 
           return 0; 
           } 
 
Build and run the program and enter Tom for name and 24 for age, you should 
get something like this. 
 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 18 
 

Recapping: 
 
In our program we declare an int variable called age and initializes it with the 
default  value 0. 
 

    int age = 0; 
 
We then ask the user to enter there age using printf statement 
 

printf("How old are you? "); 
 
We use scanf to enter the age from the keyboard and assign the value  to the 
variable age. 

 
scanf("%d",&age); 
 

We use the %d format because we want to read in an int value. The variable age 
has  a ‘&’ in from of it. It is used to specify the location in computer memory 
where the value obtained from the  keyboard  is to be placed. This location is 
known as a memory address. Without the ‘&’ the value of the age variable is 
obtained rather than the location.  With the ‘&’ preceding the variable age then 
the address of the variable age is obtained. The scanf function needs to know the 
address of the variable, so it can place the value from the keyboard into it. 

 
Using  the printf  statement we print out the message "You are", the value stored 
in the variable age and the message "years old" is printed to the computer 
screen. 

 
printf("You are %d years old\n",age); 
 

The %d format specifier is used to print out the value of the variable age. The 
value of the age is printed after the "You are  "   message and the "years old" 
message. Note the age does not have a & because  we want to obtain the value 
from it. 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 19 
 

Reading single characters from the keyboard 
 
Reading a single character from the keyboard  can be a challenge because the 
enter key stays in the input stream and is never removed. This causes preceding 
values not to be read properly. 
Example 

char ch; 
scanf("%c",&ch); 
 

There are many ways to solve this dilemma. 
 
Solution 1: 
 
Read the enter key without storing it using %*c 
 

scanf("%c%*c",&ch); 
 
Solution 2: 
 
Read the enter key with additional scanf or the getchar() function 
 

scanf("%c",&ch); 
or 

ch = getchar(); 
 
solution 3: 
 
Remove the enter key before hand when reading another variable by placing a 
space in front of a format specifier. 
 

scanf(" %s",name); 
 
solution 4: 
 
You can clear the input stream with fflush 
 
            fflush(stdin) 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 20 
 

reading a whole line from the key board including spaces 
 
The scanf %s format specifier only reads individual words in a line. To read a 
whole line you need to use the square bracket specifier that states what string 
characters you want to read. To read a whole line you need to read all lines up to 
the newline \n character. This format %[^\n] specifier will read a whole line from 
the keyboard.  The ^\n means do not read \n, so when a new line ‘\n’ is 
encountered scanf stops scanning. 
 

scanf("%[^\n]",line); 
 
There are other C functions that just read string lines like gets and fgets. 
 

gets(line); # read a line of unlimited characters 
            fgets(stdin,81,line)  # read a line up to 81 characters 
 
fgets is the preferred choice since it specifies the maximum character to be read. 
stdin is the keyboard input stream, where as stdout is the console screen output 
stream. 
 
CONSTANTS 
 
Constants let you associate a value with a label or a name. It is not good to put 
hard codes values in a program because nobody knows what they mean. 
Constants allows you to have labels as an  identifier in your program to represent 
a value.  Once the label identifier is set it cannot be changed.  Constants allow 
values to  have a meaning represented by a label identifier. Constants  represents 
a value that has no memory location. Constant value once set cannot be changed. 
 
A good constant example is the value 81 that we used to represent the maximum 
characters in a screen line.   
 

  #define MAX_CHARS 81 
 

We would use a constant like this: 
 

  char name[MAX_CHARS]; 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 21 
 

When the compiler sees the constant label MAX_CHARS is substitutes the value 
81, it is a direct substitution. Constants  represents a value that has no memory 
location. 

char name[81]; 
 
There are 2 ways to make constants in C.  
 
Using the #define preprocessor. 
 

           #define MAX_CHARS 81 
 

Using the const keyword.  
 

const int MAX_CHARS = 81; 
 
When using the const keyword  MAX_CHARS is known as a name identifier 
because it represents a value that has a read only memory location, meaning it 
cannot be changed when the program is running.  Constant  labels and name 
identifier  usually start with a capital letter or all capital letters  to indicate this 
label name is a constant. The const keyword is the preferred way, but many old C 
compilers cannot recognize or handle it properly. So, we will  still use the #define 
preprocessor. At the top of your program just below  the #include statements 
type in 
 

#define MAX_CHARS 81 
 
Note important: DO NOT PUT A SEMICOCOLN AFTER THE NUMBER 81 OR ELSE 
YOUR PROGRAM WILL HAVE MANY ERRORS 
 
Once you have your constant defined then you need to put the constant in the 
same place where the number 81 is: 
 
Before: 

char name[81]; 
After 

char name[MAX_CHARS]; 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 22 
 

You should now have something like this: 
 

 
 
The complete program is now: 
 
          #include <stdio.h> 
 
          #define MAX_CHARS 81 
             

int main() 
{ 
char name[MAX_CHARS]; 

            int age = 0; 
printf("Hello world!\n"); 

     printf("Please type in your name: "); 
     scanf("%s",name); 
    printf("Nice to meet you %s\n",name); 
           printf("How old are you? "); 
           scanf("%d",&age); 
           printf("You are %d years old\n",age); 
           return 0; 
           } 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 23 
 

Compile and run your program and make sure it still works. 
This is a lot to digest. You should need to know all theses basics  concepts, to 
understand programming. All programming is based on variables, values, 
addresses, programming statements and functions. If you do not understand 
theses concepts, just keep on doing Lesson1 repeatedly until it makes  some 
sense. 
 
If you have got this far then you will be a great C programmer soon. 
 
Most people find Programing difficult to learn. The secret of learning program is 
to figure out what you need to do and then choose the right programming 
statement to use. If you want to print messages and values to the screen you use 
a printf statement. If you want to get values from the keyboard, you use a scanf 
statement. 
   
You should concentrate on getting your programs running rather than understand 
how they work. Once you get your programs running and you execute them 
understanding will be come much easier. Understanding will now be much easier, 
because you can now make an “association connection” to the program 
statement that is running that produces the desired input or output action. 
 
C Data Types 
 
Data types state what kind of data a variable is suppose to represent. C has many 
data types that can be used to represent various kinds of data as follows:  
 

Data Type Size Min value Max Value Example 

Char 8  -128 127 char x = 100; 
Short 16 -32768 32767 short x = 1000; 

Int 32 -2^31 2^31-1 int x = 10000; 
Long 32 -2^31 2^31-1 long x = 10000; 

float  32 -1.4E-45  3.4E38 float f = 10.5; 
Double 64 -4.9E-324   4.9E-324   double d = 10.57654; 

 
The above data types are signed data type representing both positive and 
negative numbers. The double data type is much more accurate than the float 
data type, it can represent many more decimal digits. (E means exponential) 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 24 
 

C also has unsigned data types unsigned char, unsigned short, unsigned int and 
unsigned long. 
 

Data Type Size Min value Max Value Example 

unsigned char 8  0 256 char x = 100; 

unsigned  short 16 0 65535 ushort x = 1000; 
unsigned  int 32 0 2^32-1 uint x = 10000; 

unsigned  long 32 0 2^32-1 ulong x = 10000; 
 
 
Lesson 1 Homework 
 
Make a C program file called homework1.c that asks someone what their 
profession title is and annual salary is. Make a char[81] title and a float salary.  
Then  print out a message like this: “I am a Manager and I make $100,000 dollars 
per year!”.  When the program starts print out a welcome message. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 25 
 

LESSON 2    FUNCTIONS 
 
Functions allow you to group many programming statements together so that you 
can reuse them repeatedly in your C Program. The most common function is the 
main function that starts a C program, which we used previously in Lesson 1. A 
program may have many functions. Each function has a dedicated purpose, some 
action to perform. Functions usually are defined at the top of the program in 
order as they are used. The main function is the last one because it will call all the 
proceeding functions. When a function is called in a programming statement it 
means it is executed.  C also has many built in functions that you can use, that 
make C programming easier to do that you will learn later through these lessons. 
It is now time to add functions to our previous Lesson 1 program. We will make a 
welcome, enterName, enterAge and printPerson functions. Before proceeding, 
you may want to save your previous main.c file as Lesson1.c for future reference. 
Close file main.c and in the Management Window  right click on main.c and 
rename Lesson1.c  

 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 26 
 

 
 
Now  make a new C source file called Lesson2.c. From the  File Menu select New 
then File. 
 

 
 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 27 
 

Select C Source File template 
 

 
 
Press GO button 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 28 
 

Press Next button 
Select C 
 

 
 
Press Next 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 29 
 

Check Debug and Release Checkbox’s, then select file browse button […] 
And enter file name Lesson2.c 
 

 
 
Press Save Button, you should get the following screen 
 

 
 
Before pressing “Finish” button make sure The Debug and Release check boxes 
are checked. You now need to remove the Main.c file or Lesson1.c file from the 
project. A project can only have one c file with a main function. 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 30 
 

 
 
In your Lesson2.c  file type in the following code. 
 

#include <stdio.h> 
 
#define MAX_CHARS 81 
 
void welcome(); 
void enterName(char name[MAX_CHARS]); 
int enterAge(); 
void printPerson(char name[MAX_CHARS], int age); 
 
void welcome() 
{ 
    printf("Hello World\n"); 
} 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 31 
 

void enterName(char name[MAX_CHARS]) 
{ 
    printf("Please type in your name: "); 
 
    scanf("%s",name); 
} 
 
int enterAge() 
{ 
    int age; 
 
    printf("How old are you? "); 
    scanf("%d",&age); 
    return age; 
} 
 
void printPerson(char name[80], int age) 
{ 
    printf("Nice to meet you %s\n",name); 
    printf("%s You are %d age years old\n", name, age); 
} 
 
int main() 
{ 
    char name[MAX_CHARS]; 
    int age; 
 
    welcome(); 
    enterName(name); 
    age = enterAge(); 
    printDetails(name, age); 
    return 0; 
} 
 
 

You should now build and run the program. Enter Tom for name and 24 for age, 
you should get this: 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 32 
 

 
 
Functions make your program more organized and manageable to use. Functions 
have many different purposes. Function can receive values, return values, receive 
and return values or receive or return no value.   
  
return_datatype function_name (parameter_list) 
parameter list  = data_type parameter_name [,data_type parameter_name] 
 
Functions return values using the return statement and receive and/or output 
values through the parameter list. The return data type specifies what kind of 
data is returned or received. In Lesson 1 we were introduced to the int, float, 
double and char data types.  Think that a function is like a factory that receives 
raw materials, manufacturers a product then ships it out when completed. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Receive parameters 
 

Function code 

Return a value 
 

 
receive and/or output 

argument values 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 33 
 

Before you can use a function, you need to declare it. A function declaration is 
just the function definition header ending in a semicolon. A function declaration is 
also known as a function prototype. Here are the function prototypes for our 
lesson2 program. 
 

void welcome(); 
void enterName(char name[char name[MAX_CHARS]); 
int enterAge(); 
void printPerson(char name[MAX_CHARS, int age); 

 
After the function prototype declarations the  function definitions are written. 
The welcome function just prints “Hello World” and receives no values or returns 
no value. The void data type specifies no value is returned or received. 
 
void welcome() 
{ 
    printf("Hello World\n"); 
} 
 
The enterName function output’s the name through the parameter list. This is 
known as a function outputting a value.  The address of the name variable is 
passed to the enterName function. The enterName function obtains the value 
from the keyboard and the fills the name variable with the value.  
 
void enterName(char name[MAX_CHARS]) 
{ 
    printf("Please type in your name: "); 
    scanf("%s",name); 
} 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 34 
 

The enterAge function obtains the age value from the keyboard and returns a 
value using the return statement. 
 

int enterAge() 
{ 
    int age; 
 
    printf("How old are you? "); 
    scanf("%d",&age); 
    return age; 
} 

 
The printPerson function receives a name and age value to print out, but return’s 
no value. The printPerson function receives the name and age values through the 
parameter list. 
 
void printPerson(char name[MAX_CHARS], int age) 
{ 
    printf("Nice to meet you %s\n",name); 
    printf("%s You are %d age years old\n", name, age); 
} 
 
The name and age inside the round brackets of the printPerson function 
definition statement are known as parameters and contain values to be used by 
the function. The parameters just pass values from the calling function and are 
not the same variables that are in the calling function. Although the parameter 
names and values may be same as in the calling function variable names, but they 
are different memory locations. The main purpose of the parameters is to receive 
values for the functions. The name parameter is an input/output parameter  so it 
can receive a value and outputs a value. It can do this is because it contains the 
address of the variable that belongs to the calling function. In this case the calling 
function in the main function contains the  name variable. 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 35 
 

The main function call’s the preceding functions to run them and store the values 
in variables and passes the stored variable values to the functions. Calling a 
function means to execute the function. The values that are passed to the called 
function from the calling function is known as arguments. The argument values 
are received by the function parameters.  The function parameters store received 
values , the parameters can be used just like a variable in a function. 
 
Variables inside a function are known as local variables and are known to that 
function only. Name and age are local variables in the main function but are also 
arguments sent to the printPerson function. 
 
int main() 
{ 
    char name[char name[MAX_CHARS]; 
    int age; 
    welcome(); 
    enterName(name); 
    age = enterAge(); 
    printDetails(name, age); 
    return 0; 
} 
 
Function prototypes are usually put into a header file. You should do the same.  
First make a C Header file called Lesson2.h  
 
 From  the File menu select New then File 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 36 
 

 
 
Select the C/C++ Header file type. 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 37 
 

Press Go 
 

 
Press Next 
 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 38 
 

Make sure the Debug and Release check boxes are checked before proceeding. 
Select the filename browse button …  then type in Lesson2.h 
 

 
 
Press Next 
 

 
 
Make sure Debug and Release are checked then Press Finish 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 39 
 

 
 

You should now have something like this 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 40 
 

#ifndef LESSON2_H_INCLUDED 
#define LESSON2_H_INCLUDED 

 
Are known as guards and allow the .h file only to be read once. Without the 
guards, the .h file may be read many times and resulting in duplicate function 
declaration error messages. 
 
The guard ends with 
 

#endif  
 
Put the #include<stdio.h> preprocessor, and  constant #define MAX_CHARS 81 
preprocessor and function prototypes from Lesson2.c  into the Lesson2.h header 
file between the start and end guards. 
Your Lesson2.h should look like this after typing in the #define preprocessor 
constant and the function prototypes. 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 41 
 

You now need to remove  the include statements, the  constant #define 
statement and function prototypes on the top of  the Lesson2.c  file since they are 
no longer needed. You need also to add an include statement on the top of the 
Lesson2.c file.  
 

#include "Lesson2.h" 
 
You need to do this so that the Lesson2.c file knows about the functions it will be 
using. The includes file statement allows the complier to read the Lesson2.h file 
before compiling the rest of the Lesson2.c file. We use double quotes to specify 
the directory  where our program resides. The triangle brackets <> specify to look 
for the include file in the compiler directory. You should have something like this 
 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 42 
 

COMMENTS 
 
All programs need to be commented so that the user knows what the program is 
about. Just by reading the comments in a program somebody will know exactly 
what the program is supposed to do. We have two types of comments in C. 
Header comments that are at the start of a program or a function. They start with 
/* and end with a */ and can span multiple lines like this. 

 
/* 
Program to read a name and age from a user and  
print the details to the screen 
*/ 

 
Other comments are for one line only and explain what the current or proceeding 
program statement it is to do. The one-line comment starts with a // like this: 
 

// function to read a name from the key board are return the value 
 
Not all C compilers will recognize the one-line comments. 
 
We now comment our program. Please add all these comments to your program. 
 

/* 
 Lesson2.c 
 Program to read a name and age from a user and print 
 the details on the screen 
*/ 

 
#include "Lesson2.h" 
 
/* function to print welcome message */ 
void welcome() 
{ 
    printf("Hello World\n"); 
} 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 43 
 

/* function to obtain a name from the keyboard */ 
void enterName(char name[MAX_CHARS]) 
{ 
    printf("Please type in your name: "); 
    scanf("%s",name); 
} 

 
/* function to obtain an age from keyboard */ 
int enterAge() 
{ 
    int age; 
 
    printf("How old are you? "); 
    scanf("%d",&age); 
    return age; 
} 
 
/* function to print name and age on screen */ 
void printPerson(char name[MAX_CHARS], int age) 
{ 
    printf("Nice to meet you %s\n",name); 
    printf("%s You are %d age years old\n", name, age); 
} 
 
int main() 
{ 
    char name[MAX_CHARS]; 
    int age; 
 
    welcome();    // welcome user  
    enterName(name);    // obtain a name  
    age = enterAge();    //  obtain an age  
    printPerson(name, age);    // print out name and age  

 
return 0; 

} 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 44 
 

Lesson2 Homework 
 
Make a C program file called homework2.c that has  a function to print a welcome 
message that describes what the program does. Has another a function   called 
enterTitle()  that asks someone what their profession title is,  like doctor, lawyer 
etc. Has another function called enterSalary() that asks someone what their 
annual salary and returns a salary. Finally make a printProfession() function that 
prints out their title and salary..Print’s out a message like this: “I am a Manager 
and I make $100,000 dollars per year!”. Call all the functions from the main 
function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 45 
 

LESSON 3     STRUCTURES 
 
Structures allow you to group different data type variables together under one 
common name. Structures start with the keyword struct followed by a name 
identifier, a curly bracket { the variable declarations and then closing curly bracket 
} ending with a semicolon. (Do not forget the semicolon.)   
 

structure_name 
{ 
declare_variables 
}; 
 

 
We can use our name and age variables from previous lesson to make a Person 
structure. Our Person structure would look like this: 
 

struct Person  
{ 
char name[MAX_CHARS]; 
int age; 
};     // do not forget the semicolon 

 
Our Person structure actually becomes a new data type. We start our structure 
name with a capital letter to indicate it is a user data type.    
 
Using a structure in your program 
 
The structure is usually defined in the header .h file, but also can also be defined 
in the source .c file.  In our case we define our structure in the header .h file so 
that other c files can  use it. 
 
Make a new header file called Lesson3.h and copy all the code from Lesson2.h 
into it. Also make a new C source file Lesson3.c and copy all the code from 
Lesson2.c into it. Make sure Debug and Release are checked before you press the 
Finish button or else they will not be compiled into the project. Remove Lesson2.h 
and Lesson2.c from the management window. 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 46 
 

Put our Person structure definition in the Lesson3.h file just below the  
#define MAX_CHARS 81 preprocessor statement. You also need to redefine the 
printPerson function to accept a Person structure rather than the name and age 
parameters 
 

void printPerson(struct Person p); 
 
You should then have something like this. 
 
 

#ifndef LESSON3_H_INCLUDED 
#define LESSON3_H_INCLUDED 
 
#include <stdio.h> 
 
#define MAX_CHARS 80 
 
typedef struct person_type 
{ 
char name[MAX_CHARS]; 
int age; 
}Person; 
 

 
void welcome(); 
void getName(char name[MAX_CHARS]); 
int getAge(); 

            void printPerson(Person p); 
 
#endif // LESSON3_H_INCLUDED 

 
 
 
We now declare a Person structure in our Lesson3.c source file. Using a structure 
is a 3-step process, define a structure, declare a structure and then use the 
structure.  You declare a structure just like a normal variable.  
 
      struct Person p; 
 
Don’t forget the struct keyword. 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 47 
 

You can also initialize a structure  when you declare them to a default value or 
some known values. To initialize to a default value  we use {0} ending with a semi 
colon. All values in the structure would receive a the value 0. 
 

struct Person p = {0};     // do not forget the semicolon 
 

For older C compilers you may need to initialize each variable defined in the 
structure  to default values separately. 

 
struct Person p = {"",0}; 

 
To initialize the structure with known values we list the values enclosed in { } 
brackets. 
 
  struct Person p = {"Tom",24};      
 
The structure variable  p now has the values name "Tom" and age 24. It is 
important to distinguish between  defining a structure and declare a structure. 
When you define a structure you list the variables that the structure will hold. 
When you declare a structure variable you are reserving memory for the structure 
to store values when the program runs. If you initialize the structure with values 
when you declare it, then the structure variable will already have these values 
when the program runs. 
 
In Lesson3.c main function remove the name and age variables and replace them 
with the Person structure p. 
 
              struct Person p; 
 
To access values in a structure variable you use the access dot . operator. 
 
            structure_variable_name . variable_name 
 
To access name: 
 

p.name 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 48 
 

We would then call the getName function  and pass the persons name  from the 
person to it like this: 

 
enterName(p.name) 

 
To access age: 
 

p.age 
 

We would call the getAge function  and assign the age to the person structure  
like this: 
 

p.age = enterAge(); 
 
To pass a structure to a function you just pass the structure variable name 
to the function like this: 
 

printPerson(p); 
 
In our printPerson we will now have a struct Person parameter that will  access 
the name and age values using the access dot . operator as follows: 
 

void printPerson(struct Person p) 
{ 
    printf("Nice to meet you %s\n",p.name); 
    printf("%s You are %d age years old\n", p.name, p.age); 
} 

 
Update Lesson3.c  main function to use our Person structure. You should have 
something like this: 
 
 
/* 
 Lesson3.c 
 Program to read a name and age from a user using a structure 
 and print the details on the screen 
*/ 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 49 
 

#include "Lesson3.h" 
 
/* function to print welcome message */ 
void welcome() 
{ 
    printf("I like C programming\n"); 
} 
 
/* function to obtain a name from the keyboard */ 
void enterName(char name[MAX_CHARS]) 
{ 
    printf("Please type in your name: "); 
    scanf("%s",name); 
} 
 
/* function to obtain an age from keyboard */ 
int enterAge() 
{ 
    int age; 
    printf("How old are you? "); 
    scanf("%d",&age); 
    return age; 
} 
 
 
/* function to print name and age on screen */ 
void printPerson(Person p) 
{ 
    printf("Nice to meet you %s\n",p.name); 
    printf("%s You are %d age years old\n", p.name,.p.age); 
} 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 50 
 

int main() 
{ 
 
    /* welcome user */ 
    welcome(); 
 
    /* obtain a name */ 
    enterName(s.p.name); 
 
    /* obtain an age */ 
    p.age = getAge(); 
 
    /* print out name and age */ 
    printPerson(p); 
 
    return 0; 
} 
 
Build and run the program, type Tom for name and 24 for age. You will get the 
following output. 
 

  
 
 
 

 
 

Do not proceed until you got your program working. 
 
 

Using typedef 
 

Typing struct all the time is a lot of work to do, to make programming life easy, 
typedef allows you to use your structure without the struct keyword. Typedef 
actually means type definition, that allows you to define your own data types 
from C data types. The syntax is: 
 

typedef data_type user_data_type_identifier; 
 

Hello World 
Please type in your name: Tom 
How old are you? 24 
Nice to meet you Tom 
Tom You are 24 years old 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 51 
 

Our structure definition would now look like this: 
 

typedef struct person_type 
{ 
char name[MAX_CHARS]; 
int age; 
}Person; 
 

The structure still has a name but a different name person_type. We use lower 
case and an underscore for the structure name since it is the C convention. The 
type definition name is Person because this is the data type name we want to use 
in our program. In the Lesson3.h change the Person structure definition to use a 
typedef, then remove all the struct key words in the Lesson3.h and Lesson3.c files. 
 

Build and run your program and see it is still working. Do not proceed until you 
got your program working. 
 
HomeWork 3 Part 1 
 
Convert your homework2 program to use a structure called Profession. The 
Profession structure would have a variable to store the profession title like doctor 
or manager  and a variable to store their salary. Your Profession structure would 
look like this: 
 

struct Profession  
{ 
char title[MAX_CHARS]; 
salary age; 
};      

 
You may use typedef instead if you wish. 
 
 Make an enterDetails function that receives a pointer to a profession structure. 
The enterDetails function would ask for the profession type and profession salary 
and store in the profession structure passed to it.  Make an enterDetails function 
that receives a profession structure that will be used to print out the profession 
type and salary.  Include the welcome function from homework 2. Call your c 
program homework3.c 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 52 
 

Structure inside a Structure 
 
 

A Structure may include another structure. We can make a Student structure that 
contains the following Person structure for its name and age.   
 

struct Person 
{ 
char name[MAX_CHARS]; 
int age; 
}; 

 
A Student structure will have an additional variable called studentNumber that 
will represent a char string student id number.  
 
Our Student structure would look like this: 
 

struct Student 
{ 
Person p; 
char studentNum[MAX_CHARS]; 
}; 

 
Notice our Student structure has a Person structure inside it, that will be used to 
store the students name and age. 
 
We would declare a Student structure variable like this: 
 

Student s; 
 
We still use the access dot operator to  access the student and person structure. 
 
We would access the idnum id the Student structure like this: 
 
           s.studentNum 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 53 
 

We would access the Person structure in the student structure like this: 
 

s.p.age  
s.p.name 

 
You can also initialize a structure  inside a structure  when you declare them to a 
default value or some known values. To initialize to a default value  we use {0} 
ending with a semi colon. All values in the structure would receive a the value 0. 
 

struct Student s = {0};     
 

For older C compilers you may need to initialize each variable defined in the 
structure  to default values separately. 

 
struct Student s = {{"",0},""}; 
 

To initialize the structure in a structure with known values we list the values 
enclosed in { } brackets for each structure, 
 
  struct Student s = {{"Tom",24},"S1234"};      
 
The structure s  now has the values name "Tom" and age 24 for the Person 
structure and "S1234" for the rest of the Student structure. It is important to 
distinguish between  defining a stricture and declare a structure. When you define 
a structure you list the variables that the structure will hold. When you declare a 
structure variable you are allocating memory for the structure when the program 
runs. If you initialize the structure with values when you declare it then the 
structure variable will store the values. 
 
The  printStudent function would receive a Student structure  print out  details of 
a Student. 
 

void printStudent(struct Student s) 
{ 
    printPerson(s.p);  
    printf("Your Student number is %s\n",s.id); 

            } 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 54 
 

Notice we call the printPerson function inside the printStudent function. The 
printPerson function receives a person structure from the student structure. 
to-do 
 
Update the Lesson3.h header file to use a Student structure. You would also need 
to make a  printStudent function prototype that receives a Student structure. You 
will also need an additional enterStudentNum function prototype to enter the 
student id number. 
 
In the Lesson3.c code file  make a  enterStudentNum function  to enter  and 
return a student’s id number. Make a  printStudent function to accept a student 
structure  to print the person details and student id number.  Inside  the 
printStudent function call the printPerson function to print out the person details  
and   then print  out the student id number. You should have something like this: 
 

#ifndef LESSON3_H_INCLUDED 
#define LESSON3_H_INCLUDED 
 
#include <stdio.h> 
 
#define MAX_CHARS 81 
 
struct person_type{ 
char name[MAX_CHARS]; 
int age; 
}Person; 
 
struct student_type{ 
Person p; 
char idnum[MAX_CHARS]; 
}Student; 
 
void welcome(); 
void enterName(char name[MAX_CHARS]); 
int enterAge(); 
void enterStudentNum(char studentNum[MAX_CHARS]); 
void printPerson(Person p); 
void printStudent(Student s); 

 
#endif // LESSON3_H_INCLUDED 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 55 
 

Inside the main function add a  Student structure variable called s. Call functions 
enterName, enterAge , enterStudentNum to populate the student structure. Then 
call function printStudent() to print out the student details. 
 
You should have something like this: 
 
/* 
 Lesson3.c 
 Program to read a name, age and student number from a user using a structure 
 and to print the details on the screen 
*/ 

#include "Lesson3.h" 
 
/* function to print welcome message */ 
void welcome() 
{ 
    printf("I like C Programming\n"); 
} 
 
/* function to obtain a name from the keyboard */ 
void enterName(char name[MAX_CHARS]) 
{ 
    printf("Please type in your name: "); 
    scanf("%s",name); 
} 
 
/* function to obtain an age from keyboard */ 
int enterAge() 
{ 
    int age; 
    printf("How old are you? "); 
    scanf("%d",&age); 
    return age; 
} 
 
// get student number 
void enterStudentNum(char studentNum[MAX_CHARS]) 
{ 
    printf("Please type in your student number: "); 
    scanf("%s",studentNum); 
} 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 56 
 

/* function to print name and age on screen */ 
void printPerson(Person p) 
{ 
    printf("Nice to meet you %s\n",p.name); 
    printf("%s You are %d age years old\n", p.name,.p.age); 
} 
 
/* function to print name and age on screen */ 
void printStudent(Student s) 
{ 
    printf("Nice to meet you %s\n",s.p.name); 
    printf("%s You are %d age years old\n", s.p.name, s.p.age); 
    printf("Your student ID number is %s\n", s.idnum); 
} 
 
int main() 
{ 
    /* make a student */ 
    Student s; 
 
    /* welcome user */ 
    welcome(); 
 
    /* obtain a name */ 
    getName(s.p.name); 
 
    /* obtain an age */ 
    s.p.age = getAge(); 
 
    /* obtain student idnum */ 
    getStudentNum(s.studentNum); 
 
    /* print out name and age */ 
    printStudent(s); 
 
    return 0; 
} 
 

Compile your program and correct any errors. Run you program with student id 
number with S1234. You should get something like this. 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 57 
 

 
 
If you got this far then you should congratulate your self.  

 
Homework 3 Part 2 
 
Make a JobDescription structure to store the details of a Profession. An example 
would be a RealEstateAgent description would be “I sell houses”.   Put the 
previous  homework Profession  structure inside your JobDescription structure.  
You should have something like this. 
 

struct JobDescription { 
Profession p; 
char description[MAX_CHARS]; 

            };      
 
You may use typedef instead if you wish. 
 
The enterJobDescription function would ask  for the job description to get a job 
description from the key board. Make an printJobDescription function that 
receives a JobDescription structure that will be used to print out the profession 
type and salary and job description. Use the enterTitle, enterSalary, 
printProfession and  welcome functions from the previous homework. Put all the 
updated code in the same  homework3.c program file. 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 58 
 

Lesson 4 Operators 

 
Operators 
 
Operators do operations on variables like addition + , subtraction – and 

comparisons > etc. We now present all the C operators with examples. Make a 

new C file called Lesson4.c.  In your Lesson4.c in the main function type out the 
examples and use printf statements to print out the results. You can type in the 
operation right inside the printf statement just like this 
 
  printf("%d\n",(3+2)); 
or  
           printf("%d\n",(3>2)); 
 
Alternatively, you can use variables instead. 
 

int x = 3; 
int y = 2; 

            printf("%d + %d = %d \n", x, y, x+y); 
 
unary operators 
 
The - unary operators change the sign of a number, where as the + unary operator 
does not, it just confirms the present sign of the number. 
 
int x = 5 
 
Operator Description Example Result 

+ confirm positive number +5 5 
- Negate positive  number -5 -5 

+ confirm negative number +-5 -5 
- Negate negative  number --5 5 

 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 59 
 

printf("-5 =%d\n", -5); 
printf("+5 = %d\n", +5); 
printf("+-5 =%d\n", +-5); 
printf("--5 = %d\n", --5); 
Arithmetic Operators 
 
Arithmetic operators are used to do operations on numbers like addition and 
subtraction. 
int x = 5; 
Int y = 2; 
printf("%d + %d = %d \n",x ,y, x+y); // would print out  5 + 2 = 7 
printf("%d %% %d = %d \n",x ,y, x+y); // would print out  5 % 2 = 7 
 
 

Operator Description Example Result 

+ Add two operands  5 +2 7 
- Subtract right operand from the left  5 - 2 -3 

* Multiply two operands 5 * 2 6 
/ Divide left operand by the right one   5 / 2 2 

% Modulus - remainder of the division of left 
operand by the right   

5 % 2 3 

 
 
Comparison Operators (conditions) 
 
Comparison operators are used to compare values. It either evaluates to a 1 
meaning true or 0 meaning false according to the condition. A Comparison 
operator and values are known as a condition. 

 
x = 5; 
y = 3; 
printf("%d > %d = %d \n",x,y,x>y); // would print out 5 > 2 = 1  (true) 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 60 
 

Operator Description Example Result 

 >  Greater than - true if left operand is greater 
than the right 

 5 > 3  true (1) 

 <  Less than - true if left operand is less than 
the right 

 3 < 5  true (1) 
  

 ==  Equal to - true if both operands are equal  5 == 5  true (1) 
 !=  Not equal to - true if operands are not equal  5!= 5  true (1) 

 >=  Greater than or equal to - true if left 
operand is greater than or equal to the right 

5 >= 3  true (1) 

 <=  Less than or equal to - true if left operand is 
less than or equal to the right 

 5 <= 3  true (1) 

 
Logical Operators  
 
Logical operators are the and, or, not boolean operators, where the result of the 
operation is true and/or false. Where: 
 

1 = true 
0 = false 
 

 
x=1; 
y=0; 
printf("%d && %d = %d \n",x,y,x&&y);// // would print out 1 && 1 = 1 (true) 
printf("%d || %d = %d \n",x,y,x||y);// // would print out 1 && 1 = 1 (true) 
printf(!%d = %d \n",y,!y);// // would print out !0 = 1 (true) 
 
 

Operator Description Example Result 
 &&  true if both the operands are true   1 && 1  1 

 ||  true if either of the operands is true   1 || 0  1 

  !  true if operand is false  
(complements the operand) 

  ! 0   1 

 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 61 
 

Compound conditions 
 
Logical operators are combined with conditional operators to form compound 
conditions that are more powerful. 
 
   Condition   logical operator  condition  

(5 > 3)                &&                 (3 < 5) 
 
x = 5; 
y = 3; 
printf(“%d> %d && %d < %d=%d\n", x,y,x > y && x< y);   
 
 
 
 
 
 
result = 1 meaning true 
 
 
todo 
 
make another compound condition using the || comparison operator 
 
Binary Numbers 
 
All numbers in a computer are stored as binary numbers. Binary numbers (base 2) 
just has 2 digits 0 and 1 whereas decimal numbers have 10 digits 0 to 9. We also 
have hexadecimal  (base 16) numbers 0 to F that represent decimal numbers 0 to 
15. We use the letters A to F to  represent  decimal numbers 10 to 15.   
Here are the binary and hexadecimal  numbers for decimal numbers 0 to 15. 
 
Decimal Binary Hex 

0 0000 0 

1 0001 1 
2 0010 2 

3 0011 3 

5 > 3 && 3 < 5 = 1 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 62 
 

4 0100 4 

5 0101 5 
6 0110 6 

7 0111 7 
8 1000 8 

9 1001 9 

10 1010 A 
11 1011 B 

12 1100 C 
13 1101 D 

14 1110 E 

15 1111 F 

 
Bitwise Operators 
 
Bitwise operators act on operands as if they were binary digits. It operates bit by 
bit. Binary numbers are base 2 and contain only 0 and 1’s. Every decimal number 
has a binary equivalent. Every binary number has a decimal equivalent. For 
example, decimal 2 is 0010 in binary and decimal 7 is binary 0111. 
In the table below:  10 = (0000 1010 in binary)  4 = (0000 0100 in binary) 
 
printf("%d  | %d \n",x,y 10 | 4);  // would print out  10 | 4 = 7 
 
The difference between comparison operators and bit wise operators, the bit 
wise operators change the value where as the comparison operators do not. 
They just compare. 
 
Operator Description Example   Result 

 &  Bitwise AND 10 & 4  0  (0000 0000 in binary) 
  |  Bitwise OR 10 | 4 7  (0000 1110 in binary)   

  ^  Bitwise XOR 10 ^ 4  7  (0000 1110 in binary) 

 ~  Bitwise complement ~10  -11  (1111 0101 in binary) 

 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 63 
 

You may want to use variables values like 0 and 1 instead like this: 
x = 0 
y = 1 
 
printf("%d & %d \n",x & y); //  x & y = 0    
 
using 0 and 1’s rather than numbers make the bitwise operations  easier to 
understand: 
 
   and                      or               xor 
 0 & 0 = 0           0 | 0 = 0    0 ^ 0 = 0     
 0 & 1 = 0           0 | 1 = 1    0 ^ 1 = 1     
 1 & 0 = 0           1 | 0 = 1    1 ^ 0 = 1     
 1 & 1 =1            1 | 1 = 1     1 ^1 =0 
 
 
The ~ operator reverse the bits. 0 becomes 1 and 1 becomes - 
 
10  =           0000 1010 
~                  1111 0101 
                     
Negative binary numbers have a 1 at the start known as the msb (most significant 
bit) 
 
1111 0101 is actually  =-11 
 
You can use 2’complement to convert a  positive binary number to a negative 
binary number or a negative binary number to a positive binary number. 
                                                        
                                                                   0000 1011                        1111 0101 
Step 1 complement binary number    1111 0100                        0000 1010 
Step 2 add                                                                 1                                         1 
                                                                   ---------------                       --------------- 
                                                                   1111  0101   (-11)            1111 1011  (11) 
 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 64 
 

Shift Operators 
 
Shift operator allow you to multiply or divide a variable by multiple of 
2. The << shift operator multiplies by powers of 2 by shifting bits left. 
The >> shift operator divides by number of powers of 2 by shifting bits 
right.   We left and right shift the number 10 by powers of 2. Binary 10 
is 00001010 
 
x = 2 
y = 3 
 
x = x  << y;  //  2 << 3 = 8    
 
printf(“x << 3 = %d\n,x);    
 
x = x >> 3; // 8 >> 3 = 2 
 
printf(“x << 3 = %d\n,x);    

 
 
Operator Description Example   Result 

<<  Shift bits left by 3 bits  
(multiply by 2^3 = 8) 

2 << 3  
(2 * 8) 

8  (2 * 2 * 2) 

 >>  Shift bits right by 2 bits  
(divide by 2^2 = 4) 

8 >> 2  
2 

2  (8/2 /2 /2) 
 

 
Increment/Decrement Operators  ++   - - 
 
Increment operators ++  increment a variable value by 1 and decrement operators 
--  decrement a value by 1.  
 
They come in two versions , prefix increment/decrement value before or postfix 
increment/decrement value after. 
 
 
 

x << y = 8 

x >> y = 2 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 65 
 

Prefix Increment before   y = ++x    
 
x is incremented then value of y is assigned the value of x 
 
                                                                   x         y 
                                                                ------    ------ 
                                            x = 5               5         ? 
                                            y = ++x           6         6 
                                               
x = 5 
y = ++x; 
printf("y=x ++  y=%d  x = %d\n",y,x);   
 
 
 
 
 
postfix increment after    y = x++ 
 
The value of y is assigned the value of x and then x is incremented 
 
                                                                   x         y 
                                                                ------    ------ 
                                            x = 5               5         ? 
                                            y = x++           6         5 
 
x = 5 
y = ++x; 
printf("y=++x   y=%d  x = %d\n",y,x);   
 

 
 
 
 
y does not increment  but  x increments 
 
 

y=++x     y=6  x = 6   

y=++x     y=6  x = 6   



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 66 
 

prefix Decrement before   y = --x    
 
x is decremented then value of y is assigned the value of x 
 
                                                                   x         y 
                                                                ------    ------ 
                                            x = 5               5         ? 
                                            y = ++x           4         4 
 
x = 5 
y = --x; 
printf("y=--x  y=%d  x = %d\n",y,x);   
 
 

 
 
                                               
both y and x decrement 
 
postfix decrement after    y = x-- 
 
The value of y is assigned the value of x and then x is decremented 
 
                                                                   x         y 
                                                                ------    ------ 
                                            x = 5              5         ? 
                                            y = x--            4         5 
 
x = 5 
y = x--; 
printf("y=x --  y=%d  x = %d\n",y,x);    
 
 
 

 
 
y does not decrement  but  x decrements 

y=--x     y=4  x = 4   

y=x--     y=5  x = 4   



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 67 
 

Increment decrement operators are usually used stand alone to increment or 
decrement a variable value by 1. 
 
x++ 
x-- 

 
Assignment Operators 
 
Assignment operators are used  to assign values to variables. x = 5 is a simple 
assignment operator that assigns the value 5 on the right to the variable a on the 
left. There are various compound operators in like x += 5 that adds to the variable 
and later assigns the same. It is equivalent to x = x + 5. 
 
x = 5; 
printf("x = %d\n",x); 
 
x+= 5; 
printf("x += 5 = %d\n",x); //  x += 5  = 10    
 

Operator Compound Equivalent Operation 
  =   x = 5  x = 5 Assign 5 to x 

   +=   x += 5  x = x + 5 Add 5 to x 
  -=   x -= 5  x = x – 5 Subtract 5 from x 

   *=   x *= 5  x = x * 5 Multiply x by 5 

  /=   x /= 5  x = x / 5 Divide x by 5 

%=   x %= 5 x = x % 5 MOD x by 5 

<<= x <<= 5 x = x << 5 Shift x left 5 bits 
(multiply by 2 (32)) 

>>= x >>= 5 x = x >> 5 Shift x right 5 bits 
(divide by 2^5 (32)) 

&= x &= 5 x = x & 5 AND x by 5 
|= x |= 5 x = x | 5 OR x by 5 

^= x ^= 5 x = x ^ 5 XOR x by 5 

 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 68 
 

Lesson4 Homework Part 1 
 

1.  Print out if a number is even, using  just a print statement and a  arithmetic 

operator 

 

2. Print out of a number is odd, using just  a print statement and a  arithmetic 

operator 

 

3. Swap 2 number using a temporary variable 

 

4. Multiply a number by 8 using a shift operator 

 

5.Divide a number by 8 using a shift operator 

 

6.In a print statement, add 2 numbers together and check if they are less than 

multiplying them together 

 

7.In a print statement, add 2 numbers together and check if they are less than 

multiplying them together and greater then multiplying them together. 

 

8.In a print statement, add 2 numbers together and check if they are less than 

multiplying them together or greater then multiplying them together 

 

Put all your homework in a file called homework4.c 

 
 
Character String Operations 
 
In C operations on character strings are carried out by built in functions. To use 
theses built in functions you must place  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 69 
 

#include <string.h> 
 
On the top of your Lesson4.c file.  
 
Character strings in C are also known as CStrings. You declare CStrings with char 
data type and  square [] brackets. The [] brackets means the char variable holds 1 
one more  character. 
 
 
 // declare and assign character string 
 char s1[] = "hello"; 
 
           // print out string 
           printf("%s\n",s1); // hello 
 
 
You do not need to specify the number of characters in the string if you initialize 
with a string of letters. If  you do, you always need to specify the number of 
letters + 1, because you must allow 1 extra  character to hold the end of string  
terminator that is a ‘\0‘ or just a 0. 
 
 char s1[6] = "hello"; 
 

// get a character from string 
char c = s1[0]; 
 printf("%c\n", c)  // h 

 
// change a character in a string 
S1[0] = ‘j’;  
 

          // print out string 
           printf("%s\n",s1); // jello 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 70 
 

making empty strings 
 
If you make a empty string, you must specify the number of characters you want. 
You must reserve an extra character for the end of string character ‘\0’. 
 
 char s2[81] = {0}; 
            char s2[81] = "";  // alternate empty string 
 
Once you got a character string you can always make it Empty by setting the first 
character to the end of string character '\0 '. 
 
 s2[0] = '\0 ';  // the more professional way 
or 
 s2[0] = 0;   // the lazy way 
 
It is probably better to do the more professional way using the end of string 
character '\0 ' rather than 0, but they are both the same value of 0. 
 
string functions 
 
There are many string functions.  Here are just a few of them: 
 
            // get length of a string 
            x = strlen(s1) 
            printf("The length of the string is %d\n",x);     // 5 
 
            // copy a string 
            strcpy(s2,”goodbye”); 
            printf("%s\n", “goodbye);    // goodbye 
 
 // join two strings together 
            strcat(s2,s1);  
 printf("%s\n", s2);    // goodbyehello 
 

 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 71 
 

   // test if 2 strings are less greater or equal 
    // -1 = less  0 = equal  1 = greater 
    printf("%d\N ,strcmp(s1,s2)); // -1 
    printf("%d ,strcmp(s1,s1)); // 0 
    printf("%d ,strcmp(s2,s1)); // 1 

 
    // get pointer to start of a sub string 
    char* pchr = strstr(s2,"hello"); 
    printf("%s",pchr);  // hello 

 
Lesson4 Homework Part 2 
 

9.  Make a string of  your favourite word and replace the first letter with 

another letter, hint use substring. 

Example : change “hello” to “jello” 

10.  Make a string of  your favourite word and replace the last letter with 

another letter, hint use strlen 

Example : change “jello” to “jelly” 

11.  Make a string of  your favourite word and change the middle letter, hint 

use substring. 

      Example : change “jellly” to “jexly” 

 

12. Replace  the last letter with the first letter in a word 

            Example : change “jely” to “yelj” 

13. Compare if the two above strings are equal, greater or smaller to each 

other. 

14. Use strstr to point  to substrings in to 2 different strings. Copy the       
first one to an empty string ,then next concatenate a string of your choice         
and  finally concatenate the second string to the end. 

 
Put all your homework in a file called homework4.c 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 72 
 

LESSON 5 PROGRAMMING STATEMENTS 
 
Programming statements allow you to write complete C programs. We have 
already looked at simple input, print and assignment statements. We now present 
you with branch and loop  programming statements.  Continue with the  C file 
Lesson5.c and try out all these branch loop statements one by one. Once you see 
the program execution you will understand how theses branch and loop 
statements work. You may also want to add some extra statements of you own. 
 
Branch Control Statements 
 
Branch control statements allow certain program statements to execute and 
other not.  
 
if statement 
 
The if branch control statements contain a condition using conditional operators 
from the previous lesson to direct program flow.  
 

If (condition) 
      Statement(s) 
 

When the condition is evaluated to be true the statements belonging to the if 
statement execute. An if statement is a one-way branch operation. 
 

// if statement 
x = 5; 
if (x == 5) 

           { 
      printf("x is 5\n"); 
           }     

 
 
 
 

 
 

x is 5 
 

    if (x == 5) 
 

printf("x is 5\n"); 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 73 
 

If – else statement 
 
We now add an else statement. An if-else control construct is  a two-way branch 
operation. 
 

If (condition) 
       statements 
else 
        statements 
 
 
// if – else statement 
x = 2; 
if (x == 5) 
    printf("%s\n","x is 5"); 
else 
    printf("%s\n","x is not 5"); 
 
 

 
 
Multi if-else statement 
 
We can also have additional else if statements to make a multi-branch.  

 
// multi if else     
x = 10; 
if (x == 5) 
    printf("x is 5\n"); 
else if (x < 5) 
    printf("x less than 5\n"); 
else if (x > 5) 
    printf("x greater than 5\n"); 
  
 

 
 

x is not 5 
 

x greater than  5 
  

    if (x == 5) 
 

printf("x is not 5\n"); printf("x is 5\n"); 

    if (x == 5) 
 

else if (x < 5) 
 

else if (x > 5) 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 74 
 

A multi branch if-else can also end with an else statement. 
 

// multi if-else else    
x = 5; 
if (x < 5) 

printf("x less than 5\n"); 
else if (x > 5) 
     printf("x greater than 5\n"); 
else 
        printf("x is 5\n");  

 
 
switch statement 
 
A switch statement is considered an organized if-else statement. It is a little 
limited since if can only handle numeric equals. When the case values matched 
the switch value the statements in the case execute. The break keyword exits the 
switch statement. The default statement is  executed of there is no match. 
 
// switch statement 
 
 x = 2; 
 switch(x) 
 { 
  case 1: 
   printf("%s\n","x is 1"); 
   break; 

case 2: 
   printf("%s\n","x is 2"); 
   break;   

case 3: 
   printf("%s\n","x is 3"); 
   break; 
  default: 
   printf("%s %d\n","x is ", x); 
   break;  
                       } 

x is  5 
 

x is  2 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 75 
 

nested if-else statement 
 
if statements can also be nested to make complicated conditions simpler. 
 

// nested if statement 
x = 5; 
 
if (x >= 0) 
{ 
    if (x > 5) 
        printf("%s\n","x greater than 5"); 
    else 
        printf("%s\n","x less than equal 5"); 
} 
 

 Loop Control Statements 
 
Loop control statements allow program statements to repeat themselves. 
 
while loop 
 
The while loop allows you to repeat programming statements repeatedly until 
some condition is satisfied. 
 
The while loop requires an initialized counter, a condition, program statements 
and then increment or decrement a counter. 
 

Initialize counter 
while condition: 

statement(s) 
           increment/decrement counter 

 
When the condition is false the loop execution exits. While loops are used when 
you do not know how many items you have. 
 
 
 

x less than equal 5 
  



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 76 
 

Here is a while loop that prints out the number 0 to 4  
 
// while loop 
x = 0; 
while (x < 5) 
{ 
printf("%d\n",x); 
    x++; 
} 

 
           printf("\n");  // new line 
 
Todo 
 
Change the above while loop to print out 1 to 5 
 
Make a while loop that prints out the numbers 1 to 5 backwards. 
 
do loop 
 
The do loop also known as a do-while loop allows you to repeat programming 
statements repeatedly until some condition is satisfied. The condition is at the 
end of the loop, so the programing statements execute at least once. 
The do loop requires an initialized counter, program statements, increment or 
decrement a counter and finally a condition. 

 

Initialize counter 
do{ 

statement(s) 
           increment/decrement counter 

} while condition; 
 
When the condition is false the loop execution exits. do loops are used when you 
do not know how many items you have.  
 
 
 

0 
1 
2 
3 
4 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 77 
 

 
 
Here is a do loop you can try out that prints out the number 0 to 4.  
 

// do loop 
x = 0; 
do 
{ 
    printf("%d\n",x); 
    x++; 
} while (x < 5); 

 
           printf("\n");  // new line 
 
Todo 
 
Change the above  do while loop to print out 1 to 5 
 
Make a do while loop that prints out the numbers 1 to 5 backwards. 
 
for loop 
 
Another loop is the for loop. It is much more automatic then the while loop but 
more difficult to use. All loops must have a counter mechanism. The for loop 
needs a  start count value, condition, increment/decrement counter. When the 
condition is false the loop exits. For loops are used when you know how  many 
items you have. 
 

for (start_count_value,condition,  increment/decrement_counter): 
 Statement(s) 

 
Here we have  a for loop to print out values 0 to 4, to try out.  

 
// for loop   
int i; 
for (i=0;i<5;i++) 
{ 

0 
1 
2 
3 
4 
 
 

0 
1 
2 
3 
4 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 78 
 

printf("%d\n",i); 
           } 
 
 
To do: 
Change the above  for loop to print out 1 to 5 
 
Make a for loop that prints out the numbers 1 to 5 backwards. 
 
 
Nested for loops 
 
Nested for loops are used to print out 2 dimensional grids by row and column. 
 
//  nested for loop 
int r; 
int c; 
for (r=0;r<5;r++) 
{ 
    printf("%d:"); 

for (c =0; c < 5; c++) 
{ 

        printf("%d",c); 
    } 
    printf("\n"); 
} 
 
Loops can also be used to print out characters in a string variable 

 
// print out characters in a string 
char*  s = "Hello"; 
int i; 
for (i=0;i<strlen(s);i++)   
{ 

printf("%c\n",s[i]); 
           } 
 printf("\n"); 

 
1 : 1 2 3 4 5 
2 : 1 2 3 4 5 
3 : 1 2 3 4 5 
4 : 1 2 3 4 5 
5 : 1 2 3 4 5 

H 
e 
l 
l 
o 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 79 
 

 
 
 
 
 
 
 
 
 
LESSON 5 HOMEWORK TO DO: 
 
 
Exam Grader 
 
Ask someone to enter an exam mark between 0 and 100.  If they enter 90 or 
above printout an “A”, 80 or above print out a “B”, 70 or above print out a “C”, 
60 or above print out a “D”  and “F” if below 60. Hint: use if else statements. 
 
You can visualize a grade chart like this: 
 

Mark Range Exam Grade 
90 to 100 A 

80 to 89 B 

70 to 79 C 
60 to 69 D 

0 to 59 F 
 
Mini Calculator 
 
Make a mini calculator that takes two numbers and a operation like  - , +, * and /. 
Prompt to enter two number’s  and a operation like this: 
 
Enter first number:  3 
Enter second number: 4 
Enter (+, -. *. /) operation:  + 
Then print out the answer like this: 
3 + 4 = 7 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 80 
 

 
Hint: use a switch statement. 
Use a while or do while loop so that they can repeatedly enter many calculations.  
Terminate the program when they enter a letter like ‘X’ for the first number. 
 
 
 
 
 
Triangle Generator: 
 
Use nested for loops to print out a triangle using ‘*’ like this: 
 
                            * 
                         *     * 
                     *      *      * 
                 *      *      *      * 
            *       *      *      *       * 
 
Ask the user how many rows they want. 
 
Hint: use 2 nested for loops, start with a square of stars 
 
Enhanced Triangle Generator: 
 
Use nested for loops to print out a triangle using ‘*’ like this: 
 
                            * 
                         * * * 
                      * * * * * 
                   * * * * * * * 
                * * * * * * * * * 
 
Ask the user how many rows they want. 
 
Hint: use 2 nested for loops, start with a square of stars 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 81 
 

Reverse a String 
 
Reverse a String using  a while loop or a for loop in place.  Print the string before 
and after reversal also using a loop. 
 
Test if a number is prime 
 
Make a function called isPrime(x) that tests if a number is print. In a loop divide 
the number between 2 to number-1 (or 2 to square root of number+1. For square 
root use: 
 
                   x = (int)Math.sqrt(n); 
       
If the number can be divided by any of the divisors then the number is not prime, 
else it is prime. Print out the first 100 prime numbers. 
 
The first  10 prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29 

 
 
 
Print out all factors of a number 
 
Make a function call factors(x) that will print out all the factors of a number. The 
factors of a number is all the divisors divided by the number evenly.  
 Example: 
 
The Factors of 50 are: 
1 
2 
5 
10 
25 
50 
 
Print out all prime factors of a number 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 82 
 

Make a function call prime_factors(x) that will print out all the prime factors of a 
number. The prime factors of a number is all the prime number divisors divided 
by the number evenly.  
 
Example:      12 = 2 × 2 × 3 
 
Following are the steps to find all prime factors. 
 

0) Enter a number n 
1) While n is divisible by 2, print 2 and integer divide n by 2 
2) In a for loop from i = 3 to square root of n + 1  increment by 2 

          in a while loop while n is divisible by i 
                  print i 
                  integer divide n by integer i 
 

3) print n if it is greater than 2. 
 
For square root use: 

   
          x = Math.sqrt(n); 

 
 
 
 
Make a Guessing game 
 
Ask the user of your game to guess a number between 1 and 100. If they guess 
too high tell them “Too High”. If they guess too low tell them they guess “Too 
Low”. If they guess correct tell them “Congratulations you are Correct!”. Play 10 
games as a round. Keep track in an array how many tries each game took. At the 
end of 10 games in a table print out the tries for each game in the round. At the 
end of the table print out total score of all the game tries. For each round keep 
track of the lowest total score and inform the user if they beat the current lowest 
score or not. At the end of each round ask the user if they want to play another 
round of 10 games. You will need to first generate a random number to guess.  
You can use this code to generate a random number: 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 83 
 

// seed random number generator 
srand((unsigned int)time(0));  
 
// generate a random number 
int number = rand() % MAX_NUMBER + 1;  
Where MAX_NUMBER is a constant placed at the top of your program. 
 

const int MAX_NUMBER = 10; 
Also make another constant MAX_GAMES for the number of games to play. 
 

const int MAX_GAMES  = 10; 
 
You will need to include the following at the top of your program, for the compiler 
to recognize the  srand(), rand() and time() functions. 
 

#include <stdlib.h> 
#include <time.h> 

 
You should have functions to print a welcome message explaining how to play the 
game, generate a random number, get a guess from the keyboard, check if a 
guess is correct and print out the game scores. The main function should just call 
your functions in a loop. Call your c file Homework5.c or GuessingGame.c 
 
Guessing Game using a Structure 
 
Make a Guess Game structure that will keep track of the guess number and  tries 
per game. The main function would  update the structure per round.  After all 
games have been played print out the average game.  Call your c file 
Homework5b.c or GuessingGame2.c 
 

 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 84 
 

LESSON 6   ARRAYS 
 
For this lesson make a new C source  file called Lesson6.c  and in the main 
function type in the following programming statements for the following Arrays 
 
ARRAYS 
 
Arrays are sequential values accessed under a common name. Arrays store many 
sequential values together.  We have one dimensional arrays and multi 
dimensional arrays. One dimensional arrays are considered a single row of values 
having multiple columns. You can visualize a one-dimensional array as follows. 
 
Value1 Value2 Value3 Value4 Value5 

 
We declare and initialize 1 dimensional int array of size 5 as follows. 
The size of the array is enclosed inside the square brackets. 
 

int a[5] = {1,2,3,4,5}; 
 

1 2 3 4 5 
 
When initializing all  the values of an array the size is optional and can be written 
as follows: 
 

int a[] = {1,2,3,4,5}; 
 
In this situation the size of the array is determined by the number of listed 
initialized  values.  
 
You can also  declare a one-dimensional array of  a specified size without 
initializing the values. Here we declare an array of size 5. 
 

int a2[5]; 
 
 
 
 

Number 
of elements 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 85 
 

You can initialize all array values to a single value like this: 
 

int a2[5] = {0}; 
 
In this situation you must specify the size of the array you need also to assign 
array values separately as follows. Arrays locations are assigned by an index. All 
indexes start at 0. 
 

a2[0] = 1; 
a2[1] = 2; 
a2[2] = 3; 
a2[3] = 4; 
a2[4] = 5; 
 

0 1 2 3 4 
1 2 3 4 5 

 
The indexes are at the top and the array values are at the bottom  

 
Arrays locations are also retrieved by an index 
 

int x = a[0]; 
printf("%d\n", x); 
 

 
todo: 
 
Print out all the elements in the above 1 dimensional array using a for loop 

 
 
 
 

Two-dimensional arrays 
 
Two-dimensional arrays have grid of rows and columns. A two-dimensional array 
having 3 rows  by 4 columns is visualized as follows: 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 86 
 

Row 1 column 1   column 2   column 3   column 4 

Row 2 column 1   column 2   column 3   column 4 
Row 3 column 1   column 2   column 3   column 4 

 
Here we declare and initialize a two-dimensional int array. We specify the number 
of rows and columns inside square brackets.. 
 

int b[3][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}}; 
 
 
 
 
 
1 2 3 4 

5 6 7 8 
9 10 11 12 

 
We assign values to the two-dimensional array by row and column index. The row 
index  specified first and the column index specified second. The row and column 
index’s both start at 0;            
 
            array name [ row index ] [ column index ] = value; 
 

b[2][3] = 11; 
 
 
 

 
 
 
We retrieve values from the two-dimensional array also by row index  and column 
index. The row index is first and the column index is second. 
The row and column index’s start at 0; 
 

x = b[2][3]; 
printf("%d\n", b2[2][3]);  // 11 

 

which 
row 

which 
column 

Number 
of rows 

Number 
of columns 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 87 
 

The row index and column index of a two-dimensional array can be visualized as 
follows. The row index is first and the column index second. The row and column 
index’s start at 0; 
 

[0][0] [0][1] [0][2] [0][3] 
[1][0] [1][1] [1][2] [1][3] 

[2][0] [2][1] [2][2] [2][3] 

 
We use nested for loops to print out the values of a 2 dimensional array. 
 
// print out values in a two-dimensional array  
int r; 
int c;  
for (r=0;r < 3; r++) 
 { 
     for (c=0;c < 4; c++) 
     { 
               printf("%d\n", b[r][c]); 
     } 
    printf("\n");   
 }     

 
To do 
 
Use 2 nested for loops to assign new values to the two-dimensional 
array using some kind of formula like 
 
      b[r][c]) = r + 6 * c; 
 
Then print out the 2 dimensional array b; 
 
 
 
 
 
 

1 2 3 4 
5 6 7 8 
9 10 11 12 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 88 
 

LESSON 6 HOMEWORK Part1 
 
Question 1 
 

Make  an array of 10 numbers 1 to 10,  print out the numbers in the array, 
then add up all the numbers and print out the sum. 
 

Question 2 
 

Make  an array of 10 numbers 1 to 10,  print out the numbers in the array. 
Ask the user of your program to enter a number in the array. Search for the 
number in the  array and report  if  it is found or not found. 
 

Question 3 
 

Make  an array of 10 numbers 1 to 10,  print out the numbers in the array. 
Ask the user of your program to enter a number in the array. Search for the 
number in the  array and report the array index where the number was 
found otherwise print -1 meaning no index found. 

 
Question 4 

 
Make  an array of 10 numbers 1 to 10,  print out the numbers in the array. 
Reverse all the numbers in the array in-place using a loop.  Hint: use swap 
and 2 indexes i and j.  Index i starts at the beginning of the array and index j 
starts at the end of the array.  The i’s increment and the j’s decrement. 
Print out the reversed array. 
 

Question 5 
 
Make  a 2 dimensional array of 3 rows and 3 columns. Fill the 2 dimensional 
array with numbers 1 to 9.  Add up the sum of all rows, and print the sum 
at the end of each row.  Add up the sums of all columns, and print the sums 
at the end of each column. Your output should look like this. 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 89 
 

 1   2   3 : 6 
 4   5   6 : 15 
 7   8   9 : 24 
--- --- --- 
11 15 18 

 
 
Question 6 
 
Make an array to hold 10 numbers 1 to 10. 
Generate 1000 random numbers between 1 and 10. 
Keep track of the random numbers generated in your array. 
Print out all the numbers and their counts from the array. 
Print out the numbers with the smallest and largest count. 
Print out the number of even and odd number counts. 
You can make a random number like this: 
 

int x = rand() % 10 
 
and you will also need to seed the random number generator to get different 
numbers when you run the program 
 

srand((unsigned int)time(0)) 
 
You will need at the top of you c file: 
 

#include <stdlib.h> 
#include <time.h> 

 
So the C compiler recognizes the srand() , rand() and time() functions 
 
Put all answers in a C  file called Homework6.c 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 90 
 

Arrays of Structures 
 
Arrays of Structures allow you to group many structures together under a 
common name. We can make an array of person structures  using the Person 
structure as follows. 
 

struct Person  
{ 
char name[MAX_CHARS]; 
int age; 
} ; 

 
struct Person persons[] = { 

{"Tom",24}, 
{"Mary",20}, 
{"Sue",28} 
};                
 

using typedef 
 

typedef struct person_type  
{ 
char name[MAX_CHARS]; 
int age; 
} Person; 

 
Person persons[] = { 

{"Tom",24}, 
{"Mary",20}, 
{"Sue",28} 
};                

 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 91 
 

todo 
 
Make an array to hold 3 Persons and initialize with 3 persons.  
In a  loop print  out the persons in the person array. Use the  printPerson  
function from previous lesson to print  out the person details  
 

void printPerson(struct Person p) 
{ 
    printf("Nice to meet you %s\n",p.name); 
    printf("%s You are %d age years old\n", p.name, p.age); 
} 

 
           Or the one using typedef  
 

void printPerson(Person p) 
{ 
    printf("Nice to meet you %s\n",p.name); 
    printf("%s You are %d age years old\n", p.name, p.age); 
} 

 
 
 
LESSON 6 HOMEWORK part 2 
 
Question 7  
 
Make an Array of Structures using your Profession structure from Lesson3. In a  
loop print  out the persons in the person array. Use your  printProfession  
function to print  out the Profession details. Put all your main function in a file 
called Homework6.c  
 
 
Array of structures containing structures 
 
We can also make an array  of structures that contain other structure using the  
Student  structure from previous lesson.  
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 92 
 

struct Student 
{ 
Person  p; 
char idnum[MAX_CHARS]; 
}; 

 
You would initialize the array of structures like this: 
A structure inside a structure so each structure needs curly brackets. 
 

struct Student students[]  = { 
{{"Tom",24}, "S1234" }, 
{{"Mary",20}, "S5678" }, 
{"{Sue",28}, "S1111"} 
}; 

 
 
Using typedef 
 

 
typedef struct student_type 
{ 
Person p; 
char idnum[MAX_CHARS]; 
}Student; 
 

You would initialize the array of structures like this: 
 
Student students[] = { 

{{"Tom",24}, "S1234" }, 
{{"Mary",20}, "S5678" }, 
{{"Sue",28}, "S1111" } 
 };                

 
You could visualize the 1 dimensional array of person structures like this 

 

Person Structure Person Structure Person Structure 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 93 
 

todo 
 
Make an array to hold 3 Students and initialize with 3 students. In a  loop print  
out the persons in the person array. Use the  following printStudent  function 
from previous lesson to print  out the student details.  
 

void printStudent(struct Student s) 
+{ 
    printPerson(s.p);  
    printf("Your Student id is %s\n",s.id); 

            } 
 
  Or using typedef 
 

void printStudent(Student s) 
{ 
    printPerson(s.p);  
    printf("Your Student id is %s\n",s.id); 

            } 
 
Most people use typedef. 
 
 
You could visualize the 1 dimensional array of student structures like this 

 

Student Structure Student Structure Student Structure 
 
 
 
LESSON 6 HOMEWORK part 3 
 
Question 8 
 
Make an Array of Structures of Structures using your JobDescription Structure 
from Lesson3. In a  loop print  out the job description in the job description array. 
Use your  printJobDescription  function  to print  out the JobDescription details  
Put all your main function in a file called Homework6.c  



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 94 
 

2 Dimensional Array of Structures. 
 
We can also make a 2 dimensional array of persons structures like this: 
 

Person  persons2d[2][3] ={ 
      { 

{"Tom",24 }, 
{"Mary",20}, 
{"Sue"}, 

     }, 
     { 

{"Tom",24}, 
{"Mary",20}, 
{"Sue",28} 

     }                
 
 };                

 
We have 2 rows and 3 columns. 
Notice: we also enclose the rows in curly brackets 
 
You could visualize the 2 dimensional array of Person structures like this: 

 

Person Structure Person Structure Person Structure 
Person Structure Person Structure Person Structure 

Person Structure Person Structure Person Structure 
 
 
Todo 
 
Print out the 2 dimensional array using nested for loops and use the printPerson 
function. 
 
 
 
  
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 95 
 

We can also make a 2 dimensional array of student structures like this: 
 

Student  students2d[2][3]={ 
{ 

{{"Tom",24}, "S1234" }, 
{{"Mary",20}, "S5678" }, 
{{"Sue",28}, "S1111" }, 

 }, 
{ 

{{"Tom",24}, "S1234" }, 
{{"Mary",20}, "S5678" }, 
{{"Sue",28}, "S1111" } 

  }                
 };                

 
You could visualize the 2 dimensional array of student structures like this: 

 
Student Structure Student Structure Student Structure 

Student Structure Student Structure Student Structure 
Student Structure Student Structure Student Structure 

 
 
Todo 
 
Print out the 2 dimensional array using nested for loops and use the printStudent 
function. 
 
 
 
 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 96 
 

LESSON 6 HOMEWORK part 4 
 
Question 9  
 
Make an 2D Array of Structures using your Profession structure from Lesson3. In a  
nested for loop print  out the persons in the person array. Use your  
printProfession  function to print  out the Profession details. Put all your main 
function in a file called Homework6.c  
 
Question 10 
 
Make an 2D Array of Structures of Structures using your JobDescription Structure 
from Lesson3. In a nested for loop print  out the job description in the job 
description array. Use your  printJobDescription  function  to print  out the 
JobDescription details  
Put all your main function in a file called Homework6.c 
 
 
LESSON  7  POINTERS and ALLOCATING MEMORY 
 
When a program runs variables are stored in a computer memory location. Each 
variable is stored at a memory location. The memory location is known as an 
address. It is possible to get the address of the memory location using a pointer 
variable. Ordinary variables store values,  pointer variables store addresses. 
 
To declare a pointer variable we use a star* after the data type. A pointer is a 
variable that stores a memory location. 
 

int* ptr = NULL; 
 
We  have declared an int pointer variable to store the address of an int variable. 
The pointer data type must match the data type of the variable that the pointer 
points to. We also have initialized  the pointer variable to a default 0 address.  
called NULL. NULL is a constant representing a 0 address. A 0  address actually 
represents no address. Alternately you may see this as well 
 

int* ptr = 0; 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 97 
 

Using a 0  is considered poor programming practice, but you should always use 
NULL instead. 
 
Declaring a pointer variable is just like declaring a ordinary value variable. 
 
  int x = 5; 
 
To get the address of a variable we use a & in front of the variable name. 
& means “address of” 
Our pointer can now point to the variable age using the & address of operator. 
 

ptr = &x; 
 
 
 
 
 
The pointer  ptr variable now  points to the variable x.  
 
                                     x  
 
                                     ptr 
 
Once you have the address of the variable you can get the value that the pointer 
points to. You use a star * to get the value from the pointer. * means “value of” 
 
  int x = *ptr; 
 
We can print out the value obtained from the pointer. 
 
 
                        printf("%d\n",x);    
 
 
 
Which would be the same as reading directly from the pointer *ptr. 
 

5 

 

5 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 98 
 

 
                        printf("%d\n",*ptr);    
 
 
You can also assign a new value to the age variable using the pointer 

 
                     *ptr = 10;             ptr                                x  
 

 
 
Printing out the values that the pointer points to we now get a 10. 
 
                        printf("%d\n",*ptr);  
 
 
We can also print out the address that the pointer contains (the contents of the 
pointer).  We printing out the address  that the pointer contains using %p 
formatter: 
 
                        printf("%p\n",ptr);  
 
 
%p is a format specifier used to print out a address. 
We can also print out the address of the variable age using the address of 
operator & and the %p formatter. 
 
                        printf("%p\n",&x);  
 
Note: Both addresses are the same. 
 
 
todo 
 
Try making some  variables and pointer variables, assign values  to the variable 
and assign the address of the variables to the pointer variable. Print out the 
values of the variables using the pointers. 
 

10 

0x0005E000 

0x0005E000 

10  

5 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 99 
 

5 5000 

5 

? 5004 

5 5004 

Incrementing  and decrementing a pointer 
 
When you increment or decrement a pointer you are incrementing  its contents 
by the memory size  that the pointer points to. The pointer contents does not just 
increment by 1 but rather than the memory size of the variable it points to. The 
contents of a pointer is the memory address of some variable that the pointer 
points to. 
 
Example: 
 
X is at memory location 5000, Memory location 5000 contains the value 5. 
                                                                          x 
                      int x = 5;                  5000 
 
 
ptr at memory location 6000 points to x at memory location 5000. 
                                                                         ptr                 x 
                      int* ptr = &x;          6000 
                 
post increment pointer ptr++ 
pointer contents is now 5004, because the memory size of a  int is 4    
because sizeof(int) = 4. The pointer now points to an unknown value. 

                                                   ptr                  x 
 ptr++ 

 
post decrement pointer ptr-- 
pointer contents is back to 5000, because the memory size of a  int is 4    
because sizeof(int) = 4. The pointer now points back to x. 
        
                                                                         ptr               x 
                       ptr--;  
 
 
Incrementing and decrementing  the variable value that a pointer points to 
 
Post increment the value that the pointer is pointing to: 
                                                                            



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 100 
 

6 5000 

5 5000 

? 5004 

5 

                                                                           ptr                  x 
(*ptr)--;                                           6000                                                        
        
The value of x has now incremented to 6 
 
Pre increment the value that the pointer is pointing to: 
                                                                            
                                                                           ptr                  x 
(*ptr)--;                                           6000                                   
        
The value of x has now  decremented to 5. We are using post decrement. 
 
 
 
 
Accessing values and Incrementing/decrementing pointers 
 
Access the value of the pointer and post decrement the pointer 
 
                                                                           ptr                  x 
int y = *(ptr--);                                   6000                                                 
       
                                                                                                   y 
 
 
The value of x has now incremented to 6 
y has the value 5 
You may also use without the  brackets. 
                              int y = *ptr--; 
 
because ++ has precedence over *.  The pointer decrements first,  then the value 
is accessed.                                    
                                    
 
Access the value of the pointer and pre-increment the pointer 
                                                                            
                                                                           ptr                  x 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 101 
 

5 5000 

5 

int y = *(++ptr);                                   6000                                   
                                                                                                          
                                                                                                   y 
 
 
The value of x has now  decremented to 5 
y has the value 5 again because we have pre-decremented the pointer 
You may also use without the  brackets. 
                              int y = *++ptr; 
 
because ++ has precedence over *,  the pointer increments first then the value is 
accessed.                                    
 
 
 
todo 
 
Try making some  variables and pointer variables, assign values  to the variable 
and assign the address of the variables to the pointer variable. Print out the 
values of the variables using the pointers. Then increment and decrement the 
pointers and print out the values they point to. Next increment the values they 
point to and print out their values. Lastly read the values from the pointers when 
you increment them or decrement them. Use pre increment and post increment. 
 
Try to increment a pointer and a value all at the same time or vice versa. 
Try to decrement a pointer and a value all at the same time or vice versa. 
 
Pointers to Character Strings 
 
           char* s1 = "hello"; 
           char*  s2 = "there"; 
 
Pointers to character strings are usually read only,  because they are using code 
memory not data memory. You cannot change their values, but you can still copy 
them. 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 102 
 

To do: 
 
Make 2 two pointer to character strings and initialize them with your favourite 
words.  Print(out the character strings using the %s formatter, don’t forget a new 
line \n. 
 
Printing  out a character string using a loop and a pointer. 
 
char* s = "tomorrow"; 
 
while (*s) 
{ 
       printf(“%c “,*s++; 
} 
 
printf("\n"); 
loop to print out character string and increment a character before printing 
 
In this situation we have to use reserved memory for the string not code memory.  
You cannot change code memory. We first reserve memory for the character 
string “tomorrow”. 
 
char s3[] = "tomorrow"; 
 
Then we assign the character pointer s to the character string s3 start of memory. 
 
s = s3; 
 
while (*s) 
{ 
       printf("%c ",++(*s++)); 
} 
 
printf("\n")   
 
 
 

t o m o r r o w 
 

u p n p s s p x 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 103 
 

     

Pointers to Pointers 
 
A  pointer points to another pointer. 
 
You declare a pointer to pointer with two  stars **. 
 

int** pptr = NULL; 
 
We use our pointer from previous section and  assign to the address of the  
variable x 
 

x = 5;                                   ptr                            x 
ptr = &x;                                

 
We assign the address of a pointer to a pointer to pointer. A pointer to a pointer 
points to another pointer. 
  

pptr = &ptr; 
                                                     
                                                                pptr             ptr                  x 
 
To access a value from a pointer to pointer is a 2 star process 
 

x = **pptr; 
printf("%d\n",x);   // 5 

 
To assign the a value to a pointer to pointer is also a 2 star process 
 

**pptr = 10; 
 

We then print out the value from the pointer to pointer again 
x = **pptr; 
printf("%d\n",x);   // 5 

 
 
 
 

    



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 104 
 

Alternatively you access values using the pointer contained in the pointer to 
pointer 
 

// Read value from pointer 
ptr = *pptr; 
x = *ptr; 
printf("%d\n",x); 
 
// Assign value using pointer 
*ptr = 10; 
x = **pptr; 
printf("%d\n",x); 

 
 
Lesson7 Homework Part 1 
 
Question 1 
 
Make 2 int variables and assigned values to them. 
Make 2 int pointers and assign the address of each variable to each pointer. 
Use the pointers to swap the values. Print  the values before and after the 
swapping. 
 
 
Question 2 
 
Make 2 int pointer to pointers. Assigned to each  pointer  to  pointer  the address 
of each pointer from question1. 
Use the pointer to pointer to swap the values. Print the values before and after 
the swapping. 
Next use the pointer obtained from the pointer to pointer swap the values. Print 
the values before and after the swapping. 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 105 
 

Question 3 
 
Make 2 character strings one  initialized to your favorite word and the other one  
with reserved memory larger than the first character string. Copy from the first 
one into the second one backwards using a pointer. Print out the both strings 
after you copy them. 
 
 
Allocating memory for Arrays 
 
Alternatively you can allocate memory to a pointer using malloc. You need to put  
 
                  #include <stdlib.h>  
 
at the top of your program so that the complier knows what malloc is. You 
allocate memory for a int data type as follows: 

 
ptr = (int *) malloc (sizeof(int)) 

 
(int *) is known as type casting which states the memory to be allocated is to 
represent an int address.  
 
sizeof states the size of the data type to be allocated in bytes 
sizeof(int) means the number of bytes for a int data type (usually 4 bytes) 
 
 
Allocating Memory for a 1 Dimensional Array 
 
We can also allocate memory for arrays when the program is running; 
 

int* a =  (int*) malloc(sizeof (int) * 5);  
 
a is known as a pointer because it holds the address of the allocated memory for 
the array.  (points to the allocated memory) 
 
sizeof is used to indicate the size of a array column and the 5  means to have 5 
columns.  



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 106 
 

 

a      
 
A has the address of the 1 dimensional array 
 
 
You can access the allocated memory by index 
 

a[1] = 2; 
x = a[1]; 
printf("%d\n", x);    

 
or by the pointer value of operator * 
 

*(a+1) = 2; 
x = *(a+1) 
printf("%d\n", x);    

 
The value of * operator is also known as dereferencing. Dereference means to get 
the value from a pointer. A pointer is a reference to a memory address storing a 
value. So to get the value from a pointer it is called dereferencing.  
 
Assigning values to a 1 dimensional array 
 
When you allocate memory for a 1 dimensional  array you need to give it some 
values using some formula. 
 

// assign values to a 1 dimensional array 
for (int i=0;i<5;i++) 
{ 
 a[i] = (i+1); 
}   

 
Printing out  values from a 1 dimensional array 
   
 
 

2 
 
 

2 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 107 
 

We use for loops to print out values in array.   
 
// print out values in a 1 dimensional  array 
  
 for (int i=0;i<5;i++) 
     printf("%d ", a[i]);   
 printf("\n");   
 
Once you are finished using the allocated array you need to reclaim the memory, 
so other programs can use the memory. 
 

free( a); 
 
to do 
 
Allocate 1 dimensional array of any size you want, fill it with values using a 
formula, then print out the array values  and then free the array memory. 
 
Allocating memory for a 2 Dimensional Array 
 
We can also  allocate memory for a 2 dimensional array . We first make a 1 
dimensional array of integer row pointers (int**) known as pointers to pointers. 
 
int** b = (int**) malloc(sizeof(int*) * 3);  // declare number of row pointers 
 
The sizeof operator indicated we need memory size for a int* and the 3 means an 
array of 3 int* pointers. * =multiply 
 
Each  row pointer will then point to a 1-dimensional array of  int columns which 
will hold the values of the 2 dimensional array for each row. 
 

b[0] = (int*) malloc(sizeof(int) * 4); 
b[1] =  (int*) malloc(sizeof(int) * 4); 
b[2] =  (int*) malloc(sizeof(int) * 4); 

 
 

1 2 3 4 5  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 108 
 

Picture a allocated 2 dimensional array like this. A 1 dimensional array of int 
pointers pointing to 3 a 1  dimensional array of int values. 

 
      

      

      
 
 
Once you allocate memory for the 2 dimensional array you can assign new values 
to it like this: 
 

b2[0][2] = 5; 
 
You can retrieve values like this. 
 

x = b2[0][5];    
 
Where the first square bracket contents  is the row index and the second square 
bracket contents is the column index. All indexes start at 0; 
 

printf("%d\n",x); 
 
 
Alternately you can use the value of * operator 
 

*((*(b+1))+2) = 5; 
 
Where  *(b+1)  get you a pointer to row 2 (index 1), because getting the value of a 
pointer to pointer is a pointer. 
 
 (*(b+1))+2) gets you a pointer to column 3  (index 2) the address of row 1 
coliumn3. ALL memory values have their own address location. 
 
The leading * lets you assign the value  to the memory location the value 5. 
 
              *((*(b+1))+2) = 5; 
 

5  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 109 
 

We do the same for reading back the value, and then print it out. 
 

x = *(*(b+1)+2); 
printf("%d\n",x); 

 
Most people use the square brackets [][] when accessing  allocated 2 dimensional 
arrays . 
 
Assigning values to a 2 dimensional array 
 
We just assign values in a nested for loops. 
 
int r = 0; 
int c = 0; 
for (r=0;r<3;r++) 
{ 
    for (c=0;c<4;c++) 
    { 
    b[r][c] = (r+1)*c; 
    } 
} 
 
Printing out  values from a 2 dimensional array 
 
We just print values in nested for loops 
 
for (r=0;r<3;r++) 
{ 
    for (c=0;c<4;c++) 
    { 
    printf("%d ",b[r][c]); 
    } 
 
    printf("\n"); 
} 
 
 

5  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 110 
 

Deleting memory from an allocated 2-dimensional array.  
 
We first delete memory for each row and then delete memory for the array that 
was storing the row pointers.  
 
for (r=0;r < 3; r++) 
 { 
 free( b[r]); 
 }    
 
free( b); 
 
to do 
 
Allocate 2 dimensional array of any rows and columns  sizes you want, fill it with 
values using a formula, then print out the array values  and then free the array 
memory. 

 
Lesson7 Homework Part 2 
 
Question 3 
 
Allocate memory for a 1 dimensional array. Use a second pointer  and a loop to 
assign values to each element of the array. You can increment the  pointer 
contained address like this p++ or use *p++  to access a value and increment. 
Then print out the one dimensional array using the second pointer. Then free the 
memory for the 1 dimensional array. 

 
Question 4 
 
Allocate memory for a 2 dimensional array. Use a second pointer and a loop to 
assign values to each element of the array. You can uses a pointer to pointer  or 
just another pointer. You can increment the  pointer contained address like this 
p++ or use *p++  to access a value and increment.  Then print out the two 
dimensional array using the second pointer. Then free the memory for the 2 
dimensional array 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 111 
 

Allocating memory for a structure 

 
We use the Person and Student Structure from Previous Lessons. 
 
     Where the Person structure is: 
 

Not using typedef using typedef 

  struct Person  
{ 
char name[MAX_CHARS]; 
int age; 
}; 

 

   typedef struct person_type  
{ 
char name[MAX_CHARS]; 
int age; 
} Person; 

 
 
 
And the Student structure is: 
 

Not using typedef using typedef 

    struct Student 
{ 
struct Person p; 
char idnum[MAX_CHARS]; 
}; 
 

   typedef struct student_type 
{ 
Person p; 
char idnum[MAX_CHARS]; 
}Student; 
 

 
You allocate memory to a structure using malloc. You need to put #include 
<stdlib.h> on the top of your program so that the complier knows what malloc is.  
 
 
You allocate memory for a Person structure data type as follows: 

 
struct Person *  ptr = (struct Person *) malloc (sizeof(struct Person)); 

 
If you use typedef then it is like this: 
 

Person * ptr  = (Person *) malloc (sizeof(Person));  
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 112 
 

(Person *) is known as type casting which states the memory to be allocated is to 
represent an structure Person address. We need to type cast because malloc 
returns a void* pointer. void* means a pointer to a no specified data type. 
 
sizeof states the size of the data type to be allocated in bytes 
sizeof(Person) means the number of bytes for a Person  structure data type 
 
When you access the variables in the structure using a pointer you use the arrow  
-> operator rather than the dot . operator 
 

pptr->name 
pptr->age 

 
 
When you allocate memory for a structure you cannot initialize the elements in 
the structure  when you create it,  you must assign the values instead. 
 

strcpy(pptr->name, "Tom"); 
pptr->age=24; 
 
 

name “Tom” 
Age 24 

  

 
to do 
 
 Allocate memory for a person structure, assign values to it and print out the 
values, using a printf statement 
 
You allocate memory for a Student structure data type as follows: 

 
struct Student * sptr = (struct Student *) malloc (sizeof(struct Student)); 
 
 
 
 

pptr 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 113 
 

 
If you use typedef then it is like this: 
 

Student* sptr = (Student *) malloc (sizeof(Student));  
 
(Student *) is known as type casting which states the memory to be allocated is to 
represent an Student structure  address.  
 
sizeof states the size of the data type to be allocated in bytes 
sizeof(Student) means the number of bytes for a Student  structure data type 
 
When you access the variables in the structure using a pointer you use the arrow  
-> operator rather than the dot . operator 
 

sptr->p.name 
sptr->p.age 
sptr->idnum 

 
In the above situation we use the  arrow -> operator  on the p but use the dot 
operator  to access the name from p, because p is not a person structure pointer 
but a just  Person structure so we still use the dot . operator. 
  
When you allocate memory for a structure you cannot initialize the elements in 
the structure  when you create it,  you must assign the values instead. 
 

strcpy(sptr->p.name, "Tom"); 
sptr->p.age=24; 
strcpy(sptr->idnum,”S1234”); 
 

 
 

name “Tom” 

Age 24 
Idnum “S1234” 

 
 
 

sptr 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 114 
 

To do 
 
Allocate memory for a Student structure, assign values to it and print out the 
values using a printf statement 
 
 

LESSON 7 HOMEWORK Part 3 
 
 
Question 5 
 
Allocate  memory for  your Profession structure from Lesson3 and fill in some 
values. Print  out the profession using the printProfession function from also from 
Lesson3. Put all your main function in a file called Homework7.c  
 
Question 6 
 
Allocate  memory for  your  JobDescription Structure from Lesson3 and fill in 
some values.  Print out the  JobDescription  using printJobDescription function 
also from Lesson3. Put all your main function in a file called Homework7.c  
 
 
ALLOCATING MEMORY FOR AN ARRAY OF  STRUCTURES 
 
Note: we are using the  typedef structure for the rest of the examples. 
typedef is much better to use. 
 
Allocate an  array to hold 3 persons  and assign the array with 3 persons 
 

Person* pa = (Person*) malloc(sizeof (Person)*3); 
 
 

Person Structure 
Person Structure 

Person Structure 

 
 

pa 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 115 
 

When you allocate memory for a structure  you must assign values to each 
structure in the array. 
 
You use square brackets[] and a index to specify which structure you want to 
access. 
 
To assign values to the first structure in the persons array you would to this: 
 
 strcpy(pa[0].name,”tom”) 
pa[0].age = 24; 
 
Allocate an  array to hold 3 students  and assign the array with 3 students. 
 

Student* sa = (Student*) malloc(sizeof (Student)*3); 
 
 

Student Structure 
Student Structure 

Student Structure 

 
When you allocate memory for a structure  you must assign values to each 
structure in the array. 
 
You use square brackets[] and a index to specify which structure you want to 
access. 
 
To assign values to the the first structure  in the student array you would do this  
 
strcpy(sa[0].p.name,”tom”) 
sa[0].p.age = 24; 
strcpy(sa[0].idnum,”S1234”); 

 
 
 
 
 

sa 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 116 
 

todo 

 
Allocate memory for  array to hold 3 persons and initialize with 3 persons.  
In a loop using a printf function print out the person details. 
 
Allocate memory for  array to hold 3 students and initialize with 3 students.  
In a loop using a print function print out the student detail. 
 
 

LESSON 7 HOMEWORK Part 4 
 
 
Question 7 
 
Allocate  an Array of Structures using your Profession structure from Lesson3 and 
fill in some values. In a  loop print  out the professions in the profession array 
using the printProfession function from also from Lesson3. Put all your main 
function in a file called Homework7.c  
 
Question 8 
 
Make an Array of Structures using your JobDescription Structure from Lesson3 
and fill in some values.  In a loop using a printJobDescription function print out 
the job description details. Put all your main function in a file called Homework7.c  
 
 
ALLOCATING MEMORY FOR AN ARRAY OF  STRUCTURE  POINTERS 
 

  Memory for some structure 
  Memory for some structure 

  Memory for some structure 

 
 
 
 
 
 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 117 
 

Allocate an  array to hold 3 persons  Structures  pointers  
 

Person** pap = (Person**) malloc(sizeof (Person*)*3); 
 

You need to allocate memory for the array of Person structure pointers 
 
pap[0] = (Person*) malloc(sizeof (Person)); 
pap[1] = (Person*) malloc(sizeof (Person)); 
pap[2] = (Person*) malloc(sizeof (Person)); 
 
 

 
pap[0]  Memory for Person structure 

pap[1]  Memory for Person structure 
pap[2]  Memory for Person structure 

 
 
When you allocate memory for a structure you must assign values to each 
structure in the array. 
 
You use square brackets[] and a index to specify which structure you want to 
access,. 
 
To assign values to the first structure in the persons array you would to this: 
 
 strcpy(pap[0]->name,”tom”) 
pa[0]->age = 24; 
 
to do 
 
Allocate memory for  array to hold 3 persons structure pointers and initialize with 
3 persons.  In a loop using a printf function print out the person details. 
 
Allocate an  array to hold 3 students structure pointers   
 

Student** sap = (Student**) malloc(sizeof (Student*)*3); 
 

pap 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 118 
 

You need to allocate memory for the array of Student  structure pointers 
 
sap[0] = (Student*) malloc(sizeof (Student)); 
sap[1] = (Student *) malloc(sizeof (Student)); 
sap[2] = (Student *) malloc(sizeof (Student)); 

 
 

 

sap[0]  Memory for Student structure 

sap[1]  Memory for Student structure 

sap[2]  Memory for Student structure 
 
 
 
When you allocate memory for a structure you must assign values to each 
structure in the array. 
 
You use square brackets [] and a index to specify which structure you want to 
access,. 
 

 
To assign values to the first structure in an array Student structures you would do 
this:  
 
strcpy(sap[0]->p.name,”tom”); 
sap[0]->p.age = 24; 
strcpy(sap[0]->idnum,”S1234”); 
 
We must use the arrow -> operator to access the student structure,  since the 
array is storing structure pointers. 
 
 

todo 
 
Allocate memory for  array to hold 3 students structure pointers and initialize 
with 3 students.  In a loop using a print function print out the student detail. 

 

sap 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 119 
 

LESSON 7 HOMEWORK Part 5 
 
Question 9 
 
Allocate  an Array of Structures Pointers using your Profession structure from 
Lesson3 and fill in some values. In a  loop print  out the professions in the 
profession array using the printProfession function from also from Lesson3. Put all 
your main function in a file called Homework7.c  
 
Question 10 
 
Make an Array of Structures Pointers using your JobDescription Structure from 
Lesson3.  In a loop using a printJobDescription function print out the job 
description details. Put all your main function in a file called Homework7.c  
 
 
Converting  memory from one data type to another using a Pointer 
 
There are situations when you want to uses a different data type from an existing 
data type. Data types are just bits of ones and zeros  grouped together in bytes 
known as hexadecimal numbers. 1 byte is made up of 8 bits. It all depends in how 
you interpret the bits to arrive at the data  type you want. Each data type 
interprets the data bits differently. 
You may want to access individual bytes  of  the int data type separately.  int 
usually is 32 bits  made up of 4 bytes. 
 

32 bits int 
Byte 0 Byte1 Byte2 Byte3 

 
To access a int memory as a 4 byte array we  first make a int variable called x and 
assigned hexadecimal 12345678 to it. (0x means hexadecimal)  
 
    int x = 0x12345678;  
    printf("%04x\n", x);  
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 120 
 

We then assign a char pointer to it, we use the & to get the address of x and you 
need to type cast  the  int * data type to a char *  
 
   char* p =( char*)&x;  
 
We now can read individual bytes from the in memory location 
 
    // reading bytes  
    int b1 = p[0];  
    int b2 = p[1];  
    int b3 = p[2];  
    int b4 = p[3];  
 
    printf("%0x %0x %0x %0x\n", b1,b2,b3,b4);    
 
    We can also change individual bytes to new values: 
 
    // writing bytes  
    p[0] = 0x11;  
    p[1] = 0x22;  
    p[2] = 0x33;  
    p[3] = 0x44;  
 
    printf("%0x %0x %0x %0x\n", p[0], p[1], p[2], p[3]);  
    printf("%04x\n", x);       
 
Do not confuse type casting a pointer to type casting a non pointer variable,. 
When you type cast a pointer you are forcing the pointer type when  you type 
casting a non variable you are type casting a value data type not an address data 
type. 
 
void* is use to represent a memory address with no assigned data type. 
 
You can also allocate a block of memory and then convert it to the data type you 
want later. 
 
    void* px = (void*)malloc(100); 

12 34 56 78  
 
 

11223344  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 121 
 

Copying blocks of memory 
 
You may have a void* block of memory of unknown data type, so you need to 
copy byte by byte. 
 
We can copy using a pointer or using an index. 
We first copy using a pointer. 
 
// allocate memory block of 100 bytes 
void* m = malloc( 100); 
 
// type cast to a char* 
char* p = (char*)m; 
 
// initialize with sequential values 
int i = 0; 
for (i=0;i<100;i++) 
{ 
      *(p++) = i; 
} 
 
Note: we use *(p++)   which assigns the value to the memory location pointed to 
by p the address of p is increment. The address increments in bytes to the size of 
the data type. For bytes it is 1 for ints it may be 4. 
 
Which is quite different from (*p)++   
(*p)++  means to increment the value pointed to by p by 1 
  
// copy to another memory location 
 
We first allocate memory using malloc. 
 
// allocate memory block of 100 bytes 
void* m2 = malloc( 100); 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 122 
 

// point to and type cast to first and second block of memory 
char* p1 = (char*)m; 
char* p2 = (char*)m2; 
 
// copy block using pointers 
for (int i=0;i<100;i++) 
{ 
      *(p2++) =  *(p1++); 
} 
 
// read back memory from second memory block 
char* p2  = (char*)m2; 
int i = 0;  
for (i=0;i<100;i++) 
{ 
      printf("%d ",*(p2++) ); 
} 
printf("\n”); 
 
Copy block of memory not using a pointer and using index I instead 
 
We first typecast m to a char* 
(char*)m 
 
We now use the square brackets and the i  used to select each individual bytes 
((char*)m)[i] 
 
int i = 0; 
for (int i=0;i<100;i++) 
{ 
      ((char*)m2)[i]  =  ((char*)m)[i]; 
} 
 
We can also use the * operator as well. 
We first typecast m to a char* 
 
(char*)m 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 123 
 

We now use and the i to select each individual byte as an offset to the start of the 
memory location 
 
((char *)m)+i 
 
We then use the * operator to get the  byte value 
 
*((char *)m)+i) 
 
The round brackets are very important. The inner round brackets are used  to 
type cast m to a char* so that the i index can act as a offset to the memory 
location m. The outer round bracers are used for the star * to access the value at 
the selected byte. 
 
int i = 0; 
for (i=0;i<100;i++) 
{ 
     *(((char*)m2)+i) = *( ((char*)m)+i); 
} 
 
// read back memory from second memory block 
char* p2  = (char*)m2; 
int i = 0;  
for (i=0;i<100;i++) 
{ 
      printf("%d ",*(p2++) ); 
} 
printf("\n”); 
 
 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 124 
 

Lesson 7 HOMEWORK part 6 
 
Question 11 
 
Make a float variable and initialize with any value you like. Pass the float variable 
to the parameter of a void* function that will return an int. Type cast the input 
parameter as an int*  and return the value of the int, back to the main into 
another int variable.  In the main type cast the variable to a float* and print out 
the value. Put all your main function in a file called Homework7.c  
 
Question 12 
 
Make a unsigned int and assign 0x12345678 to it. Reverse the int to 0x87654321 
using char pointers. Print the int before and after reverse. Put all your main 
function in a file called Homework7.c  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 125 
 

LESSON 8     PASSING ARRAYS, STRUCTURES TO FUNCTIONS 
 

Passing arrays to functions 
 
Arrays are passed to a function by address. You can use the square operator [] or 
star * operator. They both indicate passing an array by address. When you are 
using the *operator them you can treat the array parameter as a pointer.  
 
 
 We can make a printArray function to demonstrate passing an array to a function 
by address and print out the values.  We also include an additional parameter n to 
indicate the length of the array. 
 
// pass array using [] operator 
void printArray(int a[], int n) 
{ 
        int i = 0; 
 
        for(i =0;i < n;i++) 

{ 
                    printf("%d ",a[i]); 

} 
       printf("\n"); 
} 
 
// pass array using * operator 
void printArrayPtr(int* a, int n) 
{ 
        int i = 0; 
 
        for(i =0;i < n;i++) 

{ 
                    printf("%d ",*a); 
                     a++; 

} 
       printf("\n"); 
} 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 126 
 

You would pass an array to the printArray functions as follows: 
 

int a[] = {1,2,3,4,5}; 
 
printArray(a, 5); 

 
 

 printArrayPtr(a, 5); 
 
 
to do 
 
Passing a structure to a function by pointer 

 
Passing structures to functions by pointer address is more efficient then passing a 
structure by value.  When you pass a structure by value then all the memory or 
the structure is sent to the functions. When you pass a structure by pointer  then 
the address of  the structure is sent to the function, that is more efficient. When 
you pass a structure by value to a function, you cannot change the values of the 
outside  values of the structure inside the function,  since you are actually passing 
a copy of the structure values. When you pass a structure by pointer to a function 
then you can change the  outside values of the structure inside the function, 
because you are passing the address of the structure  to the function.  You can 
change the values of the variables in the structure because you have the address 
of the structure variables. 
 
     Where the Person struct is: 

 
typedef struct person_type  
{ 
char name[MAX_CHARS]; 
int age; 
} Person; 

 
Note we are using typedef structure because it is more convenient. 
 

1 2 3 4 5  
 
 

1 2 3 4 5  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 127 
 

We can change the printPerson function from previous lesson to accept a person 
structure pointer instead. 
 

void printPerson(struct Person p) 
{ 
    printf("Nice to meet you %s\n",p.name); 
    printf("%s You are %d age years old\n", p.name, p.age); 
} 

 
. 
Our person structure parameter now  will have a star * to indicate pass by 
pointer.  
 
To access values in a  pointer structure variable you use the arrow  operator -> 
 
            structure_variable_name -> variable_name 
 
To access name by Person pointer p: 
 

p->name 
 
To access age by Person pointer p: 
 

p->age 
 
Here is the print person function using  a person structure pointer parameter. 

 
void printPersonPtr(Person* p) 
{ 
    printf("Nice to meet you %s\n",p->name); 
    printf("%s You are %d age years old\n", p->name, p->age); 
} 

 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 128 
 

To call the printPerson function we supply the address of the structure using the 
& operator. 
 

Person p = {"Tom",24};      
printPersonPtr(&p); 

 
to do: 
 
Make a printStudentPtr function to accept  Student pointer to print out details of 
a Student. Update  the printStudent function to receive a Student structure by 
pointer. Use the printStudentPtr function  to print out a student. 

 
Here is the Student structure as a typedef. 
 

typedef struct student_type 
{ 
Person p; 
char idnum[MAX_CHARS]; 
}Student; 
 

     Where the Person struct is: 
 
typedef struct person_type  
{ 
char name[MAX_CHARS]; 
int age; 
} Person; 

 
Passing Arrays of Structures to Functions   
 
Arrays of structures are passed to a function by address. You can use the square 
operator [] or star * operator. They both indicate passing an array to structures by 
address. When you are using the *operator them you can treat the array 
parameter as a pointer.  We can make a printPersons  function to demonstrate 
passing an array of structures to a function by address and print out the values. 
We also include an additional parameter n to indicate the length of the array. Our 
printPersons function calls the printPersonPtr function rather than the 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 129 
 

printPerson function to print out details of the person. The printPersonPtr 
function is more efficient. 
 
// pass array of structure using [] operator 
void printPersons(Person persons[], int n) 
{ 
        int i = 0; 
 
        for(i =0;i < n;i++) 

{ 
                    printPersonPtr(&persons[i]); 

} 
       printf("\n"); 
} 
 
 
// pass array of structures using * operator 
void printPersonsPtr(Person* persons, int n) 
{ 
        int i = 0; 
 
        for(i =0;i < n;i++) 

{ 
                    printPersonPtr(persons); 
                    persons++; 

} 
       printf("\n"); 

} 
 
You would pass an array of structures to the printPersons functions as follows: 
 

struct Person persons[] = {{"Tom",24},{"Mary",20},{"Sue",28}};                
printPersons(persons, 3); 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 130 
 

 
 
 
 
 
 
 
 
 
 
Notice in the printPersons function and the printPersonsPtr function we have 
called the printPersonPtr function rather than the printPerson function 
 
In this situation you need to pass the person structure as a pointer address like 
this, the & means address of 
 
             printPersonPtr(&persons[i]); 
 
It is more efficient to pass by pointer. 
 
todo 
 
Make an array of 3 students.  
 
Make an printStudents  function  that receives a student array and number of 
students in the array. And print out the students in the array using the 
printStudentPtr function. 
 
 
Make an printStudentsPtr  function  that receives a student array as a pointer and 
number of students in the array. PRINT out the students in the array using the 
printStudentPtr  function. 
 
 
 
 
 

Nice to meet you Tom 
Tom You are 24 age years old 
 
Nice to meet you Mary 
Mary You are 20 age years old 
 
Nice to meet you Sue 
Sue You are 28 age years old 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 131 
 

Homework  part A 
 
Question1 
 
Make an Array of Structures  using your Profession structure from Lesson3.Make 
a  printProfessions function and a printProfessionsPtr  to  print  out the persons 
in the person array. Make a  printProfessionPtr  function to print  out the 
Profession details. Put all your main function in a file called Homework8.c  
 
Question2 
 
Make an Array of Structures using your JobDescription Structure from Lesson3. 
Make a  printJobDescriptions function and a printJobDescriptionsPtr function  to  
print  out the job description in the job description array. Make a  
printJobDescriptionPtr  function  to print  out the JobDescription details  
Put all your main function in a file called Homework8.c  
 
 
Passing an Array of Structure Pointers to a Function  
 
Recapping: 
 
An Array of Structure Pointers contain an array of pointers to a function, each 
element contains the memory address of some structure  
 
 

  Memory for some structure 

  Memory for some structure 
  Memory for some structure 

 
 
Allocate an  array to hold 3 persons  Structures  pointers  
 

Person** pap = (Person**) malloc(sizeof (Person*)*3); 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 132 
 

You would then initialize the arrays with Person structure memory addresses. 
 
You can do the easy way like this: 
 

Person p1 = {"tom",24}; 
Person p2 = {"sue",22}; 
Person p3 = {"bill",26}; 
 
 
pap[0] = &p1; 
pap[1] = &p2; 
pap[2] = &p3; 

 
Or you can allocate memory for each structure and assign values to them the hard 
way like this: 
 

pap[0] = (Person*) malloc(sizeof (Person*)); 
pap[1] = (Person*) malloc(sizeof (Person*)); 
pap[2] = (Person*) malloc(sizeof (Person*)); 
strcpy(pap[0]->name,”tom”) 
pa[0]->age = 24; 
 
strcpy(pap[1]->name,”Sue”) 
pa[1]->age = 20; 
 
strcpy(pap[2]->name,”Mary”) 
pa[2]->age = 26; 

 

We now have to make a function to print out the array of structure 
pointers called printPersonsPtrPtr. 

 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 133 
 

using * [] 
 
// pass array of structures using p*[] operator 
void printPersonsPtrPtr(Person* persons[], int n) 
{ 
        int i = 0; 
 
        for(i =0;i < n;i++) 

{ 
                    printPersonPtr(persons[i]); 

} 
       printf("\n"); 

} 
 
Or using ** 
 
// pass array of structures using ** operator 
void printPersonsPtrPtrPtr(Person** persons, int n) 
{ 
        int i = 0; 
 
        for(i =0;i < n;i++) 

{ 
                    printPersonPtr(*persons); 
                    persons++; 

} 
       printf("\n"); 

} 
 
Again we will use our printPerson function that receives a pointes 
 

void printPersonPtr(struct Person* p) 
{ 
    printf("Nice to meet you %s\n",p->name); 
    printf("%s You are %d age years old\n", p->name, p->age); 
} 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 134 
 

When we call the printPersonPtr function we must only give them a persons[i]  
 
printPersonPtr(persons[i]); 
 
because persons[i] is already a pointer. 
 
 
To do 
 
Type in the above c code int your laesson8.c file and run it using both versions of 
print Persons pointer functions 
 
printPersonsPtrPtr(pap,3); 
printPersonsPtrPtrPtr(pap,3); 
 
 
You will get something like this: 
 
 
 
 
 
 
 
 
We need now need to do the same for the Student structure 
 
Here is the Student structure as a typedef. 
 

typedef struct student_type 
{ 
Person p; 
char idnum[MAX_CHARS]; 
}Student; 
 
 

 

Nice to meet you Tom 
Tom You are 24 age years old 
 
Nice to meet you Mary 
Mary You are 20 age years old 
 
Nice to meet you Sue 
Sue You are 28 age years old 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 135 
 

     Where the Person struct is: 
 
typedef struct person_type  
{ 
char name[MAX_CHARS]; 
int age; 
} Person; 

 
 
You should do this in steps 
 
(1)    Allocate an  array to hold 3 students structure pointers   
 

Student** sap = (Student**) malloc(sizeof (Student*)*3); 
 

(2)  Initialize the arrays with Student structure memory addresses. 
 
Student s1 = {{"Tom",24}, "S1234" }; 
Student s2 = {{"Mary",20}, "S5678" }; 
Student s3 = {{"{Sue",28}, "S1111"}; 
 
sap[0] = &s1; 
sap[1] = &s2; 
sap[2] = &s3; 
 
 
(3)  to do 
 
make the print students array pointer functions 
 

void printStudentsPtrPtr(Student* students[], int n) 
void printStudentsPtrPtrPtrStudent** students, int n) 

 
(4) run the program 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 136 
 

You should get something like this: 
 
 
 
 
 
 
 
 
 
 
Homework part B 
 
Question 3 
 
Make an Array of Structures Pointers using your Profession structure from 
Lesson3. In a  loop print  out the persons in the person array. Make a   
printProfessionPtrPtr  and  printProfessionPtrPtrPtr  function to print  out the 
Profession details. Put all your main function in a file called Homework8.c  
 
Question 4 
 
Make an Array of Structures of Structures using your JobDescription Structure 
from Lesson3. In a  loop print  out the job description in the job description array. 
Make a  printJobDescriptionPtrPtr and printJobDescriptionPtrPtrPtr  functions  
to print  out the JobDescription details. Put all your main function in a file called 
Homework8.c  
 
Question5 
 
In the Student structure change the Person structure to a punter. When you 
initialize the student structure you need to allocate memory for it and assign 
values to it, You will also need to change tithe printStudent functions just to 
accept a pointer for the person structure. 
 
 
 

Nice to meet you Tom 

Tom You are 24 age years old 

Your Student id is S1234 

Nice to meet you Mary 

Mary You are 20 age years old 

Your Student id is S5678 

Nice to meet you {Sue 

{Sue You are 28 age years old 

Your Student id is S1111 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 137 
 

LESSON 9 FUNCTION POINTERS 
 
A function  pointer is a pointer to a function.  Function pointers let you execute a 
function from calling it from the function pointer.  Function pointers can be 
standalone, stored in an array or structure  or passed to another function. They 
make your programming more convenient  and optimal. Function pointers may be 
a little difficult to understand and use. 
 
We first make a simple function that will  print out  the word “hello”. 
 

void printHello() 
{ 
       printf("Hello\n"); 
} 

 
We then declare a function pointer that will point to the hello function. 
 
            void (*f)(); 
 
void is the return type  (*f) is the function pointer  () is the parameter list of the 
called function. The parameter list receives argument values that are passed to 
the function when it executes. 
 
The function pointer return type and parameter list must match the function you 
want to  point to. 
 
Next we assign the printHello function  to the function pointer. 
 

f = printHello; 
 

The function pointer receives starting address where the code for the printHello 
function is stored. 
 
We can now execute our function from the function pointer. 
 

(*f)(); 
 

Hello  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 138 
 

We are calling the printHello function from the function pointer using (*f) and the 
argument list(). We need to put the *f  in round brackets (*f  ) to avoid confusion. 
 
This  is very similar to calling a regular  function by its name:  f(); 
Except we use round brackets with a * around the function name: (*f()) 
 
The only difference is that the function pointer requires a star * to extract the 
function code from the pointer just like a * in a regular pointer is used to extract 
the value from the pointer. 
 
int x = 5; 
int* p = &x 
printf(“%d\n”,*p); 
 
Without the * proceeding  the pointer it will print out the address of the variable 
not the value it contains. 
 
int x = 5; 
int* p = &x 
printf(“%d\n”,p); 
 
 
                  pointer                       some variable in memory at some address 
 
            p 
 
 
 
The same thing with the function pointer, the function pointer contains the 
address of the memory where the code for the function is stored. The * means to 
start executing the code instructions at that address. 
         
 
            f 
 
 
         function pointer             some function in memory at some address 

5 
 
 

1235343454 
 
 

 Function code instructions 
 
 

  
 
 

 Value stored in memory for the 
variable 
 
 

  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 139 
 

Here is the complete program: 
 
#include <stdio.h> 
 
// program to call a function pointer 
 
// function to print out hello 
void printHello() 
{ 
    printf("hello\n"); 
} 
 
int main() 
{ 
 
// declare a function pointer 
void (*f)(); 
 
// assign a function  to  function pointer 
f = printHello; 
 
// execute a function using a function pointer 
printf(" execute a function using a function pointer\n"); 
(*f)(); 
 
return 0; 
} 
 
Todo 
 
Type in or copy past the following program and run it, then change the message 
in the printHello function 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 140 
 

 passing arguments to a function called by a function pointer 
 
 
We first make a function to receive a message,  you will need to put the function 
at the top of your program. 
 

void printMsg(char* msg) 
{ 
    printf("%s\n",msg); 
} 

 
The next thing we need to do is make  a function pointer with the same signature 
as the printMsg function. 
 

void (*f2)(char* msg); 
 
The function pointer return type and parameter list must match the function you 
are pointing to. In our case the parameter list receives a char*  the message we 
want to print out and returns no value. 
We now assign the printMsg function to the function pointer f2 
 

f2 = printMsg; 
 
We call the printMsg function using the f2 function pointer and pass it  the char 
string "happy" to it, which it prints out on the computer screen. 
 
(*f2)("Happy"); 
 
 
 
 
 
 
 
 
 
 

Happy 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 141 
 

Here is the complete program: 
 
#include <stdio.h> 
 
//  program to call a function pointer that receives a parameter 
 
// function to print a message 
void printMsg(char* msg) 

{ 
    printf("%s\n",msg); 
} 

 
int main() 
{ 
 
// declare a function pointer 
void (*f)(char* msg); 
 
// assign a function  to  function pointer 
f = printMsg; 
 
// execute a function using a function pointer 
printf(" execute a function using a function pointer\n"); 
(*f)("Happy”); 
 
return 0; 
} 
 
 
Todo 
 
Type in or copy past the following program and run it, then change the message 
in the passed to the printMsg function by way of the function pointer. 
 
 
 
 

Happy 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 142 
 

passing arguments to a function and receiving values from a function 
called by a function pointer 
 
 
We first make a function that will receive 2 int values that will  add them together 
and return the results. Remember you need to put this function at the top of your 
program to avoid compile errors. 
 
int add(int a, int b) 
{ 
    return a + b; 
} 
 
The next thing we make a function pointer f3 with the same signature as the add 
function. 
 

int (*f3)(int a, int b); 
 

We then assign the add function to the f3 function pointer. 
 

f3 = add; 
 

We now execute the function, passing 3 and 4 as arguments to it. 
 

int x = (*f3)(3,4); 
 
The function adds together the two values 3 and 4 and returns the result to the 
variable x that we then print out the value on the computer screen. 
 

printf("%d\n",x); 
 
 
 
 
 
 
 

7 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 143 
 

Here is the complete program: 
 
#include <stdio.h> 
 
//  program to call a function pointer that receives a parameter and returns a 
value 
 
// function add 2 values and return the result 
int add(int a, int b) 
{ 
    return a + b; 
} 
 
int main() 
{ 
 
// declare a function pointer 
int (*f)(int a, int b); 
 
// assign a function  to  function pointer 
f = add; 
 
// execute a function using a function pointer 
int x = (*f)(3,4); 
print(“\d\n”,x); 
return 0; 
} 
 
Todo 
 
Type in or copy past the following program and run it, then change the values 
passed to the add function by way of the function pointer. 
 
 
 
 
 

7 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 144 
 

array of function pointers 
 
The next thing we want to store many  function pointers in an  array so we can 
execute them all using a loop. 
We make the following additional sub, mul and divide arithmetic functions that 
we put at the top of our program file. 
 

int sub(int a, int b) 
{ 
    return a - b; 
} 
 
int mul(int a, int b) 
{ 
    return a * b; 
} 
 
int divide(int a, int b) 
{ 
    return a / b; 
} 

 
We then make  an array to hold the function pointers. 
 

int (*f4[4])(int a, int b) = {add,sub,mul,divide}; 
 
It is same as making an array of ints  
 
       int a[4] = {1,2,3,4}; 
 
except we use a function pointer (*f4[4]) instead 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 145 
 

8 
2 
15 
1 
 

In a loop we execute all the arithmetic functions and print out the result values. 
 
int i = 0; 
for(i=0;i<4;i++) 
{ 
    x = (*f4[i])(5,3); 
    printf("%d\n",x); 
} 
The correct function is called and executed using the i index and the  array 
function pointer  (*f4 [i])  and argument values (5,3). 
 
Here is the complete program 

 
#include <stdio.h> 

            //  program to call a function pointer that receives a parameter  
// and returns a value 
int add(int a, int b) 
{ 
    return a + b; 
} 

 
int sub(int a, int b) 
{ 
    return a - b; 
} 
 
int mul(int a, int b) 
{ 
    return a * b; 
} 
 
int divide(int a, int b) 
{ 
    return a / b; 
} 

 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 146 
 

8 
3 
15 
1 
 
 
 

int main() 
{ 
 
// declare an array of function pointer’s 
int (*f4[4])(int a, int b) = {add,sub,mul,divide}; 
 
// execute each function in the array using the function pointer 
int i = 0; 
for(i=0;i<4;i++) 
{ 
    x = (*f[i])(5,3); 
    printf("%d\n",x); 
} 
return 0; 
} 

 
Todo 
 
Type in or copy past the following program and run it, then change the values 
passed to the arithmetic function by way of the function pointer. 
 
Allocating memory for an array of  function pointers 
 
We first make a variable to store an array of function pointers to function 
pointers. 
 

int (**f5)(int a, int b) ; 
 
We then  allocated  memory for the array of function pointers using malloc 
and assign to our function pointer array variable. 
 

f5 = malloc(sizeof((*f5))*4); 
 

This is the same thing as allocating memory for an array 
 
           int* pa = (int*)malloc(sizeof(int)*4) 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 147 
 

 except we use a function pointer (*f5) we need the extra * because it is a pointer 
to a pointer (**f5) 
 
We then assigned the arithmetic functions to the allocated array. 
 
f5[0] = add; 
f5[1] = sub; 
f5[2] = mul; 
f5[3] = divide; 
We then execute the arithmetic functions from the array of function pointers 
 
for(i=0;i<4;i++) 
{ 
    x = (*f5[i])(5,3); 
    printf("%d\n",x); 
} 
Here is the complete program 
 

#include <stdio.h> 
 
//  program to call a function pointer that receives a parameter and 
returns a value 
int add(int a, int b) 
{ 
    return a + b; 
} 

 
int sub(int a, int b) 
{ 
    return a - b; 
} 
 
int mul(int a, int b) 
{ 
    return a * b; 
} 
 

8 
2 
15 
1 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 148 
 

int divide(int a, int b) 
{ 
    return a / b; 
} 

 
int main() 
{ 

 
// declare an array of function pointer’s  
int (**f)(int a, int b) ; 
 
// allocate memory for the array of function pointers 
f = malloc(sizeof((*f))*4); 
 

 
// assigned the arithmetic functions to the allocated array. 
f[0] = add; 
f[1] = sub; 
f[2] = mul; 
f[3] = divide; 

 
// execute each function in the array using the function pointer 
int i = 0; 
for(i=0;i<4;i++) 
{ 
    x = (*f[i])(5,3); 
    printf("%d\n",x); 
} 

 
return 0; 
} 

 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 149 
 

8 
2 
15 
1 
 

Using typedef to allocate memory for an array of function pointers (optional) 
 
Typdef is a little easier  to do but may be more difficult to understand. Typedef 
allows you to define your own data type from known data types like int. 
 

typedef int(*funptr)(int, int); 
 
Using typdef our data type is now  funptr representing the function pointer 
signature of our arithmetic functions. 
 
We now  allocate  an array of funptr’s using malloc 
 
  funptr* f6 =  malloc(sizeof(funptr)*4); 
 
We now assign the arithmetic functions to our arrays of function pointers. 
 

f6[0] = add; 
f6[1] = sub; 
f6[2] = mul; 
f6[3] = divide 

 
we now execute all the arithmetic functions from the allocated array of function 
pointers. 
 

for(i=0;i<4;i++) 
{ 
x = (*f6[i])(5,3); 
 printf("%d\n",x); 
} 

 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 150 
 

Passing a function pointer to another function 
 
We first make a function called calculate that will receive a function pointer. We 
will pass one of our arithmetic functions to the calculate function 
 

int add(int a, int b) 
{ 
    return a + b; 
} 

 
The calculate function will call the received function pointer f with the received 
parameter values a and b. 
 
Here is the calculate  function, remember to put it at the top of your program to 
avoid compile errors. 

void calculate(int(*f)(int a, int b),int a, int b) 
{ 
    int x = (*f)(a,b); 
    printf("%d\n",x); 
} 

 
The calculate function receives a function pointer 
 
  int(*f)(int a, int b)  
 
having the same signature as one  of the arithmetic functions  like  
 

int add(int a, int b). 
 
The calculate function will call the add function using the function pointer and  
passes parameters a and b. The calculate function will then print out the 
calculated value ii received from the arithmetic  function.  
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 151 
 

8 
 

Here  is an example program: 
 

#include <stdio.h> 
 
// function add to add 2 numbers a and b 
int add(int a, int b) 
{ 
    return a + b; 
} 
 
// declare function calculate that has a function pointer f as a parameter 
// function pointer f receives the arguments a and b 
// which are the parameters a and b in the calculate method 
void calculate(int(*f)(int a, int b),int a, int b) 
{ 
    int x = (*f)(a,b); 
    printf("%d\n",x); 
} 
 
int main() 
{ 
 // declare and initialize variables a and b 
  int a = 5; 
  int b = 3; 
 
// call function calculate and pass the add function to it 
// calculate function receives the  add function  
// and the variables a and b as parameters 
// the function calculate calls the add function to add the variables  
// the add function adds the variables a and b together  
// and returns the answer  back to the calculate function 5 + 3 = 8 
// the calculate function receives the result 8 and prints to the screen  
 
calculate(add, a, b); 
 
return 0; 
} 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 152 
 

8 
2 
15 
1 
 

Todo 
 
Type in or copy past the following program and run it, then change the values 
passed to the calculate function by way of the function pointer. 
 
Passing an array  of function pointers to another function 
 
We can also make a function to receive an array of function pointers. 
 

void do_calculations(int(*f[])(int a, int b), int a, int b) 
{ 
    int i = 0; 
 
    for(i=0;i<4;i++) 
      { 
      calculate(f[i],a,b); 
      } 
} 

 
The do_calculations function receives an array of function pointers. Then in a 
loop it calls the calculate function passing a function point and values a and b to 
it.  Using the pointer array and passed  values  a and b (5,3) it prints out this: 
 
 
 
 
 
 
Here is an example program: 
 

#include <stdio.h> 
 
int add(int a, int b) 
{ 
    return a + b; 
} 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 153 
 

int sub(int a, int b) 
{ 
    return a - b; 
} 
 
int mul(int a, int b) 
{ 
    return a * b; 
} 
 
int divide(int a, int b) 
{ 
    return a / b; 
} 

 
// receive an array of function pointers 
void do_calculations(int(*f[])(int a, int b), int a, int b) 
{ 
    int i = 0; 
 
    for(i=0;i<4;i++) 
      { 
      calculate(f[i],a,b); 
      } 
} 

 
 

int main() 
{ 
 
// declare an array of function pointer’s 
int (*f[4])(int a, int b) = {add,sub,mul,divide}; 
 
// declare and initialize variables a and b 
  int a = 5; 
  int b = 3; 
 

8 
2 
15 
1 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 154 
 

8 
2 
15 
1 
 

do_calculations (f, a, b); 
 
return 0; 
} 

 
To do 
 
Try the above program, try different values of a and b. 
 
Make a do_calculations function that get a pointer to a pointer like this: 
 

void do_calculations_ptr(int(**f)(int a, int b), int a, int b) 
{ 
    int i = 0; 
 
    for(i=0;i<4;i++) 
      { 
      calculate(f[i],a,b); 
      } 
} 

 
Use the do_calculation_ptr  function in the above program. Try with different 
values of a and b.  The operation should be the same because (**f) and (f[]) 
usually mean the same thing inmost C compilers. 
 
Next use make a allocated array of function  pointer of arithmetic functions, and 
pass to the do_calculation_ptr  function. 
 
 
Storing a function pointer in a structure. 
 
We can make a structure to hold a function pointer. We will use our person 
structure from before. 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 155 
 

// structure to hold persons name, age and print function 
typedef struct person_type 
{ 
char name[81]; 
int age; 
void (*printPerson)(char* name,int age); 
}Person; 
 
We can also use one of our print person function from previous lessons 
 
// function to print out person info 
void printPerson(char* name, int age) 
{ 
    printf("your name is: %s, you are %d years old\n",name, age); 
} 
 
In our main function  we make the person structure  
 

// make the person structure 
Person p = {"tom",24,printPerson}; 

 
Then we print out the person using the function pointer stored in the person 
structure like this: 
 
// print person info 
p.printPerson(p.name, p.age); 
 
Here is the complete program: 
 

#include <stdio.h> 
 
// structure to hold person’s name, age and print function 
{ 
char name[81]; 
int age; 
void (*printPerson)(char* name,int age); 
}Person; 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 156 
 

 
// function to print out person info 
void printPerson(char* name, int age) 
{ 
    printf("your name is: %s, you are %d years old\n",name, age); 
} 

 
 
int main() 
{ 
//We make the person structure 
Person p = {"tom",24,printPerson}; 
 
// print out the person using the function pointer  
// stored in the person structure 
p.printPerson(p.name, p.age); 
return 0; 
} 

 
Todo 
 
Type in or copy paste the above program and run it, and try different values. 
The allocate a person structure and rerun the program. What did you have to do 
to make it run? 
 
Lesson 9  Homework 
 
Make a message from an  array of  words. Make a print message function to 
receive the array of words message. Make functions lower, upper, reverse_letters 
and reverse_words. 
 

Function Description 

Lower Make all words lower case 
Upper Make all words upper case 

Reverse_letters Reverse all letters  
Reverse_words Reverse all letters in each word 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 157 
 

Note: These functions change  the message words  in place, and does  no printing. 
 
Put  functions lower, upper, reverse_letters and reverse words, in an array of 
function pointers. Call the print message function with the array of function 
pointers and the array of words. Inside the print_message function call each 
function from the array of function pointers in a loop and print out the results. 
Call your homework file homework9.c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 158 
 

LESSON 10 FILE ACCESS 
 
Files allow you to store data for later retrieval. Files are opened, read, written  
and closed using a file pointer. For this lesson make a new C source  file called 
Lesson10.c  and in the main function type in the following programming 
statements for the following File example programs. 
 
FILE* fp; 
 
Write character to a file 
 
We use the fputc function to write characters one by one sequentially to a file. 
We first open the file  "test.txt" for write with the  fopen function using the ","w" 
write specifier.  Then we check if  the file is open and the write characters to the 
file. You must close the file when you are finished writing characters. If you do not 
close the file, then the contents of the file will be lost. 
 

    // open file 
    FILE* fp =  fopen("test.txt","w"); 
 
    // check if file opened 
     if (fp != 0) 
     { 
         // report cannot open file 
         printf("cannot open file: test.txt for read\n"); 

           exit(1); 
                } 
             
               // make characters to write to file 
              char s[] = "Hello"; 
 
             // write characters to file 
            int i=0;  
            char ch; 
  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 159 
 

         for (i = 0; i < strlen(s); i++) 
            { 
                char ch = s[i]; // get char from string 
                fputc(ch,fp);  // write char to file 
            } 
            
            fputc('\n',fp);  // write end of line char to file 
            fclose(fp);  // close file 
 
 
Read characters from a file 
 
The fgetc function is used to read characters from a file. Each char from the file is 
read as an int so that the end of file EOF indicator -1 can be acknowledged.  
 
We first open the file  "test.txt" for read with the  fopen function using the read 
"r" specifier.  Then we check if  the file is open and read character from the file. 
You must close the file when you are finished reading characters. If you do not 
close the file, then the file may not be able to be used by somebody else. 
 

     // open file 
     FILE* fp = fopen("test.txt","r"); 
 
     // check if file opened 
     if (fp != 0) 
     { 
         // report cannot open file 
         printf("cannot open file: test.txt for write\n"); 

                 exit(1); 
           } 

    
        // get first char in file 
        int ch = fgetc(fp) 
 
 
       

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 160 
 

  // loop to end of file 
        while (ch != -1) 
            { 
                putch(ch); // print out char to screen 
                ch = fgetc(fp); // get next char 
            } 
 
            fin.close(); // close file 
        } 

 
write lines to a file 
 
The fputs function is also used to write lines one by one sequentially to a file. 
fputs automatically inert the newline character \n at the end of the line for you.  
We first open the file  "test.txt" for write with the  fopen function using the write 
"w" specifier.  Then we check if  the file is open and the write characters to the 
file. You must close the file when you are finished writing characters. If you do not 
close the file, then the contents of the file will be lost. 
 

     // open file 
     FILE* fp =  fopen("test.txt","w"); 
 
     // check if file opened 
     if (fp != 0) 
          { 
         // report cannot open file 
         printf("cannot open file: test.txt"); 

                    exit(1); 
               } 
                        
                      // write  lines to file 

fputs("Hello",fp); 
fputs("there",fp); 

                       fclose(fp); 
 
 
 

Hello 
there 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 161 
 

Read line by line from a file 
 
To read lines from a file line by line we use the fgets function that takes in a 
character string, length of character string and a file pointer. This function return 
0 if the end of file is encountered. 
 
We first open the file  "test.txt" for read with the  fopen function using the "r" 
specifier.  Then we check if  the file is open and read character from the file. You 
must close the file when you are finished reading characters. If you do not close 
the file, then the file may not be able to be used by somebody else. 
.  
We keep reading lines to the end of file is found. When the fgets function returns 
0 the end of file has been reached. Some Unix compilers work different from 
Windows compilers. The fgets function may retain the end of line terminator \n. 
We  can remove the ‘\n’ character by using the strstr function that you were 
introduced to in the previous lessons. 
 

     // read lines from a file 
 
     // open file 
     FILE* fp = fopen("input.txt","r"); 
 
     // check if file opened 
     if (fp != 0) 
         { 
         // report cannot open file 
         printf("cannot open file: test.txt"); 

                 exit(1); 
               } 

 
        char line[256]; 
        char* ptr; 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 162 
 

        // loop to end of file 
        while (fgets(line,256,fp)) 
            { 
                // remove \n 
                ptr = strstr(line, "\n"); 
                *ptr = 0; 
                puts (line); // print out line 
            } 
 

            fclose(fp); // close file 
        } 
 

 
 
 
 
Append line’s to end of file 
 
The append "a" specifier is used to direct the fputs function to write lines to the 
end of the file one by one sequentially to a file. We first open the file  "test.txt" 
for append write with the  fopen function using the append "a" specifier.  Then 
we check if  the file is open and the write lines to the file starting to the end of the 
file. You must close the file when you are finished writing characters. If you do not 
close the file, then the contents of the file will be lost. 
 

    // append lines to end of file 
 
        // open file 
        FILE* fp =  fopen("test.txt","a"); 
 
         // check if file opened 
     if (fp != 0) 
         { 
         // report cannot open file 
         printf("cannot open file: test.txt"); 

                    exit(1); 
                     }                      

Hello 
there 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 163 
 

// append  lines to file 
fputs("see you later",fp); 
fputs("goodbye",fp); 
 
fclose(fp); 
 
To do: 
 
Printout test.txt file 

 
 
 
write to a csv file  (comma separated values) 
 
The fprint function is also used to write columns to a file separated by commas 
We first open the file  "test.csv" for write with the  fopen function using the write 
"w" specifier.  Then we check if  the file is open and the write characters to the 
file. You must close the file when you are finished writing characters. If you do not 
close the file, then the contents of the file will be lost. 
 
 

    // write columns separated by commas to a file 
 
        // open file 
        FILE* fp =  fopen("test.csv","w"); 
 
         // check if file opened 
     if (fp != 0) 
         { 
         // report cannot open file 
         printf("cannot open file: test.txt"); 

                  exit(1); 
              } 
 

 
                  
 

Hello 
there 
see you later 
goodbye 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 164 
 

// write  lines to file 
fprintf(fp,"one,two,three\n"); 
fprintf(fp,"five,six,seven\n"); 

 
 fclose(fp); 
 

 
 
 

  
Read a csv file. 
 
 A csv file is a file where data are stored row by row in columns separated by 
commas. The strtok function is used to separate the words between the commas. 
  
File: test.csv 
 

 
 
 

 
// read lines from a csv file 
 
     // open file 
     FILE* fp = fopen("input.csv","r"); 
 
         // check if file opened 
     if (fp != 0) 
          { 
         // report cannot open file 
         printf("cannot open file: test.txt"); 

                  exit(1); 
               } 

 
        char line[256]; 
        char* ptr; 
 

one,two,three 

four,five,six 
 

one,two,three 

four,five,six 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 165 
 

        // loop to end of file 
        while (fgets(line,256,fp)) 
            { 
                ptr = strtok(line, " ,\n\r"); 
 
                while(ptr != NULL) 
                { 
                printf("%s\n",ptr);  // print out word 
                ptr = strtok(NULL, " ,\n\r"); 
                } 
            } 
 

            fclose(fp); // close file 
        } 
 
Output token words: 
 
 
 
 
 
 
 
 
 
Writing and Reading Records to and from a file 
 
Records  are the data variable values  defined in a structure written to a binary 
file. A binary file differs from a text file since it stores binary values where as a 
text file only contains printable values. The values in the binary and text files  may 
be the same it is just the way they are interpreted. For example hex value 10 is 
interpreted  as a new line in a text file but in a binary file it is just the value 10. 
 
To write to a binary file you need some data record. A record can be a structure. 
The data variables declared in a structure must be fixed lengths, therefore the 
string char* pointer cannot be used. For our example we will use the Book 
structure as follows: 

one 

two 

three 

four 

five 

six 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 166 
 

typedef struct  
{ 
   char ISBN[20]; 
   char title[50]; 
   double price; 
 
} Book; 
 
    // print a book 
   void printBook( Book& b) 
   { 
    printf("%s %s  $%.2f",b.ISBN,b.title,b.price ); 
   } 
 
The first thing we need to do is write some book records to a file. Each record is 
the data variable values defined in the Book class. 
 
We first make a book structure. 
 
         Book book1={"123456789","Happy Days",23.56}; 
 
Then write the book record to the file using the fwrite method. The sizeof 
method calculates the total number of data bytes in the Book structure., the 1 
just indicated we are writing just 1 data record. 
 
         fwrite((char*)&book1,sizeof(Book),1,fp); 
 
When we open the file in binary write  mode. "wb" 
 
       // write records to a file 
 
       // open file 
        FILE* fp  = fopen("records.bin","wb"); 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 167 
 

       // check if file opened 
       if (fp==NULL) 
       { 
         // report cannot open file 
         Printf("cannot open file: records.bin\n"; 
         exit(1); 
      } 
         // write book to file 
         Book book1("123456789","Happy Days",23.56); 
         fwrite((char*)&book1,sizeof(Book),1,fp); 
 
         Book book2("876543245","Wizard of Oz",19.96); 
         fwrite((char*)&book2,sizeof(Book),fp); 
         fclose(fp); 
 
Once we write some book records to the file we can read back the records and 
display them on the console screen. We use the fread function to read book 
records stored previously on the file. We open file with the mode "rb" read 
binary. 
 
    // read from binary file 
 
   // open file         
        fp = fopen("records.bin","rb"); 
 
     // check if file opened 
     if (fp==NULL) 
     { 
         // report cannot open file 
         printf("cannot open file: records.bin\n"; 
         exit(1); 
     } 
 
     // read records from a file 
     Book book; 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 168 
 

     while(fread((char*)&book,sizeof(Book),1,fp)) 
           { 
                printBook(book); 
           } 
 
            fclose(); 
 
 
 
 
 
 
Append records to a binary file 
 
We can also add new records to the end of the file using the "ab" 
 
    // append records to a binary file 
 
        // open file 
        fp =open("records.bin","ab"); 
 
     // check if file opened 
     if (fp==NULL) 
     { 
         // report cannot open file 
         printf("cannot open file: records.bin\n" ; 
         exit(1); 
     } 
 
         // write book to file 
         Book book3("87654542","Alice in Wonderland",18.88); 
         fwrite((char*)&book3,sizeof(Book),1,fp); 
         fclose(fp); 
 
Again we read the book records from the binary file and display on the console 
screen. 
 

123456789 Happy Days $23.56 
 
876543245 Wizard of Oz $19.96 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 169 
 

     // read from binary file 
 
   // open file 
        fopen("records.bin","rb"); 
 
     // check if file opened 
     if (fp==NULL) 
     { 
         // report cannot open file 
         cout << "cannot open file: records.bin" << endl; 
         exit(1) 
     } 
      
     // read records from a file 
     while(fread((char*)&book,sizeof(Book),1,fp)) 
           { 
                printBook( book); 
           } 
 
            fclose(); 
 
 
 
 
Open binary file for simultaneously Read and Write 
 
Opening a file for reading and writing is very convenient, we  open an existing file 
with the "r+b" mode and a new file with the  "w+b" mode or append "a+b" to 
end of file. We will open with append to end of file "a+b" 
 
        // open file for read/write 
        File* fp = fopen("records.bin", "a+b"); 
 
 
 
 
 

123456789 Happy Days $23.56 
 
876543245 Wizard of Oz $19.96 
 
87654542 Alice in Wonderland $18.88 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 170 
 

     // check if file opened 
     if (fp 1= NULL) 
     { 
         // report cannot open file 
         Printf( "cannot open file: records.bin for read and write\n"; 
         exit(1); 
     } 
            
         // write book to file 
         Book book4("765344532","Open Skies",12.78); 
         fwrite((char*)&book4,sizeof(Book),1,fp); 
 
Once we write a new record to the end of the file we can go the start of the file 
and read each record one by one and display on the console screen. 
 
We use the fseek function to set the file pointer to any position  of the file.   
 
int fseek ( FILE * stream, long int offset, int origin ); 
 
stream - Pointer to a FILE object that identifies the stream. 
Offset   - Number of bytes to offset from origin. 
Origin -  Position used as reference for the offset. It is specified by one of the 
following constants to be used as arguments for this function: 
 
Constant Reference position 

SEEK_SET Beginning of file 

SEEK_CUR Current position of the file pointer 

SEEK_END End of file  

 
To start at the end of the file: 
 

fseek(fp,0, SEEK_SET) 

 

 
To go to  the end of the file: 
 

fseek(fp,0, SEEK_END) 

 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 171 
 

To go to  current position  in the file: 
 

fseek(fp,0, SEEK_CUR) 
 
To go to  any position  in the file: 
 

fseek(fp,position, SEEK_SET); 
 
 
We now read the file and print out the records 
 
     // read from start of binary file  
     fseek(fp,0, SEEK_SET) 

 

     while(fread((char*)&book,sizeof(Book),1,fp)) 
           { 
                printBook( book); 
           } 
 
 
 
 
 
We can read/wrote  from any position on the file using fseek(fp,position, SEEK_SET) 
We now write a new book to record position 2.  
 
The formula is:   
 
file record position = record number * size of record 
 
Record position and record numbers start at 0.. 
 
    fio.seekp(2*sizeof(Book)); 
 
       // write book to file 
         Book book5("3443223475","Hello World",6.89); 
         fwrite((char*)&book5,sizeof(Book),1,fp); 

123456789 Happy Days $23.56 
876543245 Wizard of Oz $19.96 
87654542 Alice in Wonderland $18.88 
765344532 Open Skies $12.78 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 172 
 

 
We read all records  again: 
 
fseek(fp,0, SEEK_SET) 

 
     while(fread((char*)&book,sizeof(Book),1)) 
           { 
                printBook( book); 
           } 
 
 
 
We can specify which record to read using fseek Here we read record 2 from the 
file. 
 
         fseek(fp, 2 * sizeof(Book)), SEEK_SET); 
         fread((char*)&book,sizeof(Book),1,fp); 
        printBook( book); 
 
 
 
 
Always close the file when you are finished using it or you  will lose all your data. 
 
            fclose(fp); 
 
 
 
 
 
 
 
 
 
 
 
 

87654542 Alice in Wonderland $18.88 

123456789 Happy Days $23.56 
 
876543245 Wizard of Oz $19.96 
 
3443223475 Hello World $6.89 
 
765344532 Open Skies $12.78 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 173 
 

LESSON 11  RECURSION 
 
When a function calls itself it is known as recursion. Recursion is analogues to a 
while loop. Most while loop statements can be converted to recursion, most 
recursion can also be converted back to a while loop. 
 
The simplest recursion is a function calling itself printing out a message. 
 
 
void print_message() 
{ 
      printf("I like programming\n"); 
      print_message(); 
} 
 
 
Unfortunately this program will run forever. 
 
We can add a counter n to it so it can terminate at some point. 
 
void print_message(int n) 
{ 
     If(n > 0) 
     { 
      printf("I like programming\n"); 
     print_message(n-1) 
     } 
} 
 
Now the program will print the message n times 
 
Every time the print_message function is called n decrements by 1 
When n is 0 the recursion stops. You may place the statement printf("I like 
programming\n") before or after the recursive call.  If you put it before than the 
message is printed first before each recursive call.  
 

I like programming 
I like programming 
I like programming 
I like programming 
I like programming 
... 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 174 
 

If you put after than the message is printed after all the recursive calls are made. 
There is quite a difference in program execution. 
The operation is very similar to the following while loop: 
 
n = 5 
while(n > 0) 
{ 
            printf(“I like programming\n”); 
            n--; 
} 
 
You should now run the recursion function 
 
You would call the function like this:  
 
print_message(5);                                             
 
It will print I like programming 5 times. 
 
 
Recursion is quite powerful, a few lines of code can do so much. 
 
Our next example will count all numbers between 1 and n. This example may be 
more difficult to understand, since recursion seems to work like magic, and 
operation runs in invisible to the programmer. 
 
void  countn(int n) 
{ 
    if(n == 0) 

{ 
return 0; 
} 
else 

     { 
     return countn(n-1) + 1 
     } 
} 

I like programming 
I like programming 
I like programming 
I like programming 
I like programming 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 175 
 

count(5)  would return 5  
 
When (n == 0)  this is known as  the base case. When n == 0 the recursion stops 
and 0 is return to the last recursive call. Otherwise the countn function is called 
and n is decrementd by 1. 
 
It works like this: 
 
        main calls countn(5) with  n = 5 
        countn(5) calls countn(4) with n=4 
        countn(4) calls countn(3) with  n=3 
        countn(3) calls countn(2) with  n = 2 
        countn(2)  calls countn(1) with  n = 1 
        countn(1) calls countn(0) with  n = 0 
 
       countn(0) returns 0  to count(1) since n == 0 
       countn(1)  add’s 1 to the return value 0  and then returns 1  to count(2) 
       countn(2)  add’s 1 to the return value 1  and then returns 2 to count(3) 
       countn(3)  add’s 1 to the return value 2  and then returns 3 to count(4) 
       countn(4)  add’s 1 to the return value 3  and then returns 4 to count(5) 
       countn(5)  add’s 1 to the return value 4  and then returns 5  to main() 
 
       main()  receives 5 from count(5)  and prints out 5 
 
The statement  return countn(n-1) + 1  is used to call the function recursively  and  
also acts as a place holder for the value returned by the called function. 
 
We could rewrite the recursive part as follows: 
 
     int x = countn(n-1); 
     return  x + 1; 
 
x will now receive  the return value from the function call and  1 will be added to 
the return value and this new value will be returned to the caller. 
 
If you can understand the above then you understand recursion. If you cannot 
then maybe the following diagram will help you understand. 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 176 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
You probably don’t need to understand how recursion works right away. 
Sometime you just need to accept things for now then understand later.  One day 
it will hit you when you are thinking about something else.  
 
You could also think that main calls 5 functions sequentially where each function 
receives a number  and returns the number and then 1 is added to it. 
 
int count(int n) 
 { 
     return n; 
 } 
 
   
 

count(4) 

count(3) 

count(2) 

count(5) 

count(1) 

count(0) 

main() 

0 

0 + 1  = 1 

1 + 1  = 2 

2 + 1  = 3 

3 + 1  = 4 

4 + 1  = 5 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 177 
 

    n = 0; 
    n = count (n)+1; 
    n = count (n)+1; 
    n = count (n)+1; 
    n = count (n)+1; 
    n = count(n)+1; 

printf("%d\n",n); 
 

Although not quite the same operation but it gives you an idea what the recursion 
is doing, it is just adding 1 to the number it has and then return the new value. 
Our count function just  returns the value it receives, each statement adds 1 to it, 
then n receives the new value. Whereas int the recursion function countn returns 
0 in the base case and then after each recursive call 1 is added to the value 
previously return to it and this new value is returned. 
 
The thing to remember  about recursion is it always return’s back  where it is 
called. Here are some more recursive function examples: 
 
Sum numbers 1 to n 
 
int sumn(int n) 
 { 
     if(n ==0) 
     { 
         return 0; 
     } 
 
     else 
     { 
        return sumn(n-1) + n; 
     } 
 } 
 
sumn(5) would return 15 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 178 
 

It works similar to countn instead of adding 1 its adds n. 
 
0+1+2+3+4+5 = 15 
 
Our counter n serves 2 purposes a recursive counter and a number to add. 
 
 
Multiply numbers 1 to n  (factorial n) 
 
We can also make a multn  function which multiples n rather than adding n. This 
is basically factorial n. 
 
int multn(int n) 
 { 
     if(n ==0) 
     { 
         return 1; 
     } 
 
     else 
     { 
        return multn(n-1) * n; 
     } 
 } 
 
multn(5) would return 55 
 
 since 1*1*2*3*4*5 = 55 
 
Our base case returns 1 rather than 0 or else our result would b 0; 
 
 
Power  xn 
 
Another example is to calculate the power of a number xn 
In this case we need a base parameter b and an exponent parameter  n. 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 179 
 

  int pown(int b, int n) 
 { 
     if(n ==0) 
     { 
         return 1; 
     } 
 
     else 
     { 
        return pown(b,n-1) * b; 
     } 
 } 
 
pawn(2,3) would return 9  because  2*2*2= 8    since   23=8 
 
Every time a recursive call is made the program stores the local variables in a call 
stack. Every time recursive call finishes executing, the save local variables 
disappear and the previous local variables are available. These are the ones 
present before the recursive function was called.  These save variables may now 
be used in the present calculations. 
 
For the above example 23=8 the call stack would look like this. 
 
  n=0     
  b=2 1    
  n=1 n=1    
  b=2 b=2 2   
 n=4 n=2 n=2 n=2   
 b=2 b=2 b=2 b=2 4  
n=5 n=5 n=3 n=3 n=3 n=3  
b=2 b=2 b=2 b=2 b=2 b=2 8 
 
Every time the recursive function finished executing it returns a value. Each 
returning value is multiplied by the base b.  In the above case the returning values 
are 1,2,4 and 8  
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 180 
 

The return value is the value from the previous function multiplied by b (2) 
 
return pown(b,n-1) * b; 
 
the function first returns 1 then 1 * b = 1* 2 = 2  then 2 * 2 = 4 and finally 4 * 2 = 8 
 
 
efficient power  xn 
 
A more efficient version of pown can be made relying on the fact then even n can 
return b * b rather than just return * b for odd n 
 
int pown2(int b,int n) 
  { 
    if (n == 0) 
    { 
        return 1; 
    } 
 
    if (n %2  == 0) 
    { 
    return pown2(b, n-2) * b * b; 
    } 
 
    else 
    { 
       return pown2(b, n-1) * b; 
    } 
  } 
 
Operation is now much more efficient 1 * 2 * 4 = 8 
 
Summing a sequence 
 
Adding up all the numbers in a sequence 
 
n * (n + 1) / 2 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 181 
 

      n       n *(n + 2)/2 
  ---------------------- 

0 0 
1 1 
2 4 
3 6 
4 16 
5 25 

----- 
    Total:      42 

   
 
int seqn(int n) 
  { 
      if(n == 0) 
      { 
          return 0; 
      } 
       
      else{ 
         
        return (n * (n + 2))/ 2 + seq(n-1); 
      } 
       
  } 
 
Seqn(5) = 42 
 
Fibonacci sequence 
 
Recursion is ideal to directly execute recurrence relations like Fibonacci sequence 

The Fibonacci numbers are the numbers in the following integer sequence. 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……. 

In mathematical terms, the sequence fn of Fibonacci numbers is defined by the 
recurrence relation.  



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 182 
 

    fn = fn-1 + fn-2 

with seed values 

   f0 = 0 and f1 = 1. 
 

A recurrence relation is an equation that defines a sequence based on a rule that 
gives the next term as a function of the previous term(s). 
 

int fib(int n)   
 { 
    if (n == 0) 
    { 
        return 0; 
    } 
 
    else if (n == 1) 
    { 
        return 1; 
    } 
 
    else 
    { 
         return fib(n-1) + fib(n-2); 
    } 
} 
 
Notice The recursive statement is identical to the recurrence relation 
 
fib(5) would return 5 
 
 
Combinations 
 
We can also calculate combinations using recursion. 
 
Combinations are how many ways can you pick r items from a set of n distinct 
elements. 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 183 
 

Call it nCr 
 
 Pick two letters from set S = {A, B, C, D, E} 
 
Answer:{A, B}, {B, C}, {B, D}, {B, E}{A, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E} 
 
There are 10 ways to choose. 2 letters from a set of 5 letters. The combination 
formula is 
 
nCr= n! / r!(n-r)! 
 
The Recurrence relation for calculated combinations is: 
 
base cases: 
 
nCn= 1  
nC0= 1  
 
recursive case: 
 
nCr= n-1Cr +  n-1Cr-1  for n > r > 0 
 
Our recursive function for calculating combinations is: 
 
int combinations(int n, int r) 
{ 
    if (r == 0 || n == r) 
    { 
        return 1; 
    } 
  else 
  { 
    return combinations(n-1, r) + combinations(n-1, r-1); 
 } 
} 
 
combinations(5,2) would return 10 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 184 
 

Print a string out backwards 
 
With recursion printing out a string backwards is easy, it all depends where you 
put the print statement. If you put before the recursive call then the function 
prints out the characters in reverse. Since n goes from  n-1 to 0.If you put the 
print statement after the recursive call  then the characters  are printed not 
reverse  since n goes from  0 to n.  
 
// reverse a string 
void print_reverse(char* s, int n) 
{ 
    if(n == 0) 
    { 
        printf("\n"); 
    } 
 
    else 
   { 
        printf("%c",s[n-1]); 
        print_reverse(s, n-1); 
    } 
} 
 
You would call the print_reverse function like this 
 
  char s[] = "hello"; 
  print_reverse(s, strlen(s)); 
 
 
 
Check if a string is a palindrome 
 
A palindrome is a word that is spelled the same forward  as well as backwards: 
Like "radar" and "racecar" 
 
 
 

olleh 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 185 
 

int is_palindrome( char* s,  int i,  int j) 
{ 
 
    if (i >= j) 
        return 1; 
 
    else 
    { 
 
        if (s[i] != s[j]) 
            return 0; 
        else 
            return is_palindrome(s,i+1, j-1); 
    } 
} 
 
You would call the print_reverse function  like this: 
     
char s2[] = "radar"; 
printf("%d\n",is_palindrome(s2, 0,strlen(s2)-1));   
 
char s3[] = "apple"; 
 printf("%d\n",is_palindrome(s3, 0,strlen(s3)-1)); 
 
 
Permutations 
 
Permutations are how many ways you can rearrange a group of numbers or 
letters. For example for the string “ABC” the letters can be rearranges as follows: 
 
ABC 
ACB 
BAC 
BCA 
CBA 
CAB 
 

1 

0 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 186 
 

Basically we are swapping character and then print them out  
We start with ABC if we swap B and C we end up with ACB 
 
// print permutations of string s 
void print_permutations(char* s, int i, int j) 
{ 
    int k; 
    char c; 
 
    // print out permutation 
    if (i == j) 
    { 
        printf("%s\n", s); 
    } 
 
    else 
        { 
        for (k = i; k <= j; k++) { 
 
            // swap i and k 
            c = s[i]; 
            s[i] = s[k]; 
            s[k] = c; 
 
            // recursive call 
            print_permutations(s, i + 1, j); 
 
            // put back, swap i and k 
            c = s[i]; 
            s[i] = s[k]; 
            s[k] = c; 
        } 
    } 
} 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 187 
 

You would call the print_permutations function like this: 
 
char s4[] = "ABC"; 
print_permutations(s4, 0,strlen(s4)-1); 
 
 
 
 
 
Combination sets 
 
We have looked at combinations previously where we wrote a function to 
calculate home many ways you can choose r letters from a set of n letters.  
 
nCr    n choose r 
 
Combinations allow you to pick r letters from set S = {A, B, C, D, E} 
 
    n = 5 r  = 2  nCr   5C 2  
 
Answer:{A, B}, {B, C}, {B, D}, {B, E}{A, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E} 
 
We are basically filing a seconded character array with all possible letters up to r. 
 
Start with ABCDE we would choose AB then AC then AD then AE etc. 
We use a loop to traverse the letters starting at n =0, and fill the comb string. 
When n = r we then print out the letters stored in the comb string 
 
void print_combinations(char s[], char combs[], 
      int start, int end, int n, int r) 
{ 
    int i = 0; 
    int j = 0; 
 
 
 
 

ABC 
ACB 
BAC 
BCA 
CBA 
CAB 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 188 
 

// Current combination is ready to be  printed 
   if (n == r) 
    { 
        for (j = 0; j < r; j++) 
            printf("%c ",combs[j]); 
        printf("\n"); 
        return; 

} 
 

    // replace n with all possible elements. 
    for (i = start; i <= end && end - i + 1 >= r - n; i++) 
    { 
        combs[n] = s[i]; 
        print_combinations(s, combs, i+1, end, n+1, r); 
    } 
} 
 
You would call the print_combinations  function like this: 
 
    char s5[] = "ABCDE"; 
    char combs[5+1] = {0}; 
    print_combinations(s5, combs,0,strlen(s5)-1,0,2); 
 

Determinant of a matrix using recursion. 

In linear algebra, the determinant is a useful value that can be computed from the 
elements of a square matrix. The determinant of a matrix A is denoted det(A), 
detA , or |A 

In the case of a 2 × 2 matrix, the formula for the determinant is: 

                      | a   b | 
          |A|  = |         |   = ad – bc  
                      | c   d | 

 

A B 
A C 
A D 
A E 
B C 
B D 
B E 
C D 
C E 
D E 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 189 
 

For a 3 × 3 matrix A, and we want the s formula for its determinant |A| is 

                      | a   b  c |           | e  f |          | d  f |         | d  e | 
          |A|  = | d   e  f  |   =  a |        |   - b  |       |   + c  |        | 
                      | g   h  i  |           | h i  |          | g  I |          | g  h | 

                = aei + bgf – ceg – bdi - afh 

Each determinant of a 2 × 2 matrix in this equation is called a "minor" of the 
matrix A. The same sort of procedure can be used to find the determinant of a  
4 × 4 matrix, the determinant of a 5 × 5 matrix, and so forth. 

Our code actually follows the above formula, calculating and summing the miners.  
 
 // calculate determinant of a matrix 
float determinent(float matrix[3][3], int size) 
{ 
    int c; 
    float det=0; 
    int sign=1; 
    float b[3][3]; 
    int i,j; 
    int m,n 
    // base case 
    if(size == 1) 
    { 
        return (matrix[0][0]); 
    } 
    else 
    { 
        det=0; 
        for(c=0; c<size; c++) 
        { 
            m=0; 
            n=0; 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 190 
 

 
 
            for(i=0; i<size; i++) 
            { 
                for(j=0; j<size; j++) 
                { 
                    b[i][j] = 0; 
                    if(i!=0 && j!=c) 
                    { 
                        b[m][n] = matrix[i][j]; 
                        if(n<(size-2)) 
                        { 
                            n++; 
                        } 
                        else 
                        { 
                            n=0; 
                            m++; 
                        } 
                    } 
                } 
            } 
            det = det + sign*(matrix[0][c]*determinent(b,size-1)); 
            sign = -1*sign; // toggle sign 
        } 
    } 
    return (det); 
} 
 
 
You call and run the determinant function like this: 
 
  float m[3][3] = {{6,1,1},{4,-2,5},{2,8,7}}; 
 
    printf("det = %f\n",determinent(m,3)); 
 
 

-306 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 191 
 

There are many more recursive examples, too numerous to present.  
If you do all the following to do questions you will be a recursive expert. 
 
Todo 
 
Write a recursive function called void reverse_string(char*s, int n) that reverses a 
sting in place. The recursive string receives the stings and outputs the string in 
reverse. No printing is allowed. 
 
Write a recursive function int search_number(int a[], Int n) that searched for a 
number insofar an array and return the index of the number if found otherwise 
returns -1 if not found. 
 
Write a recursive function int search_digit(int d, int x) that searched for a number 
insofar an number and return 1  of the number if found otherwise returns  0 if not 
found. 
 
Write a recursive function called int sum_digits (int d) that adds up all the digits 
in a number of any lengths. The recursive function receives an int numbers and 
returns the sum of all the digits. 
 
Write a recursive function called void format_number(char* s, int n)  that can 
insert commas in a number. For example 1234567890 becomes 1,234,567,890 
 
Write a recursive function int is_even(int n) that return true if a number has even  
count of digits or 0 if the number of digits is odd. 
 
Write a recursive function  void print_binary(int d) that would print  a decimal 
number as a binary number. A binary number just has digits 0 to 1.  
Where a decimal number has digits 0 to 9. The decimal number 5 would be 0101 
in binary, since 1*1 +  0* 2 + 1* 4  +  0 *8 is 10. We are going right to left. 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 192 
 

 
To convert a decimal number to binary You just need to take mod 2 of a digit and 
then divide the number by 2 
 

5%2 = 1   1 
5/2 = 2 
2 %2 = 0    0 
2/2 = 1 
1 %2 = 1    1 

     1/2  = 0 
      0 %2 = 0    0 
 
We are done so going backwards 
5 in binary is 0 1 0 1       
 
Write a recursive function int  is_prime(int n) that returns true (1) if a number is 
prime otherwise false (0). 
 A prime number cam only is divides evenly by itself. 2,3,5,7, are prime numbers. 
You can use the mod operator % to test if a number can be divided evenly by 
itself.  4 %2 = 0  4 can be divided evenly by 2 so there for 4 is not a prime number. 
 
Put all your functions in a c file called Lesson11.c  Include a main function that 
tests all the recursive functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 193 
 

 
LESSON 12  PROJECTS 
 
Project 1   Spelling Corrector 
 
Read in a text file with spelling mistakes, find the incorrect spelled words and 
offer corrections. The user should be able to choose the correct choice from a 
menu. Look for missing or extra letters or adjacent letters on the keyboard. 
Download a word dictionary from the internet as to check for correct spelled 
words. Use a array to store the words. Store the correct spelled file. 
 
Project 2 MathBee 
 
Make a Math bee  for intermixed addition, subtraction, multiplication and division 
single digit  questions. Use random numbers 1 to 9  and use division numbers that 
will divide even results. Have 10 questions and store results in a file. Keep track of 
the users score.  You make random numbers like this: 
 
#include<stdlib.h> 
#include<ctime> 
 
// seed random number generator 
srand((unsigned int)time(0)) 
 
// get random number 1 to 10 
int x = (rand() % 10) + 1; 
 
Project 3 Quiz App 
 
Make a quiz app with intermixed multiple choice, true and false questions. 
You should have two structures MultipleChoice and TrueAndFalse. Store all 
questions in one file. Store the results in another file indicating the quiz results. 
 
 
 
 
 



copyright © 2020 www.onlineprogramminglessons.com For student use only 
 194 
 

Project 4  Phone Book App 
 
Make a phone book app that uses array of structures to store Phone numbers and 
names. You need an Contact structure to store name and  phone number. You 
should be able to view, add, delete, scroll up and down contacts as menu 
operations. Contacts need to be displayed in alphabetically orders. Offer to 
lookup by name or by phone number. Contacts should be stored in a file, read 
when app runs, and saved with app finished running.  Bonus, add email and 
address lookups as well. 
 
 
Project 5  Appointment App 
 
Make an Appointment book app that uses a array of structures to store 
Appointments. You need an Appointment structure to store name, description 
and time. You should be able to view, add, delete, scroll up and down 
appointments as menu operations. Appointments need to be displayed in 
chronological orders. Appointments should be stored in a file, read when app 
runs, and saved with app finished running. 
 
 
 
 
 
 
END 
 
 
 
 
 
 
 
 
 
 


