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Lesson 21      Introduction To  Neural Networks         Last Update  June 2, 2021 

Neural Networks simulate how the human brain operates. Neural Networks are  

basically  many mathematical operations. I doubt the human brain actually 

performs all these calculations.  The human brain consists of billions of neurons 

for it thinking and decision process. Each neuron has an activation level that it 

fires on. 

A neural network consists of inputs, hidden layers neurons and output layer 

neurons. A neural network may  have 1 hidden layers or many hidden layers. 

 

 

 

 

 

Each hidden layer has stored values called weights. The output of the hidden layer 

are the sums of the preceding inputs and stored weight. The output of the neuron 

is sent to an activation function.  A neuron fires when it reaches a certain 

threshold determined by the activation function. The threshold is the calculation 

of the neuron weight and input values and the activation function mathematical 

formula. The activation function used is called sigmoid. The sigmoid function 

produces values between 0 and 1 for input values of –inf to + inf where input 0 

has the value .5 
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A Simple two layer feed-forward neural network is as follows. Feed forward 

means in this network, the information moves in only one direction, forward from 

the input nodes, through the hidden nodes (if any) then to the output nodes. 

 

                  Input    Layer                    Hidden Layer             Output Layer 

                                           Wh00 

              X0                                                                                      

                                                                                                         Wo0 

Inputs Xi                                             Wh01                                                                            Y        output  Yi 

                       Wh10  

           X1                                                                                       Wo1                                               

                                            Wh11                                                 

               

Xi = inputs 

Wh = weights hidden 

Zh = internal  hidden 

Ah = activation hidden 

Z o = internal output 

Ao = activation output 

Y = output  

The output of each hidden layer neuron Zh  is the sum of the inputs and hidden 

layer weights. 

zh0 = x0 * wh00 + x1 * wh10  

zh1 = x0 * wh01 + x1 * wh11  

Each hidden layer is sent to a sigmoid activation function  

Ah0 = sigmoid(Zh0)  

Ah1 = sigmoid(Zh1) 
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The output of each output layer neuron Zo  is the sum of the hidden layer outputs 

and  output layer weights. 

Zo = Ah0 * wo0 + Ah1 * wo1  

  

Each output layer is sent to a sigmoid activation function  

A0 = sigmoid(Zo)  

 

Our simple neural network example will be the classic XOR Gate with 4 possible 

inputs X0 and X1  and a single output Y.  The truth table for a XOR Gate XOR gate is 

as follows: 
 

XOR  Truth Table: 

X0 X1 Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

When the inputs have the same value  the output is a 0. When the inputs are 

different values the output produces a 1. 

The inputs to our input layer is an array of test values Xi.   

           Xi = np.array([[0, 0],[0, 1], [1, 0],[1, 1]]) 

We use each one individually. 

           [X0 X1] 

The hidden layers contain initial random weights Wh 

Wh = np.random.random((2, 2)) 

[[ Wh00 Wh01] 

              [Wh10 Wh11]] 
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The  output layers contain initial random weights Wo.   

Wo = np.random.random(2) 

[[W00 W01]] 

We also have an array of outputs  Yi  that is our desired result 

Yi =  np.array([0, 1, 1, 0]) 

again we use each one individually. 

   

           [[Y0]] 

We use numpy arrays for all our calculations. 

Our inputs are X0 and X1  

[X0 X1] 

Each hidden layer has an internal Zh and hidden calculated  Ah. 

The internal hidden calculation is the weights multiples by the transpose of the 

inputs  where transpose X means changing matrix X from 1 by n matrix to n by 1 

matrix  

Zh  = Wh XT     (dot product) 

| Zh0 |             |  Wh00    Wh01 |        | X0| 

| Zh1 |             |  Wh10    Wh11 |        | X1| 

Zh0 = Wh00 * X0 + Wh01 * X1 

Zh1 = Wh10 * X0 + Wh11 * X1 
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The external output is the result of applying the sigmoid σ  function. 

 

                    1 

σ (z) = -------------- 

                1 + e –z 

Each internal output needs an sigmoid activation function 

The activation output equation would be: 

Ah = σ(Zh) 

The output layer uses the output layer as its input.  Our output equation from the 

hidden layer to output would be 

Zo = Wo * Zh 

| Z0 |     =    |  Wo0    Wo1 |   *    | Zh| 

Z0 = Wo0 * Zh +  Wo01* Zh 

The activation equation would be: 

Ao = σ(Zo) 

Our neural network model is now: 
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Adding bias 

Bias is needed to add a extra value to avoid results of zero. 

Bias are initially random values  that uses the random function from numpy that 

returns a random number between 0.0 and 1.0: 

bh = [[random number], [random number]] 

output layer bias also is a random  number between 0 and 1 

bo = [random number] 

Our new  feed forward equations with bias are now 

Zh  = Wh * XT + bh 

a(Zh)  =  1 / (1 + e-Zh) 

Zo = Wo * Zh + bo 

A(Zo) =  1/ (1 + e-Zo) 

Our neural network with  bias bh and bo is now: 

 

                  Input    Layer                    Hidden Layer             Output Layer 

                                           Wh00 

              X0                                                                                      

                                                                                                        Wo0 

Inputs xi                                                 Wh01                                                                            Y        output  Yi 

                       Wh10 

              X1                                                                                    Wo1                                               

                                            Wh11                                                 
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Training Neural Network 

We train the neural network by feeding it known inputs and measuring the error 

between the desired output and the actual output. We adjust the weights of the 

neural network to minimize the error.  This is known as back propagation using 

gradient descent. We also adjust the bias to produce minimum error.  

Gradient Descent uses mathematical equations to find the minimum point in a 

curve. 

 

Output  error is calculated from the difference of the desired output to the actual 

output. 

Output Error  = desired output – actual output 

Y is the actual output where as Ao is the actual output from the neural network. 

Error = Y – Ao        

We use the SigmoidDerivative  to  adjust the weights using gradient descent. The 

SigmoidDerivative  is the derivative of the Sigmoid function f(z) 

           f(z) =   1 / ( 1 + e –z ) 

          f’(z) = f(z)  (1 – f(z)) 

The sigmoid derivative is the value of f(x) for x  of the gradient slope.  
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Cost function 

A cost function is simply the function that  finds the cost of the given predictions. 

We will use the mean squared error cost function. The mean squared error cost 

function can be mathematically represented as: 

 

Here n is the number of observations. 

In order to minimize the cost, we need to find the weight and bias values for 

which the cost function returns the smallest value possible. The smaller the cost, 

the more correct our predictions are. 

 

In the above equation, J is the cost function. 

Basically what the above equation says is:  find the partial derivative of the cost 

function with respect to each weight and bias and subtract the result from the 

existing weight values to get the new weight values. A partial derivative is a way 

to find the slope in either the x or y direction, at the point indicated. 

The derivative of a function gives us its slope at any given point. To find if the cost 

increases or decreases, given the weight value, we can find the derivative of the 

function at that particular weight value. If the cost increases with the increase in 

weight, the derivative will return a positive value which will then be subtracted 

from the existing value. On the other hand, if the cost is decreasing with an 

increase in weight, a negative value will be returned, which will be added to the 

existing weight value since negative into negative is positive. 

 There is an alpha   α  symbol, which is multiplied by the gradient. This is called the 

learning rate. The learning rate defines how fast our algorithm learns. 
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We need to repeat the above  equation for all the weights and bias until the cost 

is minimized to the desirable level until we get such values for bias and weights, 

for which the cost function returns a value close to zero. 

Chain rule 

We need to differentiate this function with respect to each weight. We will use 

the chain rule of differentiation for this purpose 

The chain rule is a rule for differentiating compositions of functions. 

 

Let's suppose "d_cost" is the derivate of our cost function with respect to weight 

"w", we can use chain rule to find this derivative, as shown below: 

 

 

Where 

        d_cost 

        ---------      =   2  (predicted – observed)  = (predicted – observed) 

        d_pred 

 

Next we have to find: 

         d_pred 

         --------- 

             dz 
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d_pred  is simply the sigmoid function and we have differentiated it with respect 

to input dot product "z".  

This is defined as:      sigmoid_derivative(z) 

   

Lastly we need to find:              

           d_z 

         -------- 

             dw 

 

We know that: 

z = x0 w0 + x1 w1 + b0 

Therefore, derivative with respect to any weight is simply the corresponding input. 

         d_z 

         ------  = input = X 

          dw      

Hence, our final derivative of the cost function with respect to any weight is: 

slope = input x dcost/dpred x dpred/dz 

            =   input x  (predicted – observed) x sigmoid_derivative(z) 

 

For back propagation we start with the output layer and work backwards towards 

the hidden layer. 

 

We multiply the sigmoid derivative of the output by the output error to get delta 

output do 



Copyright © 2020          OnlineProgrammingLessons.com           
 11 

 

do = sigmoid_derivative(A0) * error 

 

 

 

 

We now update the output weight and output bias using the delta output and 
learning rate sets how fast the neural network learns. A rate to high will make it 
learn to fast. A rate to low will make it learn too slow.      

Wo += learning_rate *  do * Ah 

 

 

 

 

We also update the output bias 

     bo += learning_rate *  do 

We now work backwards to the hidden layers and do the same calculations. 

We multiply the sigmoid derivative of the hidden layer output by the delta  output 

* weights of the output layers this give the delta of the hidden layers 

   dh = derivative(Ah) * do * Wo 
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We can now update the hidden weights by the learning rate the delta hidden and 

the X inputs  

Wh += learning_rate *  dh.reshape(-1,1) * X 

 

 

 

 

We update the hidden layer bias as well. 

     bh += learning_rate *  dh 

When we update the weights we have to do element column multiply rather than 

element row multiply. 

| a   b |    | e |     | a * e     b * e | 

| c   d |    | f |      | c * f      d * f  | 

 

 

 

 

 

 

 

 

 

 

 

Wh Learning 

rate 
dh 

X 

X 

Inputs 
X 

What dh.reshape(-1,1)  is doing: 

Converts a 1 dimensional array of 2 elements 

dh      (1 dimensional array of 2 elements) 

[ -1.486903334369486449e-02     -1.618694149027888329e-02] 

 

To a 2 dimensional aray of 2 rows and 1 column 

dh.reshape(-1,1)   ( changes to 2 rows and 1 column) 

 

[ [ -1.486903334369486449e-02] 

  [ -1.618694149027888329e-02 ] ] 
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Here is the complete XOR python code. With explanation comments. 

For easy array manipulation we use numpy arrays for our neural network 

""" 
neuralnetworkXOR.py 
xor neural network 

""" 

import numpy as np 

# program constants 

num_iterations = 5000 

learning_rate = .5 

tolerence = .1 

 

# print program title 

print("XOR Neural Network") 

# inputs 

X = np.array([[0, 0],[0, 1], [1, 0],[1, 1]]) 

# outputs 

Y = np.array([0, 1, 1, 0])  

# hidden layer random weights 

Wh = np.random.random((2, 2)) 

 

# hidden layer random bias 

bh = np.random.random(2) 

# output layer random weights 

Wo = np.random.random(2) 
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# output layer random bias 

bo = np.random.random(1) 

 

# sigmoid function 

def sigmoid(z): 

    return 1 / (1 + np.exp(-z)) 

 

# sigmoid derivative function 

def sigmoid_derivative(z): 

    return z * (1-z) 

# forward_propagation to calculate layer outputs 

# returns outputs 

 

def forward_propagation(X, Y, Wh,bh,Wo,bo): 

    # calculate hidden layer output 

    Zh = np.dot(Wh, X.T) + bh 

    Ah = sigmoid(Zh) 

    # calculate output layer output 

    Zo = np.dot(Wo, Ah) + bo 

    Ao = sigmoid(Zo) 

    return Ah, Ao 

 

# backward propagation to adjust weights using gradient descent 

# returns output error  

def backward_propagation(X, Y, Wh,Ah,bh,Ao,Wo,bo): 

    # desired - actual 
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    error = Y - Ao; 

    # calculate delta of output layer 

    do = sigmoid_derivative(Ao) * error; 

    # adjust weights of output layer 

    Wo += learning_rate *  do * Ah 

    # adjust output bias 

    bo += learning_rate *  do 

    # calculate delta of hidden layer 

    dh = sigmoid_derivative(Ah) * do * Wo 

    # adjust weights of hidden layer 

    Wh += learning_rate *  dh.reshape(-1,1) * X 
 

    # adjust hidden bias 

    bh += learning_rate *  dh 

    return error # return output error 

 

# train neural network 

print("training Neural Network") 

for i in range(num_iterations+1): 

    # for each input 00,01,10,11 

    for j in range(4): 

        # do forward propagation 

        A1, A2 = forward_propagation(X[j], Y[j], Wh,bh,Wo,bo) 

        # di backward propagation 

        error = backward_propagation(X[j], Y[j], Wh,A1,bh,A2,Wo,bo) 
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 # early termination if in tolerence 

    if np.abs(error) < tolerence: 

        break; 

# print out error and number of iterations 

print("error: ",error,"number iterations: ",i) 

# print out results 

for j in range(4):     

    A1,A2 = forward_propagation(X[j], Y[j], Wh,bh,Wo,bo) 

    print(X[j],Y[j],":",A2) 

 

Program Output 

 
 

 

 

 

Note: The neural network cannot always  converge since the weights start at 

random values. To force quick convergence you may want to set the initial 

weights to predetermined values. If the neural network does not converge just 

rerun it again. 

To do: 

Change num_iterations, learning_rate and tolerence  to reduce error and 

numberof iterations.  Try different initial bias levels 1, -1 and 0. Use matplot to 

plot the above results cost vs epochs. 

 

 

XOR Neural Network 

training Neural Network 

error:  [-0.09974407] number iterations:  849 

[0 0] 0 : [0.08461562] 

[0 1] 1 : [0.91374248] 

[1 0] 1 : [0.91223311] 

[1 1] 0 : [0.09516948] 
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Homework Question 1 

Try these other Logic gates 

AND  gate Truth Table 

X0 X1 Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

OR gate Truth Table 

X0 X1 Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

Call your py file neurualnetworkhomework1.py 

Classifying  a dice  using neural networks 

Our next task is to classify a dice using neural networks. 
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Each dice will fill a 3*3 matrix where each dot is a 1. 

0 0 0 

0 1 0 

0 0 0 

 

For neural networks this will be represents by a 1 dimensional array  

0 0 0 0 1 0 0 0 0 

 

# dice patterns 1 to 6 
X = np.array([[[0,0,0,0,1,0,0,0,0]],  
              [[1,0,0,0,0,0,0,0,1]],  
              [[1,0,0,0,1,0,0,0,1]],  
              [[1,0,1,0,0,0,1,0,1]],  
              [[1,0,1,0,1,0,1,0,1]],  
              [[1,1,1,0,0,0,1,1,1]]]) 

 

Where the inputs is represents by a 9 by 6  of a 2 dimensional array where each 

row will represent a dice dots. 

# outputs 
Y = np.array([[[0, 0, 0, 0, 0, 1]], 
              [[0, 0, 0, 0, 1, 0]], 
              [[0, 0, 0, 1, 0, 0]], 
              [[0, 0, 1, 0, 0, 0]], 
              [[0, 1, 0, 0, 0, 0]], 
              [[1, 0, 0, 0, 0, 0]]]) 

 

Where the output is represents by a 6 by 6  of a 2 dimensional array where each 

row will represent a dice number where each column has a 1 for that number 

We will have a 9 input neural network to input the dice dots and a 6 output where 

each output represents a dice number. 
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We must now decide how many hidden layers we need and how many nodes in 

each hidden layer. To make things simple we will have one hidden layer of five 

nodes. 
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The code for a multiple output neural network is similar the single output  neural 

network.  A multiple output neutral network is similar to  the stochastic Logistic 

Regression classifiers that we studied previously 

Here are our constants 

#constants 
num_iterations = 50000 
learning_rate = .1 
tolerence = .01 
 
 
Here we set the number of inputs (3*3 grid) to the number of outputs 
(6)  and we set the hidden layer to number of outputs – 1. 
 
# sizes (row, middle, columns) 
num_inputs =  X.shape[2] # 9 
num_hiddens = Y.shape[2]-1 # 5  
num_outputs = Y.shape[2] # 6 
num_test_cases = X.shape[0] # 6 
 

This is where we initialize out weights and bias with random numbers 
 
# hidden layer random weights 
Wh = np.random.random((num_inputs, num_hiddens)) 
 
# hidden layer random bias 
Bh = np.random.random((num_hiddens)) 
 
# output layer random weights 
Wo = np.random.random((num_hiddens,num_outputs)) 
 
# output layer random bias 
Bo = np.random.random((num_outputs)) 

 

For the forward propagation  hidden nodes we use the previous sigmoid  function. 

# sigmoid function 

def sigmoid(z): 

     return 1 / (1 + np.exp(-z)) 
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For back propagation we also use the following derivative  sigmoid  function: 

# sigmoid derivative function 

def sigmoid_derivative(z): 

      return sigmoid(z) * (1-sigmoid(z)) 

For the forward propagation output nodes we use the softmax(A) function 

# softmax function 

def softmax(A): 

     expA = np.exp(A) 

     return expA / expA.sum() 
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The softmax function also called the normalized exponential function is used as 

the last activation function of a neural network to normalize the output of a 

network to a probability distribution over predicted output classes. 

 

Feedforward propagation 

Our forward propagation  code is very  similar to the previous  forward 

propagation except we use the softmax function for the output layer neural 

network 

# forward_propagation to calculate layer outputs 
# returns outputs 
def forward_propagation(x, y, wh,bh,wo,bo): 
     
    # calculate hidden layer output 
 
    zh = np.dot(x,wh) + bh 
    ah = sigmoid(zh) 
     
    # calculate output layer output 
    zo = np.dot(ah,wo) + bo 
    ao = softmax(zo) 
 

return zh, ah, zo, ao 
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Backpropagation 
 

 

The back propagation is also similar to the previous back propagation , the only 

difference we must sum up the bias values since we have multiple output errors.  

Since each output is sent  to the appropriate weights  we  not need to sum the 

output errors. 

# backward propagation to adjust weights using gradient descent 
# returns output error  
def backward_propagation(x, y, wh,zh,ah,bh,zo,ao,wo,bo): 
 
    # calculate error = desired - actual 
    error = y-ao; 
     
    d_wo = np.dot(ah.T,error) 
    d_bo = error  
     
    dah = np.dot(error,wo.T)  
 
    dzh = sigmoid_derivative(zh) 
    d_wh = np.dot(x.T,dzh*dah) 
    d_bh = dah * dzh; 
         
    # adjust weights of output layer 
    wo += learning_rate * d_wo 
     
     # adjust hidden bias 
    bo += learning_rate *  d_bo.sum() 
     
 
    # adjust weights of hidden layer 
    wh += learning_rate * d_wh 
     
    # adjust hidden bias 
    bh += learning_rate *  d_bh.sum() 
     
    #print(error) 
       
    return error # return output error 
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Training  

We iterate until tolerance is met or max iterations are met. 

# train neural network 
print("training Neural Network") 
 
total_error = 0; 

 
for i in range(num_iterations+1): 
     
    error = 0 
     
    # for each input case 
    for j in range(num_test_cases): 
         
        # do forward propagation 
        Zh, Ah, Zo, Ao = forward_propagation(X[j], Y[j], Wh,Bh,Wo,Bo) 
 
        # do backward propagation 
        error += backward_propagation(X[j], Y[j], Wh,Zh,Ah,Bh,Zo,Ao,Wo,Bo) 
         
    # early termination if in tolerence 
    sum_error = np.sum(abs(error)) 
    total_error += sum_error 
    if sum_error/len(error) < tolerence: 
        break 
 
         
# print out error and num iterations 
print("total error: ",total_error,"number iterations: ",i) 
 
# print out results 
for j in range(num_test_cases):     
    Zh, Ah, Zo, Ao = forward_propagation(X[j], Y[j], Wh,Bh,Wo,Bo) 
    print(X[j],Y[j],":",Ao) 

 

Here is the output: 

We are quite accurate 
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Dice Digits Neural Network 

training Neural Network 

total error:  250.42979215921847 number iterations:  3008 

[[0 0 0 0 1 0 0 0 0]] [[0 0 0 0 0 1]]  
: [[3.59066444e-04 4.01999490e-03 1.78054936e-07 1.28377046e-03 2.83535187e-07 9.94336707e-01]] 
[[1 0 0 0 0 0 0 0 1]] [[0 0 0 0 1 0]]  
: [[1.69306167e-05 7.09493672e-05 5.58381524e-03 2.09478447e-03 9.92233487e-01 3.28245838e-08]] 
[[1 0 0 0 1 0 0 0 1]] [[0 0 0 1 0 0]]  
: [[2.87120985e-07 2.49706002e-03 1.01609363e-05 9.94018059e-01 2.25612396e-03 1.21830855e-03]] 
[[1 0 1 0 0 0 1 0 1]] [[0 0 1 0 0 0]]  
: [[5.41794705e-04 4.93125152e-03 9.90590070e-01 1.00408944e-05  3.92683751e-03 5.79255927e-09]] 
[[1 0 1 0 1 0 1 0 1]] [[0 1 0 0 0 0]]  
: [[1.61207789e-03 9.90967425e-01 2.90066801e-03 2.11029126e-03  2.78896940e-05 2.38164849e-03]] 
[[1 1 1 0 0 0 1 1 1]] [[1 0 0 0 0 0]]  
: [[9.96553211e-01 1.10593518e-03 2.33968709e-03 1.14235776e-09 2.73522814e-07 8.92274441e-07]] 
 

 
Here is the complete code: 
 
# dice_neural_network.py 
import numpy as np 
 
# print program title 
print("Dice Digits Neural Network") 
 
# dice patterns 1 to 6 
X = np.array([[[0,0,0,0,1,0,0,0,0]],  
              [[1,0,0,0,0,0,0,0,1]],  
              [[1,0,0,0,1,0,0,0,1]],  
              [[1,0,1,0,0,0,1,0,1]],  
              [[1,0,1,0,1,0,1,0,1]],  
              [[1,1,1,0,0,0,1,1,1]]]) 
 
# outputs 
Y = np.array([[[0, 0, 0, 0, 0, 1]], 
              [[0, 0, 0, 0, 1, 0]], 
              [[0, 0, 0, 1, 0, 0]], 
              [[0, 0, 1, 0, 0, 0]], 
              [[0, 1, 0, 0, 0, 0]], 
              [[1, 0, 0, 0, 0, 0]]]) 
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# constants 
num_iterations = 50000 
learning_rate = .1 
tolerence = .01 
 
# sizes (row, middle, columns) 
num_inputs =  X.shape[2] # 9 
num_hiddens = Y.shape[2]-1 # 5  
num_outputs = Y.shape[2] # 6 
num_test_cases = X.shape[0] # 6 
 
# hidden layer random weights 
Wh = np.random.random((num_inputs, num_hiddens)) 
 
# hidden layer random bias 
Bh = np.random.random((num_hiddens)) 
 
# output layer random weights 
Wo = np.random.random((num_hiddens,num_outputs)) 
 
# output layer random bias 
Bo = np.random.random((num_outputs)) 
 
# sigmoid function 
def sigmoid(z): 
     return 1 / (1 + np.exp(-z)) 
     
# sigmoid derivative function 
def sigmoid_derivative(z): 
      return sigmoid(z) * (1-sigmoid(z)) 
 
# softmax function 
def softmax(A): 
     expA = np.exp(A) 
     return expA / expA.sum() 
 
# forward_propagation to calculate layer outputs 
# returns outputs 
def forward_propagation(x, y, wh,bh,wo,bo): 
     
    # calculate hidden layer output 
    zh = np.dot(x,wh) + bh 
    ah = sigmoid(zh) 
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    # calculate output layer output 
    zo = np.dot(ah,wo) + bo 
    ao = softmax(zo) 
 
    return zh, ah, zo, ao 
 
# backward propagation to adjust weights using gradient descent 
# returns output error  
 
def backward_propagation(x, y, wh,zh,ah,bh,zo,ao,wo,bo): 
    # calculate error = desired - actual 
    error = y-ao; 
     
    d_wo = np.dot(ah.T,error) 
    d_bo = error  
     
    dah = np.dot(error,wo.T)  
 
    dzh = sigmoid_derivative(zh) 
    d_wh = np.dot(x.T,dzh*dah) 
    d_bh = dah * dzh; 
         
    # adjust weights of output layer 
    wo += learning_rate * d_wo 
     
     # adjust hidden bias 
    bo += learning_rate *  d_bo.sum() 
     
    # adjust weights of hidden layer 
    wh += learning_rate * d_wh 
     
    # adjust hidden bias 
    bh += learning_rate *  d_bh.sum() 
     
    #print(error) 
    return error # return output error 
 
# train neural network 
print("training Neural Network") 
 
total_error = 0; 
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for i in range(num_iterations+1): 
     
    error = 0 
     
    # for each input case 
    for j in range(num_test_cases): 
         
        # do forward propagation 
        Zh, Ah, Zo, Ao = forward_propagation(X[j], Y[j], Wh,Bh,Wo,Bo) 
 
        # do backward propagation 
        error += backward_propagation(X[j], Y[j], Wh,Zh,Ah,Bh,Zo,Ao,Wo,Bo) 
         
    # early termination if in tolerence 
    sum_error = np.sum(abs(error)) 
    total_error += sum_error 
    if sum_error/len(error) < tolerence: 
        break 
 
         
# print out error and num iterations 
print("total error: ",total_error,"number iterations: ",i) 
 
# print out results 
for j in range(num_test_cases):     
    Zh, Ah, Zo, Ao = forward_propagation(X[j], Y[j], Wh,Bh,Wo,Bo) 
    print(X[j],Y[j],":",Ao) 
 

to do: 

Type  in or copy and paste  the above code and get it running. 

 

Homework Question 2 

Make a neural network with  15  inputs  (5*3) grid to represent digit shapes 0 to 9 

and 10 outputs and to classify digits 0 to 9. 
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You can make a digit 4 like this. 

1  1 

1  1 

1 1 1 

  1 

  1 

 

The inputs would be represented by: 

1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 

 

The output would be (indicating the digit 4)) 

0 1 2 3 4 5 6 7 8 9 
0 0 0 0 1 0 0 0 0 0 

 

Where width is 3 and height is 5 

Call your py file neurualnetworkhomework2.py 

 

END 

 

 


