

Copyright © 2021 OnlineProgrammingLessons.com

 1

LESSON 17 CrossValidation Last update May 15, 2021

CROSS VALIDATION

Cross-validation is a resampling procedure used to evaluate machine learning
models on a limited data sample. The limited sample is used in order to estimate
how the model is expected to perform in general, when used to make predictions
on data that is not used during the training of the model.

Cross-validation is mainly used as a way to check for under or over-fit.
In the following plots we have underfitting, fitting and overfitting.

 Underfittimg normal fitting overfitting

The first plot represents a linear relationship and has a high error from training
data point and is an example of underfitting. The model fails to capture the
underlining trend of data.

The second plots represents normal fitting has a low training error and a
generalization of the relationship between price and size. The curve follows the
points very tightly.

In the third plot we have almost zero training error, but is too sensitive and
captures random patterns that are only in the present training set but not present
in other datasets. This is an example overfitting and there could be a high
deviation between training sets and actual data.

A common practice in data science competitions is to iterate over various models
to find a better performing model. However, it becomes difficult to distinguish
whether this improvement in score is coming because we are capturing the
relationship better, or we are just over-fitting the data.

Copyright © 2021 OnlineProgrammingLessons.com

 2

To find the right answer for this question, we use validation techniques. This
method helps us in achieving more generalized relationships.

To avoid over-fitting, we have to define two different sets:

 training set (X_train, y_train)

 which is used for learning the parameters of a predictive model.

 testing set (X_test, y_test)

 which is used for evaluating the fitted predictive model.

We can now quickly sample a training set while holding out a percentage of the
data for testing (evaluating) our classifier:

However, by defining these two sets, we drastically reduce the number of
samples which can be used for learning the model, and the results can depend on
a particular random choice for the pair of (train, test) sets.

A solution is to split the whole data several consecutive times in different train
set and test set, and to return the averaged value of the prediction scores
obtained with the different sets. Such a procedure is called cross-validation. This
approach can be computationally expensive, but does not waste too much data
(as it is the case when fixing an arbitrary test set), which is a major advantage in
problem such as inverse inference where the number of samples is very small.

k-fold cross-validation

The procedure has a single parameter called k that refers to the number of groups
that a given data sample is to be split into. As such, the procedure is often called
k-fold cross-validation. When a specific value for k is chosen, it may be used in
place of k in the reference to the model, such as k=10 becoming 10-fold cross-
validation.

The general procedure is as follows:

1. Shuffle the dataset randomly.
2. Split the dataset into k groups

Copyright © 2021 OnlineProgrammingLessons.com

 3

3. For each unique group:
3.1Take the group as a hold out or test data set
3.2Take the remaining groups as a training data set
3.3Fit a model on the training set and evaluate it on the test set|
3.4Retain the evaluation score and discard the model

4. Summarize the skill of the model using the sample of model evaluation
scores

Importantly, each observation in the data sample is assigned to an individual
group and stays in that group for the duration of the procedure. This means that
each sample is given the opportunity to be used in the hold out set 1 time and
used to train the model k-1 times.

This approach involves randomly dividing the set of observations into k groups, or
folds, of approximately equal size. The first fold is treated as a validation set, and
the method is fit on the remaining k − 1 folds.

The results of a k-fold cross-validation run are often summarized with the mean of
the model skill scores. It is also good practice to include a measure of the variance
of the skill scores, such as the standard deviation or standard error.

Configuration of k

The k value must be chosen carefully for your data sample. A poorly chosen value
for k may result in a mis-representative idea of the skill of the model, such as a
score with a high variance (that may change a lot based on the data used to fit the
model), or a high bias, (such as an overestimate of the skill of the model).

Three common tactics for choosing a value for k are as follows:

 Representative: The value for k is chosen such that each train/test group of
data samples is large enough to be statistically representative of the
broader dataset

 k=10: The value for k is fixed to 10, a value that has been found through
experimentation to generally result in a model skill estimate with low bias a
modest variance.

Copyright © 2021 OnlineProgrammingLessons.com

 4

 k=n: The value for k is fixed to n, where n is the size of the dataset to give
each test sample an opportunity to be used in the hold out dataset. This
approach is called leave-one-out cross-validation.

The choice of k is usually 5 or 10, but there is no formal rule. As k gets larger, the
difference in size between the training set and the resampling subsets gets
smaller. As this difference decreases, the bias of the technique becomes smaller

A value of k=10 is very common in the field of applied machine learning, and is
recommend if you are struggling to choose a value for your dataset.

To summarize, there is a bias-variance trade-off associated with the choice of k in
k-fold cross-validation. Typically, given these considerations, one performs k-fold
cross-validation using k = 5 or k = 10, as these values have been shown empirically
to yield test error rate estimates that suffer neither from excessively high bias nor
from very high variance.

If a value for k is chosen that does not evenly split the data sample, then one

group will contain a remainder of the examples. It is preferable to split the data

sample into k groups with the same number of samples, such that the sample of

model skill scores are all equivalent

Copyright © 2021 OnlineProgrammingLessons.com

 5

Evaluating a Machine Learning model can be quite tricky. Usually, we split the

data set into training and testing sets and use the training set to train the model

and testing set to test the model. We then evaluate the model performance

based on an error metric to determine the accuracy of the model. This method

however, is not very reliable as the accuracy obtained for one test set can be very

different to the accuracy obtained for a different test set.

The K-fold Cross Validation(CV) provides a solution to this problem by dividing

the data into folds and ensuring that each fold is used as a testing set at some

point. K-Fold CV is where a given data set is split into a K number of sections/folds

where each fold is used as a testing set at some point. Lets take the scenario of 5-

Fold cross validation(K=5). Here, the data set is split into 5 folds. In the first

iteration, the first fold is used to test the model and the rest are used to train the

model. In the second iteration, 2nd fold is used as the testing set while the rest

serve as the training set. This process is repeated until each fold of the 5 folds

have been used as the testing set.

kFold using sklearn

Sklearn has the K-Folds cross-validator model located in
sklearn.model_selection. It provides train/test indices to split data in train/test
sets, splits dataset into k consecutive folds (without shuffling by default). Each
fold is then used once as a validation while the k - 1 remaining folds form the
training set. Sklearn also has the cross_val_score and cross_val_predict modules
located in sklearn.model_selection. cross_val_score return the scores of the kFold
training sets where as cross_val_predict return the prediction of the kFold
training sets. Both receive a classifier model and X and Y data points.

KFold test program using sklearn

We first make the necessary imports:

from sklearn.model_selection import KFold
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification

Copyright © 2021 OnlineProgrammingLessons.com

 6

We will use a logistic regression model because it is very good in classifying binary

data . We use the sklearn make_classification function to make our X and y dataset. We

make 100 samples with 5 features and 1 binary target .We then use the KFold

function to calculate the different K Fold training sets.

make 100 training samples with 5 features
X, y = make_classification(n_samples=100, n_features=5)

store scores
scores = []
predictions = []

make LinearRegression model
model = LogisticRegression()

make KFold with 10 splits
cv = KFold(n_splits=10, random_state=42, shuffle=True)

For each folded training set, we print out the indexes, get the training data from
the indexes then use the classifier to calculate the score and predictions. We
store the score and predictions in a list.

for each training set produced
for train_index, test_index in cv.split(X):

print train indexes
print("Train Index:\n", train_index, "\n")

print test indexes
print("Test Index:\n", test_index)

get the data from the indexes
X_train, X_test, y_train, y_test = X[train_index], X[test_index], y[train_index], y[test_index]

use the model to classify the data
model.fit(X_train, y_train)

calculate score accuracy using the model
score = model.score(X_test, y_test)
print score

 print("score: ",score)

Copyright © 2021 OnlineProgrammingLessons.com

 7

store score
scores.append(score)

 # calculate predictions using model
prediction = model.predict(X_test)

print predictions
print("predistion: ",prediction)

store predictions
predictions.append(prediction)

print scores
print("KFold scores:\n",scores)

print mean and std of scores
print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores)))

print predictions
print("kFold predictions:\n",predictions)

print mean and std of predictions
print('Accuracy: %.3f (%.3f)' % (np.mean(predictions), np.std(predictions)))

KFold scores:

 [0.7, 1.0, 1.0, 0.9, 0.9, 1.0, 0.9, 1.0, 0.7, 0.9]

Accuracy: 0.900 (0.110)

KFold predictions:

 [array([0, 0, 0, 1, 0, 1, 0, 0, 1, 1]),

 array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1]),

 array([0, 1, 0, 1, 0, 1, 1, 1, 0, 1]),

 array([1, 0, 0, 0, 1, 1, 0, 1, 1, 1]),

 array([0, 0, 1, 0, 0, 1, 1, 1, 1, 0]),

 array([1, 1, 1, 1, 0, 1, 1, 0, 1, 0]),

 array([1, 0, 1, 0, 0, 1, 0, 1, 0, 1]),

 array([0, 1, 0, 1, 0, 1, 1, 0, 1, 0]),

 array([1, 1, 0, 0, 0, 0, 0, 0, 0, 0]),

 array([0, 0, 0, 0, 0, 1, 0, 0, 0, 1])]

Accuracy: 0.480 (0.500)

Copyright © 2021 OnlineProgrammingLessons.com

 8

Using sklearn cross_val_score module

We now use the sklearn score module to calculate and print the scores.

 from sklearn.model_selection import cross_val_score

using cross val score
print("using cross val score")

use cross validation to calculate score using model and dataset
scores = cross_val_score(model, X, y, cv=10)

print out scores
print("Cross Val scores:\n",scores)

report performance
print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores)))

The results are comparable to the classifier kfold results.

Using sklearn cross_val_predict module

We now use the sklearn predict module to calculate and print the predictions

from sklearn.model_selection import cross_val_predict

using cross val predict
print("using cross val score")

using cross val predict
predictions = cross_val_predict(model, X, y, cv=10)

print predictions
print("Cross Val predictions:\n",predictions)

using cross val score

Cross Val scores:

 [1. 1. 0.8 1. 0.7 0.9 0.9 0.8 0.9 1.]

Accuracy: 0.900 (0.100)

Copyright © 2021 OnlineProgrammingLessons.com

 9

report performance
print('Accuracy: %.3f (%.3f)' % (np.mean(predictions), np.std(predictions)))

The results are comparable to the classifier kfold results.

Todo:

Try different values of k, and try to get better accuracy.

CROSS VALIDATION HOMEWORK Question 1

Run the kfold program with out cross validation and compare the results to the

cross validation results. Name your python file crossvalidation_homework.py

You should get something like this:

score: 0.76
prediction: [1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1]
Accuracy: 0.760 (0.000)
Accuracy: 0.520 (0.500)

using cross val predictions

Cross Val predictions:

 [0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0

 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0

 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1

 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 1]

Accuracy: 0.500 (0.500)

Copyright © 2021 OnlineProgrammingLessons.com

 10

End

