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LESSON 24 Image Classification                                    Last update June3, 2021                               
 
Conventions used in these lessons: 

bold  - headings, keywords, code 
italics -  code syntax 
underline  - important words 

 

 

Image classification is used everywhere, facial recognition, hand writing analysis, 

postal code identification, self driving cars, identifying rooms in a house etc.  

Image classification uses Deep Learning. Deep learning refers to neural networks 

with multiple hidden layers that can learn with increasingly abstract 

representations of the input data. 

Deep learning has led to major advances in computer vision. We’re now able to 

classify images, find objects in them, and even label them with captions.  Deep 

neural networks with many hidden layers can sequentially learn more complex 

features from the raw input image: 

 The first hidden layers might only learn local edge patterns. 

 Then, each subsequent layer (or filter) learns more complex representations. 

 Finally, the last layer can classify the image as a cat or dog 

These types of deep neural networks are called Convolutional Neural Networks 

(CNN). 

Convolutional Neural Networks (CNN’s) are multi-layer neural networks 

(sometimes up to 17 or more layers) that assume the input data to be images. 
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By making this requirement, CNN's can drastically reduce the number of parameters that need to 

be tuned. Therefore, CNN's can efficiently handle the high dimensionality of raw images. 

 

Convolution 

 

2D convolutional layers take a three-dimensional input, typically an image with 

three color channels. They pass a filter, also called a convolution kernel, over the 

image, inspecting a small window of pixels at a time.  A kernel filter window may 

ne 3x3 or 5x5 or 7x7 always a odd number. The convolution operation calculates 

the dot product of the pixel values in the current filter window with the weights 

defined in the filter. The window is moved until they have scanned the entire 

image. The kernel weights are tuned in the training of the model to achieve the 

most accurate predictions. A 2D convolution layer means that the input of the 

convolution operation is three-dimensional, for example, a color image which has a 

value for each pixel across three layers: red, blue and green It is called a “2D 

convolution” because the movement of the filter across the image happens in two 

dimensions. 

 

 
 

 

 

After the convolution ends, the features are down sampled, and then the same 

convolutional structure repeats again. At first, the convolution identifies features in 

the original image (for example in a cat, the body, legs, tail, head), then it identifies 

sub-features within smaller parts of the image (for example, within the head, the 

ears, whiskers, eyes). Eventually, this process is meant to identify the essential 

features that can help classify the image.  

In this lesson we will classify hand written digits. We will use the  MINST data set  

of hand written digits available from Keras. 
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The MNIST dataset is an acronym that stands for the Modified National Institute of Standards 

and Technology dataset. 

It is a dataset of 60,000 small square 28×28 pixel grayscale images of handwritten single digits 

between 0 and 9. 

Out task is to classify a given image of a handwritten digit into one of 10 classes representing 

integer values from 0 to 9, inclusively. 

Deep learning convolutional neural networks  achieve a classification accuracy of above 99%, 

with an error rate between 0.4 %and 0.2% on this data set. 

The images are all pre-aligned and each image only contains a hand-drawn digit,  
all  images have the same square size of 28×28 pixels, and that the images are all 
grayscale. 

We can load the images and reshape the data arrays to have a single color 
channel. 

There are 10 classes digits 0 to 9 and that classes are represented as unique 
integers. 

https://en.wikipedia.org/wiki/MNIST_database
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We use a one hot encoding for the class element of each sample, transforming 
the integer into a 10 element binary vector with a 1 for the index of the class 
value, and 0 values for all other classes. We can achieve this with the 
to_categorical() utility function. 

We are using  the Sequential model type from Keras. This is simply a linear stack 
of neural network layers, and it's perfect for this type of feed-forward CNN. 

Our program flow is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Import Keras Modules  

Load  and split Minst handwritten digits 
 into train and test data sets 
 

Scale and reshape images 

 

convert class vectors to binary class 

matrices 

Configure Keras CNN model 
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(1) Import Keras Modules 

import numpy as np 
import keras 
from keras.layers import Dense, Dropout, Flatten 
from keras.layers import Convolution2D, MaxPooling2D 
from matplotlib import pyplot as plt 
from os import path 

 

(2) Load  and split Minst handwritten digits  into train and test data sets 

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() 

Each digit image is a 28 * 28 array. There are 60,000 training sets and 10000 test 
sets. The x sets are the images whereas the y sets are the digit  numbers 0 to 9, 

 
 

Fit model 

save model weights 

plot loss and accuracy  

 

Evaluate model 

print loss and accuracy 

Compile model 

Predict digits 
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print(x_train[0].shape) 
print("x_train: ",x_train.shape) 
print("y_train: ",y_train.shape) 
print("x_test: ",x_test.shape) 
print("x_test: ",y_test.shape) 
print("image: ",x_train[0].shape) 

 

 

 

 

We can even plot one of your images for your curiosity, using a grey scale. 

plt.imshow(x_train[0],cmap ='gray') 

plt.show() 

 

(3)  Scale and reshape images 

We scale the images 0 to 1 from  grey scale image  0 to 255. 
 

x_train = x_train.astype("float32") / 255 
x_test = x_test.astype("float32") / 255 

 

x_train:  (60000, 28, 28) 
y_train:  (60000,) 
x_test:  (10000, 28, 28) 
x_test:  (10000,) 
image:  (28, 28) 
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We add an additional axes to each image using the numpy function 
np.expand_dims 
 

# convert images to shape (28, 28, 1) 
# -1 means add new dimension to original shape  
x_train = np.expand_dims(x_train, -1) 
x_test = np.expand_dims(x_test, -1) 
 
# print out new shapes 
print("x_train shape:", x_train.shape) 
print(x_train.shape, "train samples") 
 

 

 

We have basically added another dimension where each image. Each image shape is now (28, 28, 

1)  rather than (28, 28) and we have 60000 images. 

We have converted  [28][28]  2D array   to    [[28][28]] 3D array for each image 

(4) convert class vectors to binary class matrices 
# convert class vectors to binary class matrices 
y_train = keras.utils.to_categorical(y_train, 10) 
y_test = keras.utils.to_categorical(y_test, 10) 

Basically we are taking the 10 digits and transforming them  into a 10 element 

binary vector with a 1 for the index of the class value, and 0 values for all other 

classes. This is known as  a one hot encoding we use the keras to_categorical() 

function to do this. 

0 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 

 

x_train shape: (60000, 28, 28, 1) 
x_train shape: (60000, 28, 28, 1) 
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(5) Configure Keras CNN model 

We are using  the Sequential model type from Keras. This is simply a linear stack 
of neural network layers, and it's perfect for the type of feed-forward CNN. 

 
model = keras.Sequential()  

 
 

Our input layer has shape 28,28,1 with 32 filters to be filters used in the 
convolution operation  and a kernel  filter size of 3 by 3  and activation relu. Relu 
means rectified linear activation function. The relu activation function is  max(x,0) 
so no output value goes below , otherwise  the output follows the input. 
 

model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(28,28,1))) 
 

2D convolutional layers, closer to the input learn less filters, while later 
convolutional layers, closer to the output, learn more filters. The number of filters 
you select should depend on the complexity of your dataset and the depth of 
your neural network. A common setting to start with is [32, 64, 128] for three 
layers, and if there are more layers, increasing to [256, 512, 1024], etc. 
 
Filter size may be determined by the CNN architecture you are using – for 
example VGGNet exclusively uses (3, 3) filters. If not, use a 5×5 or 7×7 filter to 
learn larger features and then quickly reduce to 3×3. If your images are smaller 
than 128×128, consider working with smaller filters of 1×1 and 3×3. 
 
We also have a additional Convolution2D layer of 64 filters with kernel  filter size 
of 3 by 3  and activation relu. This layer creates a convolution kernel that is 
convolved with the layer input to produce a tensor of outputs 
 

model.add(Convolution2D(64, 3, 3, activation='relu')) 
 

Convolutional layers in a convolutional neural network summarize the presence of 

features in an input image. 

A problem with the output feature maps is that they are sensitive to the location of 

the features in the input. One approach to address this sensitivity is to down sample 

the feature maps. This has the effect of making the resulting down sampled feature 
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maps more robust to changes in the position of the feature in the image, referred to 

by the technical phrase “local translation invariance.” 

Pooling layers provide an approach to down sampling feature maps by 

summarizing the presence of features in patches of the feature map. Two common 

pooling methods are average pooling and max pooling that summarize the average 

presence of a feature and the most activated presence of a feature respectively. 

The addition of a pooling layer after the convolutional layer is a common pattern 

used for ordering layers within a convolutional neural network that may be 

repeated one or more times in a given model. 

The pooling layer operates upon each feature map separately to create a new set of 

the same number of pooled feature maps. 

Pooling involves selecting a pooling operation, much like a filter to be applied to 

feature maps. The size of the pooling operation or filter is smaller than the size of 

the feature map; specifically, it is almost always 2×2 pixels applied with a stride of 

2 pixels. 

This means that the pooling layer will always reduce the size of each feature map 

by a factor of 2, e.g. each dimension is halved, reducing the number of pixels or 

values in each feature map to one quarter the size. For example, a pooling layer 

applied to a feature map of 6×6 (36 pixels) will result in an output pooled feature 

map of 3×3 (9 pixels). 

The pooling operation is specified, rather than learned. Two common functions 

used in the pooling operation are: 

 Average Pooling: Calculate the average value for each patch on the feature 

map. 

 Maximum Pooling (or Max Pooling): Calculate the maximum value for 

each patch of the feature map. 

The result of using a pooling layer and creating down sampled or pooled feature 

maps is a summarized version of the features detected in the input. They are useful 

as small changes in the location of the feature in the input detected by the 

convolutional layer will result in a pooled feature map with the feature in the same 

location. This capability added by pooling is called the model’s invariance to local 

translation. 
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model.add(MaxPooling2D(pool_size=(2,2))) 
 
 

Dropout is a technique where randomly selected neurons are ignored during 
training. They are “dropped-out” randomly. This means that their contribution to 
the activation of downstream neurons is temporally removed on the forward pass 
and any weight updates are not applied to the neuron on the backward pass. 

As a neural network learns, neuron weights settle into their context within the 
network. Weights of neurons are tuned for specific features providing some 
specialization. Neighboring neurons become to rely on this specialization, which if 
taken too far can result in a fragile model too specialized to the training data. This 
reliant on context for a neuron during training is referred to complex co-
adaptations. 

You can imagine that if neurons are randomly dropped out of the network during 
training, that other neurons will have to step in and handle the representation 
required to make predictions for the missing neurons. This is believed to result in 
multiple independent internal representations being learned by the network. 

The effect is that the network becomes less sensitive to the specific weights of 
neurons. This in turn results in a network that is capable of better 
generalization and is less likely to over fit the training data. 

model.add(Dropout(0.25)) 

 
Flattening a tensor means to remove all of the dimensions except for one. This is 
exactly what the Flatten layer do. A flatten operation on a tensor reshapes the 
tensor to have the shape that is equal to the number of elements contained in 
tensor non including the batch dimension. 
  

model.add(Flatten()) 
 

Again we drop out 0.5 
 

model.add(Dropout(0.5)) 
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Our output  layer has 10 output neuron  using softmax activation. 

 

Softmax activation is called the logistic function. Regardless of the input, the 
function always outputs a value between 0 and 1. The form of the function is an 
S-shape between 0 and 1 with the vertical or middle of the “S” at 0.5. 
 

 
 
 

model.add(Dense(10, activation='softmax')) 
 
 

The summary method prints a string summary of the network. 
 

model.summary() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: "sequential_32" 
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
conv2d_59 (Conv2D)           (None, 9, 9, 32)          320        
_________________________________________________________________ 
conv2d_60 (Conv2D)           (None, 3, 3, 64)          18496      
_________________________________________________________________ 
max_pooling2d_28 (MaxPooling (None, 1, 1, 64)          0          
_________________________________________________________________ 
dropout_52 (Dropout)         (None, 1, 1, 64)          0          
_________________________________________________________________ 
flatten_26 (Flatten)         (None, 64)                0          
_________________________________________________________________ 
dropout_53 (Dropout)         (None, 64)                0          
_________________________________________________________________ 
dense_26 (Dense)             (None, 10)                650        
================================================================= 
Total params: 19,466 
Trainable params: 19,466 
Non-trainable params: 0 
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(6) Compile model 

 
The  compile defines the loss function, the optimizer and the metrics. 

 
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) 

 

The Loss function is used to find error or deviation in the learning process. 

We are using the categorical_crossentropy loss function. 

The categorical_crossentropy computes the cross entropy loss between the labels and 

predictions. The categorical_crossentropy  expect labels to be provided in a one hot 

representation. 

The optimizer is used optimize the input weights by comparing the prediction and the loss 

function. 

There are many optimizers available we are using the Adam optimizer 

metrics is a list of metrics to be evaluated by the model during training and testing. 

We are interested in accuracy 

 

(7) Fit model and save model weights plot loss and accuracy  

 

Models are trained by   using the fit function. 
# check for weights file 
if not path.exists("digits.h5"): 
 
    history = model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1) 

model.save_weights('digits.h5')  
 
# plot loss 
plt.subplot(2, 1, 1) 
plt.title('Cross Entropy Loss') 
plt.plot(history.history['loss'], color='blue', label='train') 
plt.plot(history.history['val_loss'], color='orange', label='test') 
plt.xlabel('Epoch') 
plt.ylabel('loss Error') 
plt.legend() 
plt.grid(True) 
plt.show() 
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 # plot accuracy 
 plt.subplot(2, 1, 2) 
 plt.title('Classification Accuracy') 
 plt.plot(history.history['accuracy'], color='blue', label='train') 
 plt.plot(history.history['val_accuracy'], color='orange', label='test') 
 plt.xlabel('Epoch') 
 plt.ylabel('Accuracy') 
 plt.legend() 
 plt.grid(True) 
     
 plt.show() 
     
 

 
else: 
    model.load_weights('digits.h5') 
 

 X, y – is the training data where X are the inputs and y is the expected output. 

 epochs − no of times the model is needed to be evaluated during training. 

 batch_size − training instances. 

 validation_split: Float between 0 and 1. Fraction of the training data to be used as 

validation data. The model will set apart this fraction of the training data, will not train on 

it, and will evaluate the loss and any model metrics on this data at the end of each epoch. 

The validation data is selected from the last samples in the x and y data provided, before 

shuffling. 

we save the node weights in a file called digits.h5. so we do not have to refit the data every time 

we  run the program 
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(7) Evaluate model print loss and accuracy 

 
Returns the loss value & metrics values for the model in test mode. 

score = model.evaluate(x_test, y_test, verbose=0) 
print("Test loss:", score[0]) 
print("Test accuracy:", score[1]) 

 

 

 

 

 

 

 

(8) Predict digits 
 
Test some images and display the results. 
 
# print predictions 
fig=plt.figure(figsize=(8, 8)) 
 
# for all predictions 
for i in range(1,21): 
     
    print("train shape:",x_test[i-1].shape) 
     
    # restore image from (28 28 1) to (28,28) 
    test_image = np.squeeze(x_test[i-1]) 
    print("test image shape: ",test_image.shape) 
     
    #plt.imshow(test_image)  
    #plt.show()     

Test loss: 0.2815539538860321 
Test accuracy: 0.9193999767303467 
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    # put test image in a in an array 
    # (1, 28, 28, 1) 
    test_input= np.array([x_test[i-1]]) 
    print("test image input: ",test_input.shape) 
     
    # get result vector 
    result = model.predict(test_input) 
    print(result) 
     
    # get digit 
    digit = model.predict_classes(test_input) 
    print(digit) 
     
    # plot digit 
    ax=fig.add_subplot(4,5,i) 
    plt.imshow(test_image , cmap ='gray')  
     
    # get expected digit 
    expected = np.where(y_test[i-1]==1) 
    print(expected[0]) 
     
    # print digit and expected digit 
    ax.title.set_text(str(digit) + " " +str(expected[0])) 
     
plt.show() 
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Here is the output digit classifications: 

 
 

Here some  text output: 
 
predictions 
train shape: (28, 28, 1) 
test image shape:  (28, 28) 
test image input:  (1, 28, 28, 1) 
[[2.0969494e-03 6.1242071e-07 1.7464131e-02 8.2260283e-04 1.5419604e-06 
  3.8172093e-05 5.8084720e-07 9.7914141e-01 1.2636275e-04 3.0757807e-04]] 
predicted digit:  [7] 
expected: [7] 
train shape: (28, 28, 1) 
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test image shape:  (28, 28) 
test image input:  (1, 28, 28, 1) 
[[1.19813420e-01 3.20754748e-06 8.40809643e-01 1.40412981e-02 
  1.02095444e-04 8.41708574e-03 9.47131682e-03 1.87996989e-07 
  7.34133366e-03 3.25709721e-07]] 
predicted digit:  [2] 
expected: [2] 
train shape: (28, 28, 1) 
test image shape:  (28, 28) 
test image input:  (1, 28, 28, 1) 
[[1.20701198e-03 9.62696254e-01 1.13644153e-02 1.10921734e-04 
  8.02435796e-04 2.38432203e-05 2.06528697e-02 3.09327617e-03 
  3.68627443e-05 1.19965134e-05]] 
predicted digit:  [1] 
expected: [1] 
train shape: (28, 28, 1) 
test image shape:  (28, 28) 
test image input:  (1, 28, 28, 1) 
[[9.9977976e-01 6.6347303e-11 1.3765336e-06 8.7874568e-08 1.0106389e-08 
  2.4050081e-05 1.1705151e-04 7.7566612e-05 3.3977024e-08 4.0155015e-08]] 
predicted digit:  [0] 
expected: [0] 
train shape: (28, 28, 1) 
test image shape:  (28, 28) 
test image input:  (1, 28, 28, 1) 
[[1.57036920e-04 2.82374355e-08 3.34225275e-04 1.90365824e-06 
  9.66693461e-01 1.05879386e-04 4.00955975e-03 4.48661798e-04 
  8.01882183e-04 2.74474584e-02]] 
predicted digit:  [4] 
expected: [4] 
train shape: (28, 28, 1) 
test image shape:  (28, 28) 
test image input:  (1, 28, 28, 1) 
[[2.6677575e-04 9.9634749e-01 1.6227933e-03 3.4617657e-05 8.2334976e-05 
  6.5361032e-06 1.0028239e-03 6.2007591e-04 1.1812633e-05 4.8475431e-06]] 
predicted digit:  [1] 
expected: [1] 
train shape: (28, 28, 1) 
test image shape:  (28, 28) 
test image input:  (1, 28, 28, 1) 
[[4.84060351e-04 1.11178655e-04 4.84405132e-03 6.03228866e-04 
  9.62571323e-01 5.54710208e-03 2.27452861e-03 3.06898449e-03 
  2.22955691e-03 1.82659049e-02]] 
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Here is the complete program: 
 

""" 
cnn_digits.py 
""" 
import numpy as np 
import keras 
from keras.layers import Dense, Dropout, Flatten 
from keras.layers import Convolution2D, MaxPooling2D 
from matplotlib import pyplot as plt 
from os import path 
 
# the data, split between train and test sets 
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() 
 
# print out train and test shapes 
print("x_train: ",x_train.shape) 
print("y_train: ",y_train.shape) 
print("x_test: ",x_test.shape) 
print("x_test: ",y_test.shape) 
print("image: ",x_train[0].shape) 
 
# show a digit 
plt.imshow(x_train[0],cmap ='gray') 
plt.show() 
 
# Scale images to the [0, 1] range 
x_train = x_train.astype("float32") / 255 
x_test = x_test.astype("float32") / 255 
 
# swt image shape to (28, 28, 1) 
x_train = np.expand_dims(x_train, -1) 
x_test = np.expand_dims(x_test, -1) 
print("x_train shape:", x_train.shape) 
print("x_train shape:", x_train.shape) 
 
# convert class vectors to binary class matrices 
y_train = keras.utils.to_categorical(y_train, 10) 
y_test = keras.utils.to_categorical(y_test, 10) 
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# define model 
model = keras.Sequential()  
 
model.add(Convolution2D(32, (3, 3), activation='relu', input_shape=(28,28,1))) 
model.add(Convolution2D(64, (3, 3), activation='relu')) 
model.add(MaxPooling2D(pool_size=(2,2))) 
model.add(Dropout(0.25)) 
  
model.add(Flatten()) 
#model.add(Dense(128, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(10, activation='softmax')) 
 
# print mode summary 
model.summary() 
 
# compile model 
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) 
 
# check for weights file 
if not path.exists("cnn_digits.h5"): 
 
    # fit model (train model) 
    history = model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1) 
     
    # save weights 
    model.save_weights('cnn_digits.h5')  
     
    # plot loss 
    plt.subplot(2, 1, 1) 
    plt.title('Cross Entropy Loss') 
    plt.plot(history.history['loss'], color='blue', label='train') 
    plt.plot(history.history['val_loss'], color='orange', label='test') 
    plt.xlabel('Epoch') 
    plt.ylabel('loss Error') 
    plt.legend() 
    plt.grid(True) 
    plt.show() 
 
    # plot accuracy 
    plt.subplot(2, 1, 2) 
    plt.title('Classification Accuracy') 
    plt.plot(history.history['accuracy'], color='blue', label='train') 
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    plt.plot(history.history['val_accuracy'], color='orange', label='test') 
    plt.xlabel('Epoch') 
    plt.ylabel('Accuracy') 
    plt.legend() 
    plt.grid(True)     
    plt.show() 
 
# load weights 
else: 
    model.load_weights('cnn_digits.h5')  
 
score = model.evaluate(x_test, y_test, verbose=0) 
print("Test loss:", score[0]) 
print("Test accuracy:", score[1]) 
 
# predict 
 
# print predictions 
print("predictions") 
 
fig=plt.figure(figsize=(8, 8)) 
 
# for all predictions 
for i in range(1,21): 
  
    # print train shape 
    print("train shape:",x_test[i-1].shape) 
             
    # restore image from (28 28 1) to (28,28) 
    test_image = np.squeeze(x_test[i-1]) 
    print("test image shape: ",test_image.shape) 
 
    # put test image in a in an array 
    # (1, 28, 28, 1) 
    test_input= np.array([x_test[i-1]]) 
    print("test image input: ",test_input.shape) 
     
    # get result vector 
    result = model.predict(test_input) 
    print(result) 
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    # get digit 
    digit = model.predict_classes(test_input) 
    print("predicted digit: ",digit) 
     
    # plot digit 
    ax=fig.add_subplot(4,5,i) 
    plt.imshow(test_image , cmap ='gray')  
     
    # get expected digit 
    expected = np.where(y_test[i-1]==1) 
    print("expected:",expected[0]) 
     
    # print digit and expected digit 
    ax.title.set_text(str(digit) + " " +str(expected[0])) 
     
plt.show() 
 

todo: Type in or copy and paste in to a file called cnn_digits.py and run it. 
Note: This program may not work with a theano back end completely. 
 

 

IMAGE CLASSIFICATION HOMEWORK   Question 1 

 

Using a drawing program and make some numbers 0 to 9 and some letters  with a 

black background, and see if you can predict them. Save you image as a png file. 

Test you digits in a program. Plot out your image and the test prediction. Call your 

python program classification_homework.py 
 

You can use the following code to load in the image 
 

# load the image 

img = load_img(filename, grayscale=True, target_size=(28, 28)) 

 

# convert to array 

img = img_to_array(img) 

 

# reshape into a single sample with 1 channel 

img = img.reshape(1, 28, 28, 1) 

 

# prepare pixel data 

img = img.astype('float32') 

img = img / 255.0 

 

END 


