
1
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 24 Image Classification Last update June3, 2021

Conventions used in these lessons:

bold - headings, keywords, code
italics - code syntax
underline - important words

Image classification is used everywhere, facial recognition, hand writing analysis,

postal code identification, self driving cars, identifying rooms in a house etc.

Image classification uses Deep Learning. Deep learning refers to neural networks

with multiple hidden layers that can learn with increasingly abstract

representations of the input data.

Deep learning has led to major advances in computer vision. We’re now able to

classify images, find objects in them, and even label them with captions. Deep

neural networks with many hidden layers can sequentially learn more complex

features from the raw input image:

 The first hidden layers might only learn local edge patterns.

 Then, each subsequent layer (or filter) learns more complex representations.

 Finally, the last layer can classify the image as a cat or dog

These types of deep neural networks are called Convolutional Neural Networks

(CNN).

Convolutional Neural Networks (CNN’s) are multi-layer neural networks

(sometimes up to 17 or more layers) that assume the input data to be images.

2
copyright © 2021 www.onlineprogramminglessons.com For student use only

By making this requirement, CNN's can drastically reduce the number of parameters that need to

be tuned. Therefore, CNN's can efficiently handle the high dimensionality of raw images.

Convolution

2D convolutional layers take a three-dimensional input, typically an image with

three color channels. They pass a filter, also called a convolution kernel, over the

image, inspecting a small window of pixels at a time. A kernel filter window may

ne 3x3 or 5x5 or 7x7 always a odd number. The convolution operation calculates

the dot product of the pixel values in the current filter window with the weights

defined in the filter. The window is moved until they have scanned the entire

image. The kernel weights are tuned in the training of the model to achieve the

most accurate predictions. A 2D convolution layer means that the input of the

convolution operation is three-dimensional, for example, a color image which has a

value for each pixel across three layers: red, blue and green It is called a “2D

convolution” because the movement of the filter across the image happens in two

dimensions.

After the convolution ends, the features are down sampled, and then the same

convolutional structure repeats again. At first, the convolution identifies features in

the original image (for example in a cat, the body, legs, tail, head), then it identifies

sub-features within smaller parts of the image (for example, within the head, the

ears, whiskers, eyes). Eventually, this process is meant to identify the essential

features that can help classify the image.

In this lesson we will classify hand written digits. We will use the MINST data set

of hand written digits available from Keras.

3
copyright © 2021 www.onlineprogramminglessons.com For student use only

The MNIST dataset is an acronym that stands for the Modified National Institute of Standards

and Technology dataset.

It is a dataset of 60,000 small square 28×28 pixel grayscale images of handwritten single digits

between 0 and 9.

Out task is to classify a given image of a handwritten digit into one of 10 classes representing

integer values from 0 to 9, inclusively.

Deep learning convolutional neural networks achieve a classification accuracy of above 99%,

with an error rate between 0.4 %and 0.2% on this data set.

The images are all pre-aligned and each image only contains a hand-drawn digit,
all images have the same square size of 28×28 pixels, and that the images are all
grayscale.

We can load the images and reshape the data arrays to have a single color
channel.

There are 10 classes digits 0 to 9 and that classes are represented as unique
integers.

https://en.wikipedia.org/wiki/MNIST_database

4
copyright © 2021 www.onlineprogramminglessons.com For student use only

We use a one hot encoding for the class element of each sample, transforming
the integer into a 10 element binary vector with a 1 for the index of the class
value, and 0 values for all other classes. We can achieve this with the
to_categorical() utility function.

We are using the Sequential model type from Keras. This is simply a linear stack
of neural network layers, and it's perfect for this type of feed-forward CNN.

Our program flow is as follows:

Import Keras Modules

Load and split Minst handwritten digits
 into train and test data sets

Scale and reshape images

convert class vectors to binary class

matrices

Configure Keras CNN model

5
copyright © 2021 www.onlineprogramminglessons.com For student use only

(1) Import Keras Modules

import numpy as np
import keras
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from matplotlib import pyplot as plt
from os import path

(2) Load and split Minst handwritten digits into train and test data sets

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

Each digit image is a 28 * 28 array. There are 60,000 training sets and 10000 test
sets. The x sets are the images whereas the y sets are the digit numbers 0 to 9,

Fit model

save model weights

plot loss and accuracy

Evaluate model

print loss and accuracy

Compile model

Predict digits

6
copyright © 2021 www.onlineprogramminglessons.com For student use only

print(x_train[0].shape)
print("x_train: ",x_train.shape)
print("y_train: ",y_train.shape)
print("x_test: ",x_test.shape)
print("x_test: ",y_test.shape)
print("image: ",x_train[0].shape)

We can even plot one of your images for your curiosity, using a grey scale.

plt.imshow(x_train[0],cmap ='gray')

plt.show()

(3) Scale and reshape images

We scale the images 0 to 1 from grey scale image 0 to 255.

x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255

x_train: (60000, 28, 28)
y_train: (60000,)
x_test: (10000, 28, 28)
x_test: (10000,)
image: (28, 28)

7
copyright © 2021 www.onlineprogramminglessons.com For student use only

We add an additional axes to each image using the numpy function
np.expand_dims

convert images to shape (28, 28, 1)
-1 means add new dimension to original shape
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)

print out new shapes
print("x_train shape:", x_train.shape)
print(x_train.shape, "train samples")

We have basically added another dimension where each image. Each image shape is now (28, 28,

1) rather than (28, 28) and we have 60000 images.

We have converted [28][28] 2D array to [[28][28]] 3D array for each image

(4) convert class vectors to binary class matrices
convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)

Basically we are taking the 10 digits and transforming them into a 10 element

binary vector with a 1 for the index of the class value, and 0 values for all other

classes. This is known as a one hot encoding we use the keras to_categorical()

function to do this.

0 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

x_train shape: (60000, 28, 28, 1)
x_train shape: (60000, 28, 28, 1)

8
copyright © 2021 www.onlineprogramminglessons.com For student use only

(5) Configure Keras CNN model

We are using the Sequential model type from Keras. This is simply a linear stack
of neural network layers, and it's perfect for the type of feed-forward CNN.

model = keras.Sequential()

Our input layer has shape 28,28,1 with 32 filters to be filters used in the
convolution operation and a kernel filter size of 3 by 3 and activation relu. Relu
means rectified linear activation function. The relu activation function is max(x,0)
so no output value goes below , otherwise the output follows the input.

model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(28,28,1)))

2D convolutional layers, closer to the input learn less filters, while later
convolutional layers, closer to the output, learn more filters. The number of filters
you select should depend on the complexity of your dataset and the depth of
your neural network. A common setting to start with is [32, 64, 128] for three
layers, and if there are more layers, increasing to [256, 512, 1024], etc.

Filter size may be determined by the CNN architecture you are using – for
example VGGNet exclusively uses (3, 3) filters. If not, use a 5×5 or 7×7 filter to
learn larger features and then quickly reduce to 3×3. If your images are smaller
than 128×128, consider working with smaller filters of 1×1 and 3×3.

We also have a additional Convolution2D layer of 64 filters with kernel filter size
of 3 by 3 and activation relu. This layer creates a convolution kernel that is
convolved with the layer input to produce a tensor of outputs

model.add(Convolution2D(64, 3, 3, activation='relu'))

Convolutional layers in a convolutional neural network summarize the presence of

features in an input image.

A problem with the output feature maps is that they are sensitive to the location of

the features in the input. One approach to address this sensitivity is to down sample

the feature maps. This has the effect of making the resulting down sampled feature

9
copyright © 2021 www.onlineprogramminglessons.com For student use only

maps more robust to changes in the position of the feature in the image, referred to

by the technical phrase “local translation invariance.”

Pooling layers provide an approach to down sampling feature maps by

summarizing the presence of features in patches of the feature map. Two common

pooling methods are average pooling and max pooling that summarize the average

presence of a feature and the most activated presence of a feature respectively.

The addition of a pooling layer after the convolutional layer is a common pattern

used for ordering layers within a convolutional neural network that may be

repeated one or more times in a given model.

The pooling layer operates upon each feature map separately to create a new set of

the same number of pooled feature maps.

Pooling involves selecting a pooling operation, much like a filter to be applied to

feature maps. The size of the pooling operation or filter is smaller than the size of

the feature map; specifically, it is almost always 2×2 pixels applied with a stride of

2 pixels.

This means that the pooling layer will always reduce the size of each feature map

by a factor of 2, e.g. each dimension is halved, reducing the number of pixels or

values in each feature map to one quarter the size. For example, a pooling layer

applied to a feature map of 6×6 (36 pixels) will result in an output pooled feature

map of 3×3 (9 pixels).

The pooling operation is specified, rather than learned. Two common functions

used in the pooling operation are:

 Average Pooling: Calculate the average value for each patch on the feature

map.

 Maximum Pooling (or Max Pooling): Calculate the maximum value for

each patch of the feature map.

The result of using a pooling layer and creating down sampled or pooled feature

maps is a summarized version of the features detected in the input. They are useful

as small changes in the location of the feature in the input detected by the

convolutional layer will result in a pooled feature map with the feature in the same

location. This capability added by pooling is called the model’s invariance to local

translation.

10
copyright © 2021 www.onlineprogramminglessons.com For student use only

model.add(MaxPooling2D(pool_size=(2,2)))

Dropout is a technique where randomly selected neurons are ignored during
training. They are “dropped-out” randomly. This means that their contribution to
the activation of downstream neurons is temporally removed on the forward pass
and any weight updates are not applied to the neuron on the backward pass.

As a neural network learns, neuron weights settle into their context within the
network. Weights of neurons are tuned for specific features providing some
specialization. Neighboring neurons become to rely on this specialization, which if
taken too far can result in a fragile model too specialized to the training data. This
reliant on context for a neuron during training is referred to complex co-
adaptations.

You can imagine that if neurons are randomly dropped out of the network during
training, that other neurons will have to step in and handle the representation
required to make predictions for the missing neurons. This is believed to result in
multiple independent internal representations being learned by the network.

The effect is that the network becomes less sensitive to the specific weights of
neurons. This in turn results in a network that is capable of better
generalization and is less likely to over fit the training data.

model.add(Dropout(0.25))

Flattening a tensor means to remove all of the dimensions except for one. This is
exactly what the Flatten layer do. A flatten operation on a tensor reshapes the
tensor to have the shape that is equal to the number of elements contained in
tensor non including the batch dimension.

model.add(Flatten())

Again we drop out 0.5

model.add(Dropout(0.5))

11
copyright © 2021 www.onlineprogramminglessons.com For student use only

Our output layer has 10 output neuron using softmax activation.

Softmax activation is called the logistic function. Regardless of the input, the
function always outputs a value between 0 and 1. The form of the function is an
S-shape between 0 and 1 with the vertical or middle of the “S” at 0.5.

model.add(Dense(10, activation='softmax'))

The summary method prints a string summary of the network.

model.summary()

Model: "sequential_32"

Layer (type) Output Shape Param #
===
conv2d_59 (Conv2D) (None, 9, 9, 32) 320

conv2d_60 (Conv2D) (None, 3, 3, 64) 18496

max_pooling2d_28 (MaxPooling (None, 1, 1, 64) 0

dropout_52 (Dropout) (None, 1, 1, 64) 0

flatten_26 (Flatten) (None, 64) 0

dropout_53 (Dropout) (None, 64) 0

dense_26 (Dense) (None, 10) 650
===
Total params: 19,466
Trainable params: 19,466
Non-trainable params: 0

12
copyright © 2021 www.onlineprogramminglessons.com For student use only

(6) Compile model

The compile defines the loss function, the optimizer and the metrics.

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

The Loss function is used to find error or deviation in the learning process.

We are using the categorical_crossentropy loss function.

The categorical_crossentropy computes the cross entropy loss between the labels and

predictions. The categorical_crossentropy expect labels to be provided in a one hot

representation.

The optimizer is used optimize the input weights by comparing the prediction and the loss

function.

There are many optimizers available we are using the Adam optimizer

metrics is a list of metrics to be evaluated by the model during training and testing.

We are interested in accuracy

(7) Fit model and save model weights plot loss and accuracy

Models are trained by using the fit function.
check for weights file
if not path.exists("digits.h5"):

 history = model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1)

model.save_weights('digits.h5')

plot loss
plt.subplot(2, 1, 1)
plt.title('Cross Entropy Loss')
plt.plot(history.history['loss'], color='blue', label='train')
plt.plot(history.history['val_loss'], color='orange', label='test')
plt.xlabel('Epoch')
plt.ylabel('loss Error')
plt.legend()
plt.grid(True)
plt.show()

13
copyright © 2021 www.onlineprogramminglessons.com For student use only

 # plot accuracy
 plt.subplot(2, 1, 2)
 plt.title('Classification Accuracy')
 plt.plot(history.history['accuracy'], color='blue', label='train')
 plt.plot(history.history['val_accuracy'], color='orange', label='test')
 plt.xlabel('Epoch')
 plt.ylabel('Accuracy')
 plt.legend()
 plt.grid(True)

 plt.show()

else:
 model.load_weights('digits.h5')

 X, y – is the training data where X are the inputs and y is the expected output.

 epochs − no of times the model is needed to be evaluated during training.

 batch_size − training instances.

 validation_split: Float between 0 and 1. Fraction of the training data to be used as

validation data. The model will set apart this fraction of the training data, will not train on

it, and will evaluate the loss and any model metrics on this data at the end of each epoch.

The validation data is selected from the last samples in the x and y data provided, before

shuffling.

we save the node weights in a file called digits.h5. so we do not have to refit the data every time

we run the program

14
copyright © 2021 www.onlineprogramminglessons.com For student use only

(7) Evaluate model print loss and accuracy

Returns the loss value & metrics values for the model in test mode.

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

(8) Predict digits

Test some images and display the results.

print predictions
fig=plt.figure(figsize=(8, 8))

for all predictions
for i in range(1,21):

 print("train shape:",x_test[i-1].shape)

 # restore image from (28 28 1) to (28,28)
 test_image = np.squeeze(x_test[i-1])
 print("test image shape: ",test_image.shape)

 #plt.imshow(test_image)
 #plt.show()

Test loss: 0.2815539538860321
Test accuracy: 0.9193999767303467

15
copyright © 2021 www.onlineprogramminglessons.com For student use only

 # put test image in a in an array
 # (1, 28, 28, 1)
 test_input= np.array([x_test[i-1]])
 print("test image input: ",test_input.shape)

 # get result vector
 result = model.predict(test_input)
 print(result)

 # get digit
 digit = model.predict_classes(test_input)
 print(digit)

 # plot digit
 ax=fig.add_subplot(4,5,i)
 plt.imshow(test_image , cmap ='gray')

 # get expected digit
 expected = np.where(y_test[i-1]==1)
 print(expected[0])

 # print digit and expected digit
 ax.title.set_text(str(digit) + " " +str(expected[0]))

plt.show()

16
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the output digit classifications:

Here some text output:

predictions
train shape: (28, 28, 1)
test image shape: (28, 28)
test image input: (1, 28, 28, 1)
[[2.0969494e-03 6.1242071e-07 1.7464131e-02 8.2260283e-04 1.5419604e-06
 3.8172093e-05 5.8084720e-07 9.7914141e-01 1.2636275e-04 3.0757807e-04]]
predicted digit: [7]
expected: [7]
train shape: (28, 28, 1)

17
copyright © 2021 www.onlineprogramminglessons.com For student use only

test image shape: (28, 28)
test image input: (1, 28, 28, 1)
[[1.19813420e-01 3.20754748e-06 8.40809643e-01 1.40412981e-02
 1.02095444e-04 8.41708574e-03 9.47131682e-03 1.87996989e-07
 7.34133366e-03 3.25709721e-07]]
predicted digit: [2]
expected: [2]
train shape: (28, 28, 1)
test image shape: (28, 28)
test image input: (1, 28, 28, 1)
[[1.20701198e-03 9.62696254e-01 1.13644153e-02 1.10921734e-04
 8.02435796e-04 2.38432203e-05 2.06528697e-02 3.09327617e-03
 3.68627443e-05 1.19965134e-05]]
predicted digit: [1]
expected: [1]
train shape: (28, 28, 1)
test image shape: (28, 28)
test image input: (1, 28, 28, 1)
[[9.9977976e-01 6.6347303e-11 1.3765336e-06 8.7874568e-08 1.0106389e-08
 2.4050081e-05 1.1705151e-04 7.7566612e-05 3.3977024e-08 4.0155015e-08]]
predicted digit: [0]
expected: [0]
train shape: (28, 28, 1)
test image shape: (28, 28)
test image input: (1, 28, 28, 1)
[[1.57036920e-04 2.82374355e-08 3.34225275e-04 1.90365824e-06
 9.66693461e-01 1.05879386e-04 4.00955975e-03 4.48661798e-04
 8.01882183e-04 2.74474584e-02]]
predicted digit: [4]
expected: [4]
train shape: (28, 28, 1)
test image shape: (28, 28)
test image input: (1, 28, 28, 1)
[[2.6677575e-04 9.9634749e-01 1.6227933e-03 3.4617657e-05 8.2334976e-05
 6.5361032e-06 1.0028239e-03 6.2007591e-04 1.1812633e-05 4.8475431e-06]]
predicted digit: [1]
expected: [1]
train shape: (28, 28, 1)
test image shape: (28, 28)
test image input: (1, 28, 28, 1)
[[4.84060351e-04 1.11178655e-04 4.84405132e-03 6.03228866e-04
 9.62571323e-01 5.54710208e-03 2.27452861e-03 3.06898449e-03
 2.22955691e-03 1.82659049e-02]]

18
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the complete program:

"""
cnn_digits.py
"""
import numpy as np
import keras
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from matplotlib import pyplot as plt
from os import path

the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

print out train and test shapes
print("x_train: ",x_train.shape)
print("y_train: ",y_train.shape)
print("x_test: ",x_test.shape)
print("x_test: ",y_test.shape)
print("image: ",x_train[0].shape)

show a digit
plt.imshow(x_train[0],cmap ='gray')
plt.show()

Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255

swt image shape to (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print("x_train shape:", x_train.shape)

convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)

19
copyright © 2021 www.onlineprogramminglessons.com For student use only

define model
model = keras.Sequential()

model.add(Convolution2D(32, (3, 3), activation='relu', input_shape=(28,28,1)))
model.add(Convolution2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))

model.add(Flatten())
#model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

print mode summary
model.summary()

compile model
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

check for weights file
if not path.exists("cnn_digits.h5"):

 # fit model (train model)
 history = model.fit(x_train, y_train, batch_size=128, epochs=15, validation_split=0.1)

 # save weights
 model.save_weights('cnn_digits.h5')

 # plot loss
 plt.subplot(2, 1, 1)
 plt.title('Cross Entropy Loss')
 plt.plot(history.history['loss'], color='blue', label='train')
 plt.plot(history.history['val_loss'], color='orange', label='test')
 plt.xlabel('Epoch')
 plt.ylabel('loss Error')
 plt.legend()
 plt.grid(True)
 plt.show()

 # plot accuracy
 plt.subplot(2, 1, 2)
 plt.title('Classification Accuracy')
 plt.plot(history.history['accuracy'], color='blue', label='train')

20
copyright © 2021 www.onlineprogramminglessons.com For student use only

 plt.plot(history.history['val_accuracy'], color='orange', label='test')
 plt.xlabel('Epoch')
 plt.ylabel('Accuracy')
 plt.legend()
 plt.grid(True)
 plt.show()

load weights
else:
 model.load_weights('cnn_digits.h5')

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

predict

print predictions
print("predictions")

fig=plt.figure(figsize=(8, 8))

for all predictions
for i in range(1,21):

 # print train shape
 print("train shape:",x_test[i-1].shape)

 # restore image from (28 28 1) to (28,28)
 test_image = np.squeeze(x_test[i-1])
 print("test image shape: ",test_image.shape)

 # put test image in a in an array
 # (1, 28, 28, 1)
 test_input= np.array([x_test[i-1]])
 print("test image input: ",test_input.shape)

 # get result vector
 result = model.predict(test_input)
 print(result)

21
copyright © 2021 www.onlineprogramminglessons.com For student use only

 # get digit
 digit = model.predict_classes(test_input)
 print("predicted digit: ",digit)

 # plot digit
 ax=fig.add_subplot(4,5,i)
 plt.imshow(test_image , cmap ='gray')

 # get expected digit
 expected = np.where(y_test[i-1]==1)
 print("expected:",expected[0])

 # print digit and expected digit
 ax.title.set_text(str(digit) + " " +str(expected[0]))

plt.show()

todo: Type in or copy and paste in to a file called cnn_digits.py and run it.
Note: This program may not work with a theano back end completely.

IMAGE CLASSIFICATION HOMEWORK Question 1

Using a drawing program and make some numbers 0 to 9 and some letters with a

black background, and see if you can predict them. Save you image as a png file.

Test you digits in a program. Plot out your image and the test prediction. Call your

python program classification_homework.py

You can use the following code to load in the image

load the image

img = load_img(filename, grayscale=True, target_size=(28, 28))

convert to array

img = img_to_array(img)

reshape into a single sample with 1 channel

img = img.reshape(1, 28, 28, 1)

prepare pixel data

img = img.astype('float32')

img = img / 255.0

END

