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Lesson 27 DeepLearning Application                          Last Update:  June3, 2021 

 

Stock Market Application 

We want to be able to predict the stock market especially the SP500. The SP500 

contains 500 Stocks like Apple, Netflix, Google, FaceBook etc. The SP500ondex is 

calculated from the sum on all theses stocks per minute. 

We have a stock market file 'data_stocks.csv' that contains one minute periods  of all 

stocked values for 4 months. 

We will use the stock price values for the X data and the total sum the SP500 

index for the Y data. Our goal is the fit the X data  to predict the Y data of the 

SP500 index. 

Which means if we know the values of all the stock for a row now we can predict 

if the SP500 will go up and down.  We can then make a ‘buy’ trade on the SP500 

and then as soon as the SP500 start to go down we can cash in. 

This program just works on the data file  but does not connect directly to the 

stock market value feeds.  

We are using tensor flow for out neural networks. 

TensorFlow operates on a graph representation of the underlying computational 

task. This approach allows the user to specify mathematical operations as 

elements in a graph of data, variables and operators. Since neural networks are 

actually graphs of data and mathematical operations, TensorFlow is well suited 

for neural networks and deep learning. 
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In the figure above, two numbers are supposed to be added. Those numbers are 

stored in two variables, a and b. The two values are flowing through the graph 

and arrive at the square node, where they are being added. The result of the 

addition is stored into another variable, c. Actually, a, b and c can be considered 

as placeholders. Any numbers that are fed into a and b get added and are stored 

into c. This is exactly how TensorFlow works. The user defines an abstract 

representation of the model (neural network) through placeholders and variables. 

Afterwards, the placeholders get "filled" with real data and the actual 

computations take place. The following code implements the example from above 

in TensorFlow: 

# Import TensorFlow 
#import tensorflow as tf 
import tensorflow.compat.v1 as tf 
tf.disable_v2_behavior() 
 
# Define a and b as placeholders 
a = tf.placeholder(dtype=tf.int8) 
b = tf.placeholder(dtype=tf.int8) 
 
# Define the addition 
c = tf.add(a, b) 
 
# Initialize the graph 
graph = tf.Session() 
 

a = 5 

b = 4 

    + C = 9 
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# Run the graph 
result = graph.run(c, feed_dict={a: 5, b: 4}) 
 
# print result 
print("result:",result)  #9 
 
#close graph 
graph.close() 

 

After having imported the TensorFlow library, two placeholders are defined using 

tf.placeholder(). They correspond to the two circles on the left of the image above. 

Afterwards, the mathematical addition is defined via tf.add(). The result of the 

computation is c = 9. With placeholders set up, the graph can be executed with 

any integer value for a and b using feed_dict={a: 5, b: 4}). A tensor is returned with the 

value 9. 

Todo: 

Type in or copy/paste in the above code and run it. Try oyje values and 

mathematical operations like subtract, multiply and divide. 

 

Predict SP500 

We now apply tensor flow to predict SP500. 

Here are the program steps: 

Step 1    import tensor flow 

# Import TensorFlow 
#import tensorflow as tf 
import tensorflow.compat.v1 as tf 
tf.disable_v2_behavior() 
 

We have to add the additional import statement to prevent warnings and errors: 
  
import tensorflow.compat.v1 as tf 
tf.disable_v2_behavior() 
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step 2    import rest of imports 
 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import MinMaxScaler 
 

step 3    load in data file  
 
# Import data 
df = pd.read_csv('data_stocks.csv') 
print(df.head()) 
 
 
             DATE      SP500  NASDAQ.AAL  ...  NYSE.YUM  NYSE.ZBH  NYSE.ZTS 

0      1491226200  2363.6101     42.3300  ...     63.86   122.000   53.3500 

1      1491226260  2364.1001     42.3600  ...     63.74   121.770   53.3500 

2      1491226320  2362.6799     42.3100  ...     63.75   121.700   53.3650 

3      1491226380  2364.3101     42.3700  ...     63.88   121.700   53.3800 

4      1491226440  2364.8501     42.5378  ...     63.91   121.695   53.2400 

...           ...        ...         ...  ...       ...       ...       ... 

41261  1504209360  2472.2200     44.7200  ...     76.88   114.310   62.7250 

41262  1504209420  2471.7700     44.7300  ...     76.90   114.330   62.7100 

41263  1504209480  2470.0300     44.7400  ...     76.88   114.310   62.6850 

41264  1504209540  2471.4900     44.7100  ...     76.83   114.230   62.6301 

41265  1504209600  2471.4900     44.7400  ...     76.81   114.280   62.6800 

 
 

Step 4: drop the date column since it is not needed 
 
# Drop date variable 
df = df.drop(['DATE'], axis = 'columns') 

 

step 5:  get data from data frame 

# get data 
data = df.values 
print("data") 
print(data) 
 
 
data 
[[2363.6101   42.33    143.68   ...   63.86    122.       53.35  ] 
 [2364.1001   42.36    143.7    ...   63.74    121.77     53.35  ] 
 [2362.6799   42.31    143.6901 ...   63.75    121.7      53.365 ] 
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 ... 
 [2470.03     44.74    164.01   ...   76.88    114.31     62.685 ] 
 [2471.49     44.71    163.88   ...   76.83    114.23     62.6301] 
 [2471.49     44.74    163.98   ...   76.81    114.28     62.68  ]] 
 
 

step 6:  scale the complete data set 
 
 
# scale data 
scaler = MinMaxScaler() 
scaler.fit(data) 
data_scaled = scaler.transform(data) 
 
 
 

step 7:  separate data into target  and  features  
 
the  target is the  sP500 index and  the features are the individual stock prices 
 
 
# set target and features 
X = data_scaled[:,1:] 
y = data_scaled[:,0] 
 
print("scaled X") 
print(X) 
 
scaled X 
[[0.10993038 0.14455852 0.05131045 ... 0.04878049 0.5092156  0.09098787] 
 [0.11212898 0.14537988 0.0767811  ... 0.04017217 0.49935705 0.09098787] 
 [0.10846464 0.14497331 0.07327427 ... 0.04088953 0.49635662 0.09228769] 
 ... 
 [0.28655185 0.97946612 0.99021779 ... 0.98278336 0.17959709 0.89991334] 
 [0.28435324 0.97412731 0.98634182 ... 0.97919656 0.17616802 0.89515598] 
 [0.28655185 0.97823409 0.99372462 ... 0.97776184 0.17831119 0.89948007]] 
 
 
print("scaled Y") 
print(y) 
 
scaled Y 
[0.21342456 0.21645842 0.20766516 ... 0.87233051 0.88137019 0.88137019] 
0.005039798 
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step 8: split data into %80 train and 20%  test set 
 
 
# split data set %80 train %20% test do not shuffle 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, shuffle=False) 

 

step 9  set model parameters 

The model consists of four hidden layers. The first layer contains 1024 neurons, 

slightly more than double the size of the inputs. Subsequent hidden layers are 

always half the size of the previous layer, which means 512, 256 and finally 128 

neurons. A reduction of the number of neurons for each subsequent layer 

compresses the information the network identifies in the previous layers 

# Model architecture parameters 

n_stocks = 500 
n_neurons_1 = 1024 
n_neurons_2 = 512 
n_neurons_3 = 256 
n_neurons_4 = 128 
n_target = 1 
 

Step 9: make tensor flow placeholders 

We need two placeholders in order to fit our model: X contains the network's inputs (the stock prices of 

all S&P 500 constituents at time T = t) and Y the network's outputs (the index value of the S&P 500 at 

time T = t + 1). 

The shape of the placeholders correspond to [None, n_stocks] with [None] meaning that the 

inputs are a 2-dimensional matrix and the outputs are a 1-dimensional vector. It is crucial to understand 

which input and output dimensions the neural net needs in order to design it properly. 

# Placeholder 
X = tf.placeholder(dtype=tf.float32, shape=[None, n_stocks]) 
Y = tf.placeholder(dtype=tf.float32, shape=[None]) 
 
The None argument indicates that at this point we do not yet know the number of observations that 
flow through the neural net graph in each batch, so we keep if flexible. 
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Step 11 setup initializers 
 

Initializers are used to initialize the network’s variables before training. Since 
neural networks are trained using numerical optimization techniques, the starting 
point of the optimization problem is one the key factors to find good solutions to 
the underlying problem. There are different initializers available in TensorFlow, 
each with different initialization approaches. Here, is  the 
tf.variance_scaling_initializer(), which is one of the default initialization 
strategies. 
 
# Initializers 
sigma = 1 
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", scale=sigma) 

bias_initializer = tf.zeros_initializer() 
 

step 12  set up layers 
 

While placeholders are used to store input and target data in the graph, variables 
are used as flexible containers within the graph that are allowed to change during 
graph execution. Weights and biases are represented as variables in order to 
adapt during training. Variables need to be initialized, prior to model training. 
 

# Layer 1: Variables for hidden weights and biases 
W_hidden_1 = tf.Variable(weight_initializer([n_stocks, n_neurons_1])) 
bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1])) 
 
# Layer 2: Variables for hidden weights and biases 
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1, n_neurons_2])) 
bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2])) 
 
# Layer 3: Variables for hidden weights and biases 
W_hidden_3 = tf.Variable(weight_initializer([n_neurons_2, n_neurons_3])) 
bias_hidden_3 = tf.Variable(bias_initializer([n_neurons_3])) 
 
# Layer 4: Variables for hidden weights and biases 
W_hidden_4 = tf.Variable(weight_initializer([n_neurons_3, n_neurons_4])) 
bias_hidden_4 = tf.Variable(bias_initializer([n_neurons_4])) 
 
# Output layer: Variables for output weights and biases 
W_out = tf.Variable(weight_initializer([n_neurons_4, n_target])) 
bias_out = tf.Variable(bias_initializer([n_target])) 
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It is important to understand the required variable dimensions between input, 
hidden and output layers. As a rule of thumb in multilayer perceptrons (MLPs, the 
type of networks used here), the second dimension of the previous layer is the 
first dimension in the current layer for weight matrices. This might sound 
complicated but is essentially just each layer passing its output as input to the 
next layer. The biases dimension equals the second dimension of the current 
layer’s weight matrix, which corresponds the number of neurons in this layer. 
 

Step 13 Hidden layer 

After definition of the required weight and bias variables, the network topology, 
the architecture of the network, needs to be specified. Hereby, placeholders (data) 
and variables (weighs and biases) need to be combined into a system of 
sequential matrix multiplications. 

Furthermore, the hidden layers of the network are transformed by activation 
functions. Activation functions are important elements of the network 
architecture since they introduce non-linearity to the system. There are dozens of 
possible activation functions out there, one of the most common is the rectified 
linear unit (ReLU) which will also be used in this model. ReLU is an activation 
function where as the output is always positive 

# Hidden layer 
hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1)) 
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), bias_hidden_2)) 
hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3), bias_hidden_3)) 
hidden_4 = tf.nn.relu(tf.add(tf.matmul(hidden_3, W_hidden_4), bias_hidden_4)) 
 
# Output layer (must be transposed) 
out = tf.transpose(tf.add(tf.matmul(hidden_4, W_out), bias_out)) 
 

Step 14   define network architecture 
 
The image below illustrates the network architecture. The model consists of three 
major building blocks. The input layer, the hidden layers and the output layer. 
This architecture is called a feed forward network. Feed forward indicates that the 
batch of data solely flows from left to right. Other network architectures, such as 
recurrent neural networks, also allow data flowing “backwards” in the network. 
 



9 
copyright © 2021 www.onlineprogramminglessons.com For student use only 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Step 15 cost function 
 
The cost function of the network is used to generate a measure of deviation 
between the network’s predictions and the actual observed training targets. For 
regression problems, the mean squared error (MSE) function is commonly used. 
MSE computes the average squared deviation between predictions and targets. 
Basically, any differentiable function can be implemented in order to compute a 
deviation measure between predictions and targets. 
 
# Cost function 
mse = tf.reduce_mean(tf.squared_difference(out, Y)) 
 
 

Step 16 optimier 
 
The optimizer takes care of the necessary computations that are used to adapt 
the network’s weight and bias variables during training. Those computations 
invoke the calculation of so called gradients, that indicate the direction in which 
the weights and biases have to be changed during training in order to minimize 
the network’s cost function.  
 

# Optimizer 
opt = tf.train.AdamOptimizer().minimize(mse) 
 
 

Here the Adam Optimizer is used, which is one of the current default optimizers in 
deep learning development. Adam stands for “Adaptive Moment Estimation” and 
can be considered as a combination between two other popular optimizers 
AdaGrad and RMSProp. 

Input 

layer 
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Step 15 fit the model 
 

Fitting the neural network 

After having defined the placeholders, variables, initializers, cost functions and 

optimizers of the network, the model needs to be trained. Usually, this is done by 

minibatch training. During minibatch training random data samples of n = 

batch_size are drawn from the training data and fed into the network. The 

training dataset gets divided into n / batch_size batches that are sequentially 

fed into the network. At this point the placeholders X and Y come into play. They 

store the input and target data and present them to the network as inputs and targets. 

A sampled data batch of X flows through the network until it reaches the output 

layer. There, TensorFlow compares the models predictions against the actual 

observed targets Y in the current batch. Afterwards, TensorFlow conducts an 

optimization step and updates the networks parameters, corresponding to the 

selected learning scheme. After having updated the weights and biases, the next 

batch is sampled and the process repeats itself. The procedure continues until all 

batches have been presented to the network. One full sweep over all batches is 

called an epoch. 

The training of the network stops once the maximum number of epochs is reached 

or another stopping criterion defined by the user applies. 

# Make Session 
net = tf.Session() 
 
# Run initializer 
net.run(tf.global_variables_initializer()) 
 
# Setup interactive plot 
plt.ion() 
fig = plt.figure() 
ax1 = fig.add_subplot(111) 
line1, = ax1.plot(y_test) 
line2, = ax1.plot(y_test*0.5) 
plt.show() 
 
# Number of epochs and batch size 
epochs = 10 
batch_size = 256 
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for e in range(epochs): 
 
    # Shuffle training data 
    shuffle_indices = np.random.permutation(np.arange(len(y_train))) 
    X_train = X_train[shuffle_indices] 
    y_train = y_train[shuffle_indices] 
 
    # Minibatch training 
    for i in range(0, len(y_train) // batch_size): 
        start = i * batch_size 
        batch_x = X_train[start:start + batch_size] 
        batch_y = y_train[start:start + batch_size] 
        # Run optimizer with batch 
        net.run(opt, feed_dict={X: batch_x, Y: batch_y}) 
 
        # Show progress 
        if np.mod(i, 5) == 0: 
            # Prediction 
            pred = net.run(out, feed_dict={X: X_test}) 
            line2.set_ydata(pred) 
            plt.title('Epoch ' + str(e) + ', Batch ' + str(i)) 
            #file_name = 'img/epoch_' + str(e) + '_batch_' + str(i) + '.jpg' 
            file_name = 'epoch_' + str(e) + '_batch_' + str(i) + '.jpg' 
 
            #plt.savefig(file_name) 
            plt.pause(0.01) 
 
# Print final MSE after Training 
mse_final = net.run(mse, feed_dict={X: X_test, Y: y_test}) 
print(mse_final) 
 
 

During the training, we evaluate the networks predictions on the test set . 
Every 5th batch we can visualize the output predictions  and optionally save the 
images a to a disk.  
 
The model quickly learns the shape and location of the time series in the test data 
and is able to produce an accurate prediction after some epochs.  
 
One can see that the networks rapidly adapts to the basic shape of the time series 
and continues to learn finer patterns of the data. This also corresponds to the 
Adam learning scheme that lowers the learning rate during model training in 
order not to overshoot the optimization minimum. After 10 epochs, we have a 
pretty close fit to the test data.  
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The final test MSE equals 0.00078 (it is very low, because the target is scaled). The 
mean absolute percentage error of the forecast on the test set is equal to 5.31% 
which is pretty good.  
 
 
Here is the complete program: 
 

# stock_market.py 
# SP500 prediction using tensor flow 
 
#Import TensorFlow 
#import tensorflow as tf 
import tensorflow.compat.v1 as tf 
tf.disable_v2_behavior() 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import MinMaxScaler 
 
# import data 
df = pd.read_csv('data_stocks.csv') 
print (df.head) 
 
# Drop date variable 
df = df.drop(['DATE'], axis = 'columns') 
 
# get data 
data = df.values 
print("data") 
print(data) 
 
# scale data 
scaler = MinMaxScaler() 
scaler.fit(data[:,0:]) 
data_scaled = scaler.transform(data) 
 
# set target and features 
X_data = data_scaled[:,1:] 
y_data = data_scaled[:,0] 
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print("scaled X") 
print(X_data) 
 
print("scaled Y") 
print(y_data) 
 
# split data set %80 train %20% test do not shuffle 
X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.20, shuffle=False) 
 
# Model architecture parameters 
n_stocks = 500 
n_neurons_1 = 1024 
n_neurons_2 = 512 
n_neurons_3 = 256 
n_neurons_4 = 128 
n_target = 1 
 
# Placeholder 
X = tf.placeholder(dtype=tf.float32, shape=[None, n_stocks]) 
Y = tf.placeholder(dtype=tf.float32, shape=[None]) 
 
# Initializers 
sigma = 1 
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", 
scale=sigma) 
bias_initializer = tf.zeros_initializer() 
 
# Layer 1: Variables for hidden weights and biases 
W_hidden_1 = tf.Variable(weight_initializer([n_stocks, n_neurons_1])) 
bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1])) 
 
# Layer 2: Variables for hidden weights and biases 
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1, n_neurons_2])) 
bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2])) 
 
# Layer 3: Variables for hidden weights and biases 
W_hidden_3 = tf.Variable(weight_initializer([n_neurons_2, n_neurons_3])) 
bias_hidden_3 = tf.Variable(bias_initializer([n_neurons_3])) 
 
# Layer 4: Variables for hidden weights and biases 
W_hidden_4 = tf.Variable(weight_initializer([n_neurons_3, n_neurons_4])) 
bias_hidden_4 = tf.Variable(bias_initializer([n_neurons_4])) 
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# Output layer: Variables for output weights and biases 
W_out = tf.Variable(weight_initializer([n_neurons_4, n_target])) 
bias_out = tf.Variable(bias_initializer([n_target])) 
 
# Hidden layer 
hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1)) 
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), bias_hidden_2)) 
hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3), bias_hidden_3)) 
hidden_4 = tf.nn.relu(tf.add(tf.matmul(hidden_3, W_hidden_4), bias_hidden_4)) 
 
# Output layer (must be transposed) 
out = tf.transpose(tf.add(tf.matmul(hidden_4, W_out), bias_out)) 
 
# Cost function 
mse = tf.reduce_mean(tf.squared_difference(out, Y)) 
 
# Optimizer 
opt = tf.train.AdamOptimizer().minimize(mse) 
 
# Make Session 
net = tf.Session() 
 
# Run initializer 
net.run(tf.global_variables_initializer()) 
 
# Setup interactive plot 
plt.ion() 
fig = plt.figure() 
ax1 = fig.add_subplot(111) 
line1, = ax1.plot(y_test,label="actual") 
line2, = ax1.plot(y_test*0.5,label="predicted") 
plt.legend() 
plt.show() 
 
# Number of epochs and batch size 
epochs = 10 
batch_size = 256 
 
# for each epochs 
for e in range(epochs): 
 
    # Shuffle training data 
    shuffle_indices = np.random.permutation(np.arange(len(y_train))) 
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    X_train = X_train[shuffle_indices] 
    y_train = y_train[shuffle_indices] 
 
    # Minibatch training 
    for i in range(0,len(y_train) // batch_size): 
        start = i * batch_size 
        batch_x = X_train[start:start + batch_size] 
        batch_y = y_train[start:start + batch_size] 
 
        # Run optimizer with batch 
        net.run(opt, feed_dict={X: batch_x, Y: batch_y}) 
 
        # Show progress 
        if np.mod(i, 5) == 0: 
            # Prediction 
            pred = net.run(out, feed_dict={X: X_test}) 
            line2.set_ydata(pred) 
            plt.title('Epoch ' + str(e) + ', Batch ' + str(i)) 
            #file_name = 'img/epoch_' + str(e) + '_batch_' + str(i) + '.jpg' 
            #file_name = 'epoch_' + str(e) + '_batch_' + str(i) + '.jpg' 
 
            #plt.savefig(file_name) 
            plt.pause(0.01)  
 
# Print final MSE after Training 
mse_final = net.run(mse, feed_dict={X: X_test, Y: y_test}) 
print(mse_final) 
 
 

Todo: 
 
Type in or copy and  paste and run the program. Try different split  ratios, Apply 
the scalar separately on the train data’s and test data. 
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You should get something like this: 

 
 

DeepLearning Homework 1 
 

Use the above program to buy and sell on the SPX 500 index. You are not buying 
and selling individual stocks just the SPX500 index . You have to use a moving 
window to predict the next SPX 500 index,  since the tensor-flow program 
predicts from the training size, not individual rows.  Spit the SPX500 data into 2 
sections, known and prediction.  In this situation the predicted SPX 500 index is 
already known.  we can use this known  part to compare predicted data to actual 
data. 
 
 
 
 
 
 
  
 
 
 
 
 

known known Moving 

window 

prediction 

Moving 

window 

Moving 

window 
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You can experiment with the width. Try to use the width that would give you the 
most profit. You can make profit by buying and selling. This is known as long and 
short trades. For a long trade you start from a low  index level and when it 
reached a higher level you cash out. For short trades  start at a high level and cash 
out at a  low level. You still make money on the index absoluter difference.  When 
your prediction says the stocks will go up then buy. If your prediction  says you 
stocks will go down then cash out.  You van also sell when the stock goes down, in 
this situation when the index starts to go cash out. Keep track how much money 
you make and loose. You can make markers for buying and selling. In another 
array and plot  has a scatter plot. 
 
 

 
 
 
 
 
 
 
END 


