
1

Copyright © 2020 OnlineProgrammingLessons.com

Lesson20 Clustering Last Update June 1, 2021

(UnSupervised Learning)

Clustering known as unsupervised learning, that explores input data without
being given an explicit output variable. An example is exploring customer
demographic data to identify patterns.

UnSupervised learning uses clustering to to group sample data into groups that

have similarity based on certain features.

You also can use unSupervised learning when you do not know how to classify
the data, and you want the algorithm to find patterns and classify the data for you.

The difference between classification and clustering is that classification uses
predefined classes in which objects are assigned, while clustering identifies
similarities between objects, which it groups according to those characteristics in
common and which differentiate them from other .

2

Copyright © 2020 OnlineProgrammingLessons.com

Clusters may be formed in spherical form, density-base, hierarchy-based,

partitioned and grid.

spherical form

density-base,

Partitioned

Grid

3

Copyright © 2020 OnlineProgrammingLessons.com

Applications of Clustering

We can find clustering useful in the following areas:

Data summarization and compression − Clustering is widely used in the areas
where we require data summarization, compression and reduction as well. The
examples are image processing and vector quantization.

Collaborative systems and customer segmentation − Since clustering can be used
to find similar products or same kind of users, it can be used in the area of
collaborative systems and customer segmentation.

Serve as a key intermediate step for other data mining tasks − Cluster analysis
can generate a compact summary of data for classification, testing, hypothesis
generation; hence, it serves as a key intermediate step for other data mining tasks
also.

Trend detection in dynamic data − Clustering can also be used for trend detection
in dynamic data by making various clusters of similar trends.

Social network analysis − Clustering can be used in social network analysis. The
examples are generating sequences in images, videos or audios.

Biological data analysis − Clustering can also be used to make clusters of images,
videos hence it can successfully be used in biological data analysis

Clustering Methods :

 Density-Based Methods : These methods consider the clusters as the dense
region having some similarity and different from the lower dense region of
the space. These methods have good accuracy and ability to merge two
clusters. Example DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) , OPTICS (Ordering Points to Identify Clustering Structure) etc.

4

Copyright © 2020 OnlineProgrammingLessons.com

 Hierarchical Based Methods : The clusters formed in this method forms a
tree-type structure based on the hierarchy. New clusters are formed using
the previously formed one. It is divided into two category

o Agglomerative (bottom up approach)
o Divisive (top down approach)

examples CURE (Clustering Using Representatives), BIRCH (Balanced
Iterative Reducing Clustering and using Hierarchies) etc.

 Partitioning Methods : These methods partition the objects into k clusters
and each partition forms one cluster. This method is used to optimize an
objective criterion similarity function such as when the distance is a major
parameter example K-means, CLARANS (Clustering Large Applications
based upon Randomized Search) etc.

 Grid-based Methods : In this method the data space is formulated into a
finite number of cells that form a grid-like structure. All the clustering
operation done on these grids are fast and independent of the number of
data objects example STING (Statistical Information Grid), wave cluster,
CLIQUE (Clustering In Quest) etc.

Clustering Summary

5

Copyright © 2020 OnlineProgrammingLessons.com

CLUSTERING ALGORITHMS

K-means clustering Puts data into some groups (k) that each contains
data with similar characteristics (as determined by
the model, not in advance by humans). This
clustering algorithm computes the centroids and
iterates until we it finds optimal centroid. It assumes
that the number of clusters are already known. It is
also called flat clustering algorithm. The number of
clusters identified from data by algorithm is
represented by ‘K’ in K-means

Gaussian mixture model A generalization of k-means clustering that provides
more flexibility in the size and shape of groups
(clusters

Mean-Shift Algorithm

It is another powerful clustering algorithm used in
unsupervised learning. Unlike K-means clustering, it
does not make any assumptions hence it is a non-
parametric algorithm.

Hierarchical clustering Splits clusters along a hierarchical tree to form a
classification system. Can be used for Cluster
loyalty-card customer

DBSCAN
DBSCAN Density-Based Spatial Clustering of
Applications with Noise is a density based clustered
algorithm similar to mean-shift.

Agglomerative Hierarchical
Clustering

Hierarchical clustering algorithms actually fall into 2
categories: top-down or bottom-up. Bottom-up
algorithms treat each data point as a single cluster
at the outset and then successively merge
(or agglomerate) pairs of clusters until all clusters
have been merged into a single cluster that contains
all data points. Bottom-up hierarchical clustering is
therefore called hierarchical agglomerative
clustering or HAC.

6

Copyright © 2020 OnlineProgrammingLessons.com

DBSCAN

DBSCAN groups together points that are close to each other based on a distance
measurement (usually Euclidean distance) and a minimum number of points. It
also marks as outliers the points that are in low-density regions.

The DBSCAN algorithm basically requires 2 parameters:

eps: specifies how close points should be to each other to be considered a part of
a cluster. It means that if the distance between two points is lower or equal to
this value (eps), these points are considered neighbors.

minPoints: the minimum number of points to form a dense region. For example,
if we set the minPoints parameter as 5, then we need at least 5 points to form a
dense region.

Parameter estimation:

eps: if the eps value chosen is too small, a large part of the data will not be
clustered. It will be considered outliers because don’t satisfy the number of points
to create a dense region. On the other hand, if the value that was chosen is too
high, clusters will merge and the majority of objects will be in the same cluster.
The eps should be chosen based on the distance of the dataset (we can use a k-
distance graph to find it), but in general small eps values are preferable.

minPoints: As a general rule, a minimum minPoints can be derived from a number
of dimensions (D) in the data set, as minPoints ≥ D + 1. Larger values are usually
better for data sets with noise and will form more significant clusters. The
minimum value for the minPoints must be 3, but the larger the data set, the larger
the minPoints value that should be chosen.

The DBSCAN algorithm should be used to find associations and structures in data
that are hard to find manually but that can be relevant and useful to find patterns
and predict trends.

These parameters can be understood if we explore two concepts called Density
Reachability and Density Connectivity.

7

Copyright © 2020 OnlineProgrammingLessons.com

Reachability in terms of density establishes a point to be reachable from another
if it lies within a particular distance (eps) from it.

Connectivity, on the other hand, involves a transitivity based chaining-approach
to determine whether points are located in a particular cluster. For example, p
and q points could be connected if p->r->s->t->q, where a->b means b is in the
neighborhood of a.

There are three types of points after the DBSCAN clustering is complete:

 Core — This is a point that has at least m points within distance n from
itself.

 Border — This is a point that has at least one Core point at a distance n.
 Noise — This is a point that is neither a Core nor a Border. And it has less

than m points within distance n from itself.

Algorithmic steps for DBSCAN clustering

 The algorithm proceeds by arbitrarily picking up a point in the dataset (until
all points have been visited).

 If there are at least ‘minPoint’ points within a radius of ‘ε’ to the point then
we consider all these points to be part of the same cluster.

 The clusters are then expanded by recursively repeating the neighborhood
calculation for each neighboring point

8

Copyright © 2020 OnlineProgrammingLessons.com

DBScan Algorithm

Inputs:
D: a data set containing n objects,
r (eps): the radius parameter,
MinPts: the neighborhood density threshold.

Output: A set of density-based clusters.

Method:
(1) mark all objects as unvisited;
(2) do

(3) randomly select an unvisited object p;
(4) mark p as visited;
(5) if the r-neighborhood of p has at least MinPts objects

(6) create a new cluster C, and add p to C;
(7) let N be the set of objects in the r-neighborhood of p;
(8) for each point p2 in N

(9) If p2 is unvisited
 mark p2 as visited;

(10) if the r-neighborhood of p2 has at least MinPts points,
 add those points to N;

(11) if p2 is not yet a member of any cluster
 add p2 to C;
(12) end for

(13) output C;

9

Copyright © 2020 OnlineProgrammingLessons.com

(14) else
Mark p as noise;

(15) loop until no object is un visited;

Clustering HOMEWORK Question 1

Code the Dbscan clustering algorithm. Plot the blobs and noise points.

Use different values of r (eps) and minPts. You can make some blobs with the

following code,

from sklearn.datasets import make_blobs

points, classes = make_blobs(n_samples=n, centers=3, cluster_std=0.60, random_state=0)

Call your python file clustering_homework1.py

You should get something like this:

10

Copyright © 2020 OnlineProgrammingLessons.com

OPTICS

OPTICS Clustering stands for Ordering Points To Identify Cluster Structure. It
draws inspiration from the DBSCAN clustering algorithm. It adds two more terms
to the concepts of DBSCAN clustering. They are:-

1. Core Distance: It is the minimum value of radius required to classify a given
point as a core point. If the given point is not a Core point, then it’s Core
Distance is undefined.

11

Copyright © 2020 OnlineProgrammingLessons.com

2. Reachability Distance: It is defined with respect to another data point
q(Let). The Reachability distance between a point p and q is the maximum
of the Core Distance of p and the Euclidean Distance(or some other
distance metric) between p and q. Note that The Reachability Distance is
not defined if q is not a Core point.

This clustering technique is different from other clustering techniques in the
sense that this technique does not explicitly segment the data into clusters.
Instead, it produces a visualization of Reachability distances and uses this
visualization to cluster the data.

Grid based clustering

The grid-based clustering approach uses a multi resolution grid data structure. It
quantizes the object space into a finite number of cells that form a grid structure
on which all of the operations for clustering are performed. The main advantage
of the approach is its fast processing time, which is typically independent of the
number of data objects, yet dependent on only the number of cells in each
dimension in the quantized space.

12

Copyright © 2020 OnlineProgrammingLessons.com

K-MEANS CLUSTERING ALGORITHM

K-means clustering is a clustering algorithm that aims to partition n observations

into k clusters. The data points are assigned to a cluster in such a manner that the

sum of the squared distance between the data points and centroid would be

minimum. It is to be understood that less variation within the clusters will lead to

more similar data points within same cluster.

There are 3 steps:

Initialization K initial “means” (centroids) are generated at random

Assignment K clusters are created by associating each observation with

the nearest centroid

Update The centroid of the clusters becomes the new mean

Assignment and Update are repeated iteratively until convergence

The end result is that the sum of squared errors is minimized between points and

their respective centroids.

Step 0: make data point blobs

Step 1: specify the number of clusters, K

Step 2: randomly generate K centroids

Step 3: fill clusters with data points close to each cluster centroid

13

Copyright © 2020 OnlineProgrammingLessons.com

Step 4: calculate sum squares of distance

If sum square of distance is not changing then exit loop

Step 5: calculate new centroids from x and y cluster points

Repeat repeat steps 3 to 5

Step 6: plot clusters and centroids

Clustering HOMEWORK Question 2

Code the k-means clustering algorithm, plot the blobs and centroids. You can make

some blobs with the following code,

from sklearn.datasets import make_blobs

points, classes = make_blobs(n_samples=n, centers=3, cluster_std=0.60, random_state=0)

Try different numbers of blobs and K values.

 Call your python file clustering_homework2.py

You should get something like this:

14

Copyright © 2020 OnlineProgrammingLessons.com

15

Copyright © 2020 OnlineProgrammingLessons.com

Hierarchical Agglomerative Clustering

Hierarchical clustering algorithms group similar objects into groups called clusters.
There are two types of hierarchical clustering algorithms:

 Agglomerative — Bottom up approach. Start with many small clusters and
merge them together to create bigger clusters.

 Divisive — Top down approach. Start with a single cluster than break it up
into smaller clusters.

Some pros and cons of Hierarchical Clustering

Pros

 No assumption of a particular number of clusters (i.e. k-means)
 May correspond to meaningful taxonomies

Cons

 Once a decision is made to combine two clusters, it can’t be undone
 Too slow for large data sets, O(2 log())

16

Copyright © 2020 OnlineProgrammingLessons.com

How Hierarchical Agglomerative Clustering works:

1. Make each data point a cluster

2. Take the two closest clusters and make them one cluster

17

Copyright © 2020 OnlineProgrammingLessons.com

3. Repeat step 2 until there is only one cluster

Dendrograms

We can use a dendrogram to visualize the history of groupings and figure out the
optimal number of clusters.

1. Determine the largest vertical distance that doesn’t intersect any of the
other clusters

2. Draw a horizontal line at both extremities
3. The optimal number of clusters is equal to the number of vertical lines

going through the horizontal line

18

Copyright © 2020 OnlineProgrammingLessons.com

For example in the case below, best choice for number of clusters will be

Linkage Criteria

Similar to gradient descent, you can tweak certain parameters to get drastically
different results.

This example aims at showing characteristics of different linkage on datasets

noisy_circles
noisy_moons
blobs

19

Copyright © 2020 OnlineProgrammingLessons.com

The linkage criteria refers to how the distance between clusters is calculated.
Take the two closest clusters and make them one cluster.

Single Linkage

The distance between two clusters is the shortest distance between two points in
each cluster

20

Copyright © 2020 OnlineProgrammingLessons.com

Complete Linkage

The distance between two clusters is the longest distance between two points in
each cluster

Average Linkage

The distance between clusters is the average distance between each point in one
cluster to every point in other cluster

21

Copyright © 2020 OnlineProgrammingLessons.com

Ward Linkage

The distance between clusters is the sum of squared differences within all clusters

Distance Metric

The method you use to calculate the distance between data points will affect the
end result.

Euclidean Distance

The shortest distance between two points. For example, if x=(a,b) and y=(c,d), the
Euclidean distance between x and y is √(a−c)²+(b−d)²

22

Copyright © 2020 OnlineProgrammingLessons.com

Manhattan Distance

Imagine you were in the downtown center of a big city and you wanted to get
from point A to point B. You wouldn’t be able to cut across buildings, rather you’d
have to make your way by walking along the various streets. For example, if
x=(a,b) and y=(c,d), the Manhattan distance between x and y is |a−c|+|b−d|

23

Copyright © 2020 OnlineProgrammingLessons.com

SKLEARN Clustering Algorithms located in sklearn.cluster

Method name Parameters Scalability Use case
Geometry

(metric used)

K-Means number of clusters

Very large

n_samples,

medium

n_clusters with

MiniBatch code

General-purpose,

even cluster size,

flat geometry, not

too many clusters

Distances

between points

Affinity

propagation

damping, sample

preference

Not scalable with

n_samples

Many clusters,

uneven cluster size,

non-flat geometry

Graph distance

(e.g. nearest-

neighbor graph)

Mean-shift Bandwidth
Not scalable with
n_samples

Many clusters,

uneven cluster size,

non-flat geometry

Distances

between points

Spectral

clustering
number of clusters

Medium

n_samples, small
n_clusters

Few clusters, even

cluster size, non-flat

geometry

Graph distance

(e.g. nearest-

neighbor graph)

Ward

hierarchical

clustering

number of clusters

or distance

threshold

Large n_samples

and n_clusters

Many clusters,

possibly

connectivity

constraints

Distances

between points

Agglomerative

clustering

number of clusters

or distance

threshold, linkage

type, distance

Large n_samples

and n_clusters

Many clusters,

possibly

connectivity

constraints, non

Euclidean distances

Any pairwise

distance

DBSCAN neighborhood size

Very large

n_samples,

medium
n_clusters

Non-flat geometry,

uneven cluster sizes

Distances

between nearest

points

OPTICS
minimum cluster

membership

Very large

n_samples, large
n_clusters

Non-flat geometry,

uneven cluster

sizes, variable

cluster density

Distances

between points

Gaussian

mixtures
Many Not scalable

Flat geometry, good

for density

estimation

Mahalanobis

distances to

centers

Birch

branching factor,

threshold, optional

global clusterer.

Large n_clusters

and n_samples

Large dataset,

outlier removal,

data reduction.

Euclidean

distance

between points

https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#mini-batch-kmeans

24

Copyright © 2020 OnlineProgrammingLessons.com

This example aims at showing characteristics of different clustering algorithms on
datasets

noisy_circles
noisy_moons
blobs
no_structure

k-means Clustering using sklearn

sklearn has a k-means clusteing module located in sklearn.cluster
In our k-means sklearn program we first make 2 random blobs and then calculate
the center centroids. We then make another set of random blobs and plot the
centroids of the first set over the second set of blobs.

To make blobs we use the sklearn make_blobs and import the make blobs
library

from sklearn.datasets.samples_generator import make_blobs

25

Copyright © 2020 OnlineProgrammingLessons.com

x, y_true = make_blobs
(n_samples = n, centers = 3, cluster_std = 0.60, random_state = 0)

x are the x,y points of the blobs where as y_true are the 3 classification numbers.

We uses the kmeans model from sklearn.cluster

import sklearn.cluster import KMeans

We make KMeans model with 3 clusters

kmeans = KMeans(n_clusters = 3)

and then train the model with the fit function

kmeans.fit(x)

we use predict method from the kmeans model to predict the classification
numbers

y_kmeans = kmeans.predict(x)

we then get the center centroids of first set of blobs

centers = kmeans.cluster_centers_

and plot them on the seconds set of blobs

our output:

prediction classification:

[2 1 1 1 0 2 0 1 0 1 1 1 1 0 2 2 0 2 1 2 0 0 2 2 2 0 0 0 1 2]

classification set 2:

[0 2 2 2 1 0 1 2 1 2 2 2 2 1 0 0 1 0 2 0 1 1 0 0 0 1 1 1 2 0]

centers of first set of blobs:

[[1.93984407 0.94738267]

 [-1.89753197 2.77697024]

 [1.25131979 4.27778921]]

26

Copyright © 2020 OnlineProgrammingLessons.com

Our complete program as follows

"""
kmeans.py
clustering using kmeans algorithm
"""

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
#from sklearn.datasets.samples_generator import make_blobs

generate 3 2d blobs
x are the xy points
y_true are the blob numbers
n = 30
x, y_true = make_blobs(n_samples = n, centers = 3, cluster_std = 0.60, random_state = 0)

print('blobs set 1:')
print(x)
print('classification set 1:')
print(y_true)

27

Copyright © 2020 OnlineProgrammingLessons.com

plot blobs
plt.scatter(x[:, 0], x[:, 1], s = 20);
plt.title("blobs")
plt.grid()
plt.show()

make KMeans model
kmeans = KMeans(n_clusters = 3)

train the model
kmeans.fit(x)

predict the classification numbers
y_kmeans = kmeans.predict(x)

print('prediction classification:')
print(y_kmeans)

make some more blobs
x, y_true = make_blobs(n_samples = n, centers = 3, cluster_std = 0.60, random_state = 0)

print('blobs set 2:')
print(x)
print('classification set 2:')
print(y_true)

plot the second set of blobs using color map 'cool
plt.scatter(x[:, 0], x[:, 1], c = y_kmeans, s = 20, cmap = 'cool')

get the centers of first set of blobs
centers = kmeans.cluster_centers_
print('centers of first set of blobs:')
print(centers)

plot centers of first set of blobs on second set of blobs
to check for accuracy
plt.scatter(centers[:, 0], centers[:, 1], c = 'blue', s = 100, alpha = 0.9);
plt.title("classified blob centers")
plt.grid()
plt.show()

28

Copyright © 2020 OnlineProgrammingLessons.com

TO DO

Type in the sklearn example k-means clustering program and run it. Then try
these other following clustering algorithms offered by sklearn. MeanShift and
AffinityPropagation

(1) clustering = MeanShift(bandwidth=2)

(2) clustering = AffinityPropagation

You should get something like this:

29

Copyright © 2020 OnlineProgrammingLessons.com

Hierarchical Agglomerative Clustering using sklearn

Sklearn has the AgglomerativeClustering classifier located in module

sklearn.cluster

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, *, affinity='euclidean',

memory=None, connectivity=None, compute_full_tree='auto', linkage='ward',

distance_threshold=None)

As before we make 3 blobs using the sklearn make_blobs function located in
sklearn.datasets.samples_generator.

The AgglomerativeClustering classifier has the fit_predict method that returns a
list of labels corresponding to into the X indexes.

For example if the first entry in the labels array is 2 this mean the x coordinates
(x[0][0], x[0][1]) is blob 2. Where x[0][0] is the x coordinate and x[0][1] is the y
coordinate, since x is a 2 dimensional array of x and y coordinates.

30

Copyright © 2020 OnlineProgrammingLessons.com

When we plot the blobs on a scatter plot each blob label gets a specific color as
denoted in the plot legend. Since we have 3 blobs each clog is assigned a number
between 0 and 2 from the classifiers.

We will also plot a dendrogram using the scipy dendrogram function located in
scipy.cluster.hierarchy

For our example program we first import all the required libraries.

 #hierarchical_clustering.py

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import make_blobs
#from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import AgglomerativeClustering
import scipy.cluster.hierarchy as sch

make 3 blobs
X, y_true = make_blobs(n_samples = 30, centers = 3, cluster_std = 0.60, random_state
= 0)

make denogram
dendrogram = sch.dendrogram(sch.linkage(X, method = 'ward'))
plt.title('Blob Dendrogram')
plt.xlabel('x')
plt.ylabel('Euclidean distances')
plt.show()

make AgglomerativeClustering
clustering = AgglomerativeClustering(n_clusters = 3, affinity = 'euclidean', linkage =
'ward')

fit and predict and return array of labels
labels = clustering.fit_predict(X)

print label predictions
print("label predictions: ",labels)

31

Copyright © 2020 OnlineProgrammingLessons.com

Visualizing the clusters
plt.scatter(X[labels == 0, 0], X[labels == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[labels == 1, 0], X[labels == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[labels == 2, 0], X[labels == 2, 1], s = 100, c = 'green', label = 'Cluster 3')

plt.title('AgglomerativeClustering')
plt.legend()
plt.show()

Here is the dendrogram plot:

Here is the output

Here is the plot:

label predictions: [0 1 1 1 2 0 2 1 2 1 1 1 1 2 0 0 2 0 1 0 2 2 0 0 0 2 2 2 1 0]

32

Copyright © 2020 OnlineProgrammingLessons.com

Todo

(1) Try SpectralClustering located in sklearn.cluster import SpectralClustering

ckustering = SpectralClustering(n_clusters=3,random_state=0)
clustering.fit(X)
labels = clustering.labels_

33

Copyright © 2020 OnlineProgrammingLessons.com

(2) try GaussianMixture in sklearn.mixture import GaussianMixture

clustering = GaussianMixture(n_components=4)
clustering.fit(X)
labels=clustering.predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis');
plt.show()

(3) try DBSCAN located in sklearn.cluster import DBSCAN

clustering = DBSCAN()
clustering.fit(X)
labels = clustering.labels_

34

Copyright © 2020 OnlineProgrammingLessons.com

SEGEMENTATION

Segmenting is the process of putting customers into groups based on similarities, and clustering

is the process of finding similarities in customers so that they can be grouped, and therefore

segmented.

Clustering is the process of using machine learning and algorithms to identify how different

types of data are related and creating new segments based on those relationships. Clustering

finds the relationship between data points so they can be segmented.

CLUSTERING HOMEWORK Question 3

Make a 2 dimensional array to store customers and the products they buy. Have
about two to three customers in one column and have 8 to 10 corresponding
products in the adjacent column. Have about 12 to 15 rows of customers and
their corresponding products. Have products groups like shirts, pants, socks,
shoes, television, computer monitor etc. Do not place products randomly but
assign products to different classes of customers. For example 1 class of
customers buys clothing. Another class of customers buys electronics and another
class of customers buys computer stuff.

35

Copyright © 2020 OnlineProgrammingLessons.com

Using a clustering algorithm of your choice, find the customer clusters and the
products they buy.

Find out which customers do not have certain products and suggest products for
them to buy. You need to use numbers for your customers and products. Either
use a lookup dictionary or a encoding mechanism. Use enumerate to get which
product corresponds to each customers after the clustering process

for product_ index, customer_class in enumerate(cluster_classes):

product_number = x[i][1]

 Call your python program clusteringhomework.py

You should get something like this:

K-Means
prediction classification:
[1 1 0 0 2 0 0 1 2 2 0 0]
centers of blobs:
[[2. 7.16666667]
 [1.33333333 1.33333333]
 [2.66666667 4.]]

36

Copyright © 2020 OnlineProgrammingLessons.com

customer: 1 has:
 cell_phone
 monitor
 mouse
 shoes

Would you like to buy?
 television
 radio
 shirt
 pants
 computer

customer: 2 has:
 television
 radio

Would you like to buy?
 shirt
 pants
 computer
 cell_phone
 monitor
 shoes
 mouse

customer: 3 has:
 computer
 shirt
 pants

37

Copyright © 2020 OnlineProgrammingLessons.com

Would you like to buy?
 television
 radio
 cell_phone
 monitor
 shoes
 mouse

END

