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LESSON 17   CrossValidation                                       Last update May 15, 2021  

CROSS VALIDATION 

Cross-validation is a resampling procedure used to evaluate machine learning 
models on a limited data sample. The limited sample is used in order to estimate 
how the model is expected to perform in general, when used to make predictions 
on data that is not used during the training of the model. 

Cross-validation is mainly used as a way to check for under or over-fit. 
In the following plots  we have underfitting, fitting and overfitting. 
 
                       Underfittimg                            normal  fitting                                            overfitting 

 

The first plot represents a linear relationship and has a high error from training 
data point and is an example of underfitting. The model fails to capture the 
underlining trend of data. 

The second plots represents normal fitting has a low training error and a 
generalization of the relationship between price and size. The curve follows the 
points very tightly. 

In the third plot we have almost zero training error, but is too sensitive and 
captures random patterns that are only in the present training set but not present 
in other datasets. This is an example overfitting and there could be a high 
deviation between training sets and actual data. 

A common practice in data science competitions is to iterate over various models 
to find a better performing model. However, it becomes difficult to distinguish 
whether this improvement in score is coming because we are capturing the 
relationship better, or we are just over-fitting the data.  
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To find the right answer for this question, we use validation techniques. This 
method helps us in achieving more generalized relationships. 

To avoid over-fitting, we have to define two different sets:  

          training set     ( X_train, y_train) 

 which is used for learning the parameters of a predictive model. 

            testing set     ( X_test, y_test) 

 which is used for evaluating the fitted predictive model. 

We can now quickly sample a training set while holding out a percentage  of the 
data for testing (evaluating) our classifier: 

However, by defining these two sets, we drastically reduce the number of 
samples which can be used for learning the model, and the results can depend on 
a particular random choice for the pair of (train, test) sets. 

A solution is to split the whole data several consecutive times in different train 
set and test set, and to return the averaged value of the prediction scores 
obtained with the different sets. Such a procedure is called cross-validation. This 
approach can be computationally expensive, but does not waste too much data 
(as it is the case when fixing an arbitrary test set), which is a major advantage in 
problem such as inverse inference where the number of samples is very small. 

k-fold cross-validation 

The procedure has a single parameter called k that refers to the number of groups 
that a given data sample is to be split into. As such, the procedure is often called 
k-fold cross-validation. When a specific value for k is chosen, it may be used in 
place of k in the reference to the model, such as k=10 becoming 10-fold cross-
validation. 

The general procedure is as follows: 

1. Shuffle the dataset randomly. 
2. Split the dataset into k groups 
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3. For each unique group:  
3.1Take the group as a hold out or test data set 
3.2Take the remaining groups as a training data set 
3.3Fit a model on the training set and evaluate it on the test set| 
3.4Retain the evaluation score and discard the model 

4. Summarize the skill of the model using the sample of model evaluation 
scores 

Importantly, each observation in the data sample is assigned to an individual 
group and stays in that group for the duration of the procedure. This means that 
each sample is given the opportunity to be used in the hold out set 1 time and 
used to train the model k-1 times. 

This approach involves randomly dividing the set of observations into k groups, or 
folds, of approximately equal size. The first fold is treated as a validation set, and 
the method is fit on the remaining k − 1 folds. 

The results of a k-fold cross-validation run are often summarized with the mean of 
the model skill scores. It is also good practice to include a measure of the variance 
of the skill scores, such as the standard deviation or standard error. 

Configuration of k 

The k value must be chosen carefully for your data sample. A poorly chosen value 
for k may result in a mis-representative idea of the skill of the model, such as a 
score with a high variance (that may change a lot based on the data used to fit the 
model), or a high bias, (such as an overestimate of the skill of the model). 

Three common tactics for choosing a value for k are as follows: 

 Representative: The value for k is chosen such that each train/test group of 
data samples is large enough to be statistically representative of the 
broader dataset 
 

 k=10: The value for k is fixed to 10, a value that has been found through 
experimentation to generally result in a model skill estimate with low bias a 
modest variance. 
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 k=n: The value for k is fixed to n, where n is the size of the dataset to give 
each test sample an opportunity to be used in the hold out dataset. This 
approach is called leave-one-out cross-validation. 

The choice of k is usually 5 or 10, but there is no formal rule. As k gets larger, the 
difference in size between the training set and the resampling subsets gets 
smaller. As this difference decreases, the bias of the technique becomes smaller  

A value of k=10 is very common in the field of applied machine learning, and is 
recommend if you are struggling to choose a value for your dataset. 

To summarize, there is a bias-variance trade-off associated with the choice of k in 
k-fold cross-validation. Typically, given these considerations, one performs k-fold 
cross-validation using k = 5 or k = 10, as these values have been shown empirically 
to yield test error rate estimates that suffer neither from excessively high bias nor 
from very high variance. 

If a value for k is chosen that does not evenly split the data sample, then one 

group will contain a remainder of the examples. It is preferable to split the data 

sample into k groups with the same number of samples, such that the sample of 

model skill scores are all equivalent 
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Evaluating a Machine Learning model can be quite tricky. Usually, we split the 

data set into training and testing sets and use the training set to train the model 

and testing set to test the model. We then evaluate the model performance 

based on an error metric to determine the accuracy of the model. This method 

however, is not very reliable as the accuracy obtained for one test set can be very 

different to the accuracy obtained for a different test set.  

The K-fold Cross Validation(CV) provides a solution to this problem by dividing 

the data into folds and ensuring that each fold is used as a testing set at some 

point. K-Fold CV is where a given data set is split into a K number of sections/folds 

where each fold is used as a testing set at some point. Lets take the scenario of 5-

Fold cross validation(K=5). Here, the data set is split into 5 folds. In the first 

iteration, the first fold is used to test the model and the rest are used to train the 

model. In the second iteration, 2nd fold is used as the testing set while the rest 

serve as the training set. This process is repeated until each fold of the 5 folds 

have been used as the testing set. 

kFold using sklearn 

Sklearn  has the K-Folds cross-validator model  located in 
sklearn.model_selection.  It provides train/test indices to split data in train/test 
sets, splits dataset into k consecutive folds (without shuffling by default). Each 
fold is then used once as a validation while the k - 1 remaining folds form the 
training set. Sklearn also has the cross_val_score and cross_val_predict modules 
located in sklearn.model_selection. cross_val_score return the scores of the kFold 
training sets where as cross_val_predict return the prediction of  the kFold 
training sets. Both receive a classifier model and X and Y data points. 

KFold test program using sklearn 

We first make the necessary imports: 

from sklearn.model_selection import KFold 
import numpy as np 
from sklearn.linear_model import LogisticRegression 
from sklearn.datasets import make_classification 
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We will use a logistic regression model because it is very good in classifying binary 

data . We use the sklearn make_classification function to make our X and y dataset. We 

make 100 samples with 5 features and 1 binary target .We then use the KFold 

function to calculate the different K Fold training sets. 

# make 100 training samples with 5 features 
X, y = make_classification(n_samples=100, n_features=5) 

 
# store scores 
scores = [] 
predictions = [] 
 
# make LinearRegression model 
model = LogisticRegression() 
 
# make KFold with 10 splits 
cv = KFold(n_splits=10, random_state=42, shuffle=True) 

 

For each folded training set, we print out the indexes, get the training data from 
the indexes then use the classifier to calculate the score and predictions. We 
store the score and predictions in a list. 
 
# for each training set produced 
for train_index, test_index in cv.split(X): 

     
# print train indexes 
print("Train Index:\n", train_index, "\n") 
     
# print test indexes 
print("Test Index:\n", test_index) 
 
# get the data from the indexes 
X_train, X_test, y_train, y_test = X[train_index], X[test_index], y[train_index], y[test_index] 

     
# use the model to classify the data 
model.fit(X_train, y_train) 
     
# calculate score accuracy using the model  
score = model.score(X_test, y_test) 
# print score 

             print("score: ",score)     
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# store score 
scores.append(score) 

 
 # calculate predictions using model 
prediction = model.predict(X_test) 

     
# print predictions 
print("predistion: ",prediction) 

      
# store predictions 
predictions.append(prediction) 

     
# print scores 
print("KFold scores:\n",scores) 

 
# print mean and std of scores     
print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) 
 
# print predictions 
print("kFold predictions:\n",predictions) 
 
 
 
 
 

 
 

# print mean and std of predictions    
print('Accuracy: %.3f (%.3f)' % (np.mean(predictions), np.std(predictions))) 
 
 
 
 
 
 
 
 
 
 
 
 

 

KFold scores: 

 [0.7, 1.0, 1.0, 0.9, 0.9, 1.0, 0.9, 1.0, 0.7, 0.9] 

Accuracy: 0.900 (0.110) 

KFold predictions: 

 [array([0, 0, 0, 1, 0, 1, 0, 0, 1, 1]),  

  array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1]),  

  array([0, 1, 0, 1, 0, 1, 1, 1, 0, 1]), 

  array([1, 0, 0, 0, 1, 1, 0, 1, 1, 1]),  

  array([0, 0, 1, 0, 0, 1, 1, 1, 1, 0]),  

  array([1, 1, 1, 1, 0, 1, 1, 0, 1, 0]),  

  array([1, 0, 1, 0, 0, 1, 0, 1, 0, 1]), 

  array([0, 1, 0, 1, 0, 1, 1, 0, 1, 0]), 

  array([1, 1, 0, 0, 0, 0, 0, 0, 0, 0]),  

  array([0, 0, 0, 0, 0, 1, 0, 0, 0, 1])] 

Accuracy: 0.480 (0.500) 
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Using sklearn cross_val_score module 
 

We now use the sklearn  score module  to calculate and print the scores. 
 

      from sklearn.model_selection import cross_val_score 
 

# using cross val score 
print("using cross val score") 
 
# use cross validation to calculate score using model and dataset 
scores = cross_val_score(model, X, y, cv=10) 
 
# print out scores 
print("Cross Val scores:\n",scores) 

 
# report performance 
print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) 
 
 
 
 
 
 
 

 
The results are comparable to the classifier kfold results.  

 
Using sklearn cross_val_predict module 
 
We now use the sklearn predict module to calculate and print the predictions 
 

from sklearn.model_selection import cross_val_predict 
 
# using cross val predict 
print("using cross val score") 
 
# using cross val predict 
predictions = cross_val_predict(model, X, y, cv=10) 
 
# print predictions 
print("Cross Val predictions:\n",predictions) 

using cross val score 

Cross Val scores: 

 [1.  1.  0.8 1.  0.7 0.9 0.9 0.8 0.9 1. ] 

Accuracy: 0.900 (0.100) 
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# report performance 
print('Accuracy: %.3f (%.3f)' % (np.mean(predictions), np.std(predictions))) 
 
 

 

 

 

 

The results are comparable to the classifier kfold results.  
 

Todo: 

Try different values of k, and try to get better accuracy. 

 

CROSS VALIDATION HOMEWORK Question 1 

Run the kfold program with out cross validation and compare the results to the 

cross validation results. Name your python file crossvalidation_homework.py 

You should get something like this: 
 
score:  0.76 
prediction:  [1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1] 
Accuracy: 0.760 (0.000) 
Accuracy: 0.520 (0.500) 
 

 

 

 

 

using cross val predictions 

Cross Val predictions: 

 [0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0    

  0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0     

  0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1   

  1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 1] 

Accuracy: 0.500 (0.500) 
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End 


