
Copyright © 2020 OnlineProgrammingLessons.com
 1

Lesson 21 Introduction To Neural Networks Last Update June 2, 2021

Neural Networks simulate how the human brain operates. Neural Networks are

basically many mathematical operations. I doubt the human brain actually

performs all these calculations. The human brain consists of billions of neurons

for it thinking and decision process. Each neuron has an activation level that it

fires on.

A neural network consists of inputs, hidden layers neurons and output layer

neurons. A neural network may have 1 hidden layers or many hidden layers.

Each hidden layer has stored values called weights. The output of the hidden layer

are the sums of the preceding inputs and stored weight. The output of the neuron

is sent to an activation function. A neuron fires when it reaches a certain

threshold determined by the activation function. The threshold is the calculation

of the neuron weight and input values and the activation function mathematical

formula. The activation function used is called sigmoid. The sigmoid function

produces values between 0 and 1 for input values of –inf to + inf where input 0

has the value .5

 1

σ (z) = --------------

 1 + e -z

Input

Layer

Hidden

Layer (s)

Output

Layer
Inputs Outputs

Copyright © 2020 OnlineProgrammingLessons.com
 2

A Simple two layer feed-forward neural network is as follows. Feed forward

means in this network, the information moves in only one direction, forward from

the input nodes, through the hidden nodes (if any) then to the output nodes.

 Input Layer Hidden Layer Output Layer

 Wh00

 X0

 Wo0

Inputs Xi Wh01 Y output Yi

 Wh10

 X1 Wo1

 Wh11

Xi = inputs

Wh = weights hidden

Zh = internal hidden

Ah = activation hidden

Z o = internal output

Ao = activation output

Y = output

The output of each hidden layer neuron Zh is the sum of the inputs and hidden

layer weights.

zh0 = x0 * wh00 + x1 * wh10

zh1 = x0 * wh01 + x1 * wh11

Each hidden layer is sent to a sigmoid activation function

Ah0 = sigmoid(Zh0)

Ah1 = sigmoid(Zh1)

Zh0/Ah0

h

Zh1/Ah1

h

Zo/Ao

Copyright © 2020 OnlineProgrammingLessons.com
 3

The output of each output layer neuron Zo is the sum of the hidden layer outputs

and output layer weights.

Zo = Ah0 * wo0 + Ah1 * wo1

Each output layer is sent to a sigmoid activation function

A0 = sigmoid(Zo)

Our simple neural network example will be the classic XOR Gate with 4 possible

inputs X0 and X1 and a single output Y. The truth table for a XOR Gate XOR gate is

as follows:

XOR Truth Table:

X0 X1 Y

0 0 0

0 1 1

1 0 1

1 1 0

When the inputs have the same value the output is a 0. When the inputs are

different values the output produces a 1.

The inputs to our input layer is an array of test values Xi.

 Xi = np.array([[0, 0],[0, 1], [1, 0],[1, 1]])

We use each one individually.

 [X0 X1]

The hidden layers contain initial random weights Wh

Wh = np.random.random((2, 2))

[[Wh00 Wh01]

 [Wh10 Wh11]]

Copyright © 2020 OnlineProgrammingLessons.com
 4

The output layers contain initial random weights Wo.

Wo = np.random.random(2)

[[W00 W01]]

We also have an array of outputs Yi that is our desired result

Yi = np.array([0, 1, 1, 0])

again we use each one individually.

 [[Y0]]

We use numpy arrays for all our calculations.

Our inputs are X0 and X1

[X0 X1]

Each hidden layer has an internal Zh and hidden calculated Ah.

The internal hidden calculation is the weights multiples by the transpose of the

inputs where transpose X means changing matrix X from 1 by n matrix to n by 1

matrix

Zh = Wh XT (dot product)

| Zh0 | | Wh00 Wh01 | | X0|

| Zh1 | | Wh10 Wh11 | | X1|

Zh0 = Wh00 * X0 + Wh01 * X1

Zh1 = Wh10 * X0 + Wh11 * X1

Copyright © 2020 OnlineProgrammingLessons.com
 5

The external output is the result of applying the sigmoid σ function.

 1

σ (z) = --------------

 1 + e –z

Each internal output needs an sigmoid activation function

The activation output equation would be:

Ah = σ(Zh)

The output layer uses the output layer as its input. Our output equation from the

hidden layer to output would be

Zo = Wo * Zh

| Z0 | = | Wo0 Wo1 | * | Zh|

Z0 = Wo0 * Zh + Wo01* Zh

The activation equation would be:

Ao = σ(Zo)

Our neural network model is now:

Input(s)

 Xi

Hidden

Layer

Weights

Wh

Output

Layer

Weights

Wo

Hidden Layer h Output y

Zh Ah Output

 Y

Zo Ao

Inputs Xi Output Layer o

Copyright © 2020 OnlineProgrammingLessons.com
 6

Adding bias

Bias is needed to add a extra value to avoid results of zero.

Bias are initially random values that uses the random function from numpy that

returns a random number between 0.0 and 1.0:

bh = [[random number], [random number]]

output layer bias also is a random number between 0 and 1

bo = [random number]

Our new feed forward equations with bias are now

Zh = Wh * XT + bh

a(Zh) = 1 / (1 + e-Zh)

Zo = Wo * Zh + bo

A(Zo) = 1/ (1 + e-Zo)

Our neural network with bias bh and bo is now:

 Input Layer Hidden Layer Output Layer

 Wh00

 X0

 Wo0

Inputs xi Wh01 Y output Yi

 Wh10

 X1 Wo1

 Wh11

Zh/Ah

Zh/Ah

Zo/Ao

bh

bo

bh

Copyright © 2020 OnlineProgrammingLessons.com
 7

Training Neural Network

We train the neural network by feeding it known inputs and measuring the error

between the desired output and the actual output. We adjust the weights of the

neural network to minimize the error. This is known as back propagation using

gradient descent. We also adjust the bias to produce minimum error.

Gradient Descent uses mathematical equations to find the minimum point in a

curve.

Output error is calculated from the difference of the desired output to the actual

output.

Output Error = desired output – actual output

Y is the actual output where as Ao is the actual output from the neural network.

Error = Y – Ao

We use the SigmoidDerivative to adjust the weights using gradient descent. The

SigmoidDerivative is the derivative of the Sigmoid function f(z)

 f(z) = 1 / (1 + e –z)

 f’(z) = f(z) (1 – f(z))

The sigmoid derivative is the value of f(x) for x of the gradient slope.

Copyright © 2020 OnlineProgrammingLessons.com
 8

Cost function

A cost function is simply the function that finds the cost of the given predictions.

We will use the mean squared error cost function. The mean squared error cost

function can be mathematically represented as:

Here n is the number of observations.

In order to minimize the cost, we need to find the weight and bias values for

which the cost function returns the smallest value possible. The smaller the cost,

the more correct our predictions are.

In the above equation, J is the cost function.

Basically what the above equation says is: find the partial derivative of the cost

function with respect to each weight and bias and subtract the result from the

existing weight values to get the new weight values. A partial derivative is a way

to find the slope in either the x or y direction, at the point indicated.

The derivative of a function gives us its slope at any given point. To find if the cost

increases or decreases, given the weight value, we can find the derivative of the

function at that particular weight value. If the cost increases with the increase in

weight, the derivative will return a positive value which will then be subtracted

from the existing value. On the other hand, if the cost is decreasing with an

increase in weight, a negative value will be returned, which will be added to the

existing weight value since negative into negative is positive.

 There is an alpha α symbol, which is multiplied by the gradient. This is called the

learning rate. The learning rate defines how fast our algorithm learns.

Copyright © 2020 OnlineProgrammingLessons.com
 9

We need to repeat the above equation for all the weights and bias until the cost

is minimized to the desirable level until we get such values for bias and weights,

for which the cost function returns a value close to zero.

Chain rule

We need to differentiate this function with respect to each weight. We will use

the chain rule of differentiation for this purpose

The chain rule is a rule for differentiating compositions of functions.

Let's suppose "d_cost" is the derivate of our cost function with respect to weight

"w", we can use chain rule to find this derivative, as shown below:

Where

 d_cost

 --------- = 2 (predicted – observed) = (predicted – observed)

 d_pred

Next we have to find:

 d_pred

 dz

Copyright © 2020 OnlineProgrammingLessons.com
 10

d_pred is simply the sigmoid function and we have differentiated it with respect

to input dot product "z".

This is defined as: sigmoid_derivative(z)

Lastly we need to find:

 d_z

 dw

We know that:

z = x0 w0 + x1 w1 + b0

Therefore, derivative with respect to any weight is simply the corresponding input.

 d_z

 ------ = input = X

 dw

Hence, our final derivative of the cost function with respect to any weight is:

slope = input x dcost/dpred x dpred/dz

 = input x (predicted – observed) x sigmoid_derivative(z)

For back propagation we start with the output layer and work backwards towards

the hidden layer.

We multiply the sigmoid derivative of the output by the output error to get delta

output do

Copyright © 2020 OnlineProgrammingLessons.com
 11

do = sigmoid_derivative(A0) * error

We now update the output weight and output bias using the delta output and
learning rate sets how fast the neural network learns. A rate to high will make it
learn to fast. A rate to low will make it learn too slow.

Wo += learning_rate * do * Ah

We also update the output bias

 bo += learning_rate * do

We now work backwards to the hidden layers and do the same calculations.

We multiply the sigmoid derivative of the hidden layer output by the delta output

* weights of the output layers this give the delta of the hidden layers

 dh = derivative(Ah) * do * Wo

do
f’(Ao) error

Wh Learning

rate

Ah
do

X

X X

dh
f’(Ao) error

X

Copyright © 2020 OnlineProgrammingLessons.com
 12

We can now update the hidden weights by the learning rate the delta hidden and

the X inputs

Wh += learning_rate * dh.reshape(-1,1) * X

We update the hidden layer bias as well.

 bh += learning_rate * dh

When we update the weights we have to do element column multiply rather than

element row multiply.

| a b | | e | | a * e b * e |

| c d | | f | | c * f d * f |

Wh Learning

rate
dh

X

X

Inputs
X

What dh.reshape(-1,1) is doing:

Converts a 1 dimensional array of 2 elements

dh (1 dimensional array of 2 elements)

[-1.486903334369486449e-02 -1.618694149027888329e-02]

To a 2 dimensional aray of 2 rows and 1 column

dh.reshape(-1,1) (changes to 2 rows and 1 column)

[[-1.486903334369486449e-02]

 [-1.618694149027888329e-02]]

Copyright © 2020 OnlineProgrammingLessons.com
 13

Here is the complete XOR python code. With explanation comments.

For easy array manipulation we use numpy arrays for our neural network

"""
neuralnetworkXOR.py
xor neural network

"""

import numpy as np

program constants

num_iterations = 5000

learning_rate = .5

tolerence = .1

print program title

print("XOR Neural Network")

inputs

X = np.array([[0, 0],[0, 1], [1, 0],[1, 1]])

outputs

Y = np.array([0, 1, 1, 0])

hidden layer random weights

Wh = np.random.random((2, 2))

hidden layer random bias

bh = np.random.random(2)

output layer random weights

Wo = np.random.random(2)

Copyright © 2020 OnlineProgrammingLessons.com
 14

output layer random bias

bo = np.random.random(1)

sigmoid function

def sigmoid(z):

 return 1 / (1 + np.exp(-z))

sigmoid derivative function

def sigmoid_derivative(z):

 return z * (1-z)

forward_propagation to calculate layer outputs

returns outputs

def forward_propagation(X, Y, Wh,bh,Wo,bo):

 # calculate hidden layer output

 Zh = np.dot(Wh, X.T) + bh

 Ah = sigmoid(Zh)

 # calculate output layer output

 Zo = np.dot(Wo, Ah) + bo

 Ao = sigmoid(Zo)

 return Ah, Ao

backward propagation to adjust weights using gradient descent

returns output error

def backward_propagation(X, Y, Wh,Ah,bh,Ao,Wo,bo):

 # desired - actual

Copyright © 2020 OnlineProgrammingLessons.com
 15

 error = Y - Ao;

 # calculate delta of output layer

 do = sigmoid_derivative(Ao) * error;

 # adjust weights of output layer

 Wo += learning_rate * do * Ah

 # adjust output bias

 bo += learning_rate * do

 # calculate delta of hidden layer

 dh = sigmoid_derivative(Ah) * do * Wo

 # adjust weights of hidden layer

 Wh += learning_rate * dh.reshape(-1,1) * X

 # adjust hidden bias

 bh += learning_rate * dh

 return error # return output error

train neural network

print("training Neural Network")

for i in range(num_iterations+1):

 # for each input 00,01,10,11

 for j in range(4):

 # do forward propagation

 A1, A2 = forward_propagation(X[j], Y[j], Wh,bh,Wo,bo)

 # di backward propagation

 error = backward_propagation(X[j], Y[j], Wh,A1,bh,A2,Wo,bo)

Copyright © 2020 OnlineProgrammingLessons.com
 16

 # early termination if in tolerence

 if np.abs(error) < tolerence:

 break;

print out error and number of iterations

print("error: ",error,"number iterations: ",i)

print out results

for j in range(4):

 A1,A2 = forward_propagation(X[j], Y[j], Wh,bh,Wo,bo)

 print(X[j],Y[j],":",A2)

Program Output

Note: The neural network cannot always converge since the weights start at

random values. To force quick convergence you may want to set the initial

weights to predetermined values. If the neural network does not converge just

rerun it again.

To do:

Change num_iterations, learning_rate and tolerence to reduce error and

numberof iterations. Try different initial bias levels 1, -1 and 0. Use matplot to

plot the above results cost vs epochs.

XOR Neural Network

training Neural Network

error: [-0.09974407] number iterations: 849

[0 0] 0 : [0.08461562]

[0 1] 1 : [0.91374248]

[1 0] 1 : [0.91223311]

[1 1] 0 : [0.09516948]

Copyright © 2020 OnlineProgrammingLessons.com
 17

Homework Question 1

Try these other Logic gates

AND gate Truth Table

X0 X1 Y

0 0 0

0 1 0

1 0 0

1 1 1

OR gate Truth Table

X0 X1 Y

0 0 0

0 1 1

1 0 1

1 1 1

Call your py file neurualnetworkhomework1.py

Classifying a dice using neural networks

Our next task is to classify a dice using neural networks.

Copyright © 2020 OnlineProgrammingLessons.com
 18

Each dice will fill a 3*3 matrix where each dot is a 1.

0 0 0

0 1 0

0 0 0

For neural networks this will be represents by a 1 dimensional array

0 0 0 0 1 0 0 0 0

dice patterns 1 to 6
X = np.array([[[0,0,0,0,1,0,0,0,0]],
 [[1,0,0,0,0,0,0,0,1]],
 [[1,0,0,0,1,0,0,0,1]],
 [[1,0,1,0,0,0,1,0,1]],
 [[1,0,1,0,1,0,1,0,1]],
 [[1,1,1,0,0,0,1,1,1]]])

Where the inputs is represents by a 9 by 6 of a 2 dimensional array where each

row will represent a dice dots.

outputs
Y = np.array([[[0, 0, 0, 0, 0, 1]],
 [[0, 0, 0, 0, 1, 0]],
 [[0, 0, 0, 1, 0, 0]],
 [[0, 0, 1, 0, 0, 0]],
 [[0, 1, 0, 0, 0, 0]],
 [[1, 0, 0, 0, 0, 0]]])

Where the output is represents by a 6 by 6 of a 2 dimensional array where each

row will represent a dice number where each column has a 1 for that number

We will have a 9 input neural network to input the dice dots and a 6 output where

each output represents a dice number.

Copyright © 2020 OnlineProgrammingLessons.com
 19

We must now decide how many hidden layers we need and how many nodes in

each hidden layer. To make things simple we will have one hidden layer of five

nodes.

2

3

4

5

1

0

6

7 5

0

1

2

3

4

8

Input

 Nodes

Output

 Nodes

Hidden

 Nodes

Hidden

Weights

Output

Weights

Copyright © 2020 OnlineProgrammingLessons.com
 20

The code for a multiple output neural network is similar the single output neural

network. A multiple output neutral network is similar to the stochastic Logistic

Regression classifiers that we studied previously

Here are our constants

#constants
num_iterations = 50000
learning_rate = .1
tolerence = .01

Here we set the number of inputs (3*3 grid) to the number of outputs
(6) and we set the hidden layer to number of outputs – 1.

sizes (row, middle, columns)
num_inputs = X.shape[2] # 9
num_hiddens = Y.shape[2]-1 # 5
num_outputs = Y.shape[2] # 6
num_test_cases = X.shape[0] # 6

This is where we initialize out weights and bias with random numbers

hidden layer random weights
Wh = np.random.random((num_inputs, num_hiddens))

hidden layer random bias
Bh = np.random.random((num_hiddens))

output layer random weights
Wo = np.random.random((num_hiddens,num_outputs))

output layer random bias
Bo = np.random.random((num_outputs))

For the forward propagation hidden nodes we use the previous sigmoid function.

sigmoid function

def sigmoid(z):

 return 1 / (1 + np.exp(-z))

Copyright © 2020 OnlineProgrammingLessons.com
 21

For back propagation we also use the following derivative sigmoid function:

sigmoid derivative function

def sigmoid_derivative(z):

 return sigmoid(z) * (1-sigmoid(z))

For the forward propagation output nodes we use the softmax(A) function

softmax function

def softmax(A):

 expA = np.exp(A)

 return expA / expA.sum()

Copyright © 2020 OnlineProgrammingLessons.com
 22

The softmax function also called the normalized exponential function is used as

the last activation function of a neural network to normalize the output of a

network to a probability distribution over predicted output classes.

Feedforward propagation

Our forward propagation code is very similar to the previous forward

propagation except we use the softmax function for the output layer neural

network

forward_propagation to calculate layer outputs
returns outputs
def forward_propagation(x, y, wh,bh,wo,bo):

 # calculate hidden layer output

 zh = np.dot(x,wh) + bh
 ah = sigmoid(zh)

 # calculate output layer output
 zo = np.dot(ah,wo) + bo
 ao = softmax(zo)

return zh, ah, zo, ao

Copyright © 2020 OnlineProgrammingLessons.com
 23

Backpropagation

The back propagation is also similar to the previous back propagation , the only

difference we must sum up the bias values since we have multiple output errors.

Since each output is sent to the appropriate weights we not need to sum the

output errors.

backward propagation to adjust weights using gradient descent
returns output error
def backward_propagation(x, y, wh,zh,ah,bh,zo,ao,wo,bo):

 # calculate error = desired - actual
 error = y-ao;

 d_wo = np.dot(ah.T,error)
 d_bo = error

 dah = np.dot(error,wo.T)

 dzh = sigmoid_derivative(zh)
 d_wh = np.dot(x.T,dzh*dah)
 d_bh = dah * dzh;

 # adjust weights of output layer
 wo += learning_rate * d_wo

 # adjust hidden bias
 bo += learning_rate * d_bo.sum()

 # adjust weights of hidden layer
 wh += learning_rate * d_wh

 # adjust hidden bias
 bh += learning_rate * d_bh.sum()

 #print(error)

 return error # return output error

Copyright © 2020 OnlineProgrammingLessons.com
 24

Training

We iterate until tolerance is met or max iterations are met.

train neural network
print("training Neural Network")

total_error = 0;

for i in range(num_iterations+1):

 error = 0

 # for each input case
 for j in range(num_test_cases):

 # do forward propagation
 Zh, Ah, Zo, Ao = forward_propagation(X[j], Y[j], Wh,Bh,Wo,Bo)

 # do backward propagation
 error += backward_propagation(X[j], Y[j], Wh,Zh,Ah,Bh,Zo,Ao,Wo,Bo)

 # early termination if in tolerence
 sum_error = np.sum(abs(error))
 total_error += sum_error
 if sum_error/len(error) < tolerence:
 break

print out error and num iterations
print("total error: ",total_error,"number iterations: ",i)

print out results
for j in range(num_test_cases):
 Zh, Ah, Zo, Ao = forward_propagation(X[j], Y[j], Wh,Bh,Wo,Bo)
 print(X[j],Y[j],":",Ao)

Here is the output:

We are quite accurate

Copyright © 2020 OnlineProgrammingLessons.com
 25

Dice Digits Neural Network

training Neural Network

total error: 250.42979215921847 number iterations: 3008

[[0 0 0 0 1 0 0 0 0]] [[0 0 0 0 0 1]]
: [[3.59066444e-04 4.01999490e-03 1.78054936e-07 1.28377046e-03 2.83535187e-07 9.94336707e-01]]
[[1 0 0 0 0 0 0 0 1]] [[0 0 0 0 1 0]]
: [[1.69306167e-05 7.09493672e-05 5.58381524e-03 2.09478447e-03 9.92233487e-01 3.28245838e-08]]
[[1 0 0 0 1 0 0 0 1]] [[0 0 0 1 0 0]]
: [[2.87120985e-07 2.49706002e-03 1.01609363e-05 9.94018059e-01 2.25612396e-03 1.21830855e-03]]
[[1 0 1 0 0 0 1 0 1]] [[0 0 1 0 0 0]]
: [[5.41794705e-04 4.93125152e-03 9.90590070e-01 1.00408944e-05 3.92683751e-03 5.79255927e-09]]
[[1 0 1 0 1 0 1 0 1]] [[0 1 0 0 0 0]]
: [[1.61207789e-03 9.90967425e-01 2.90066801e-03 2.11029126e-03 2.78896940e-05 2.38164849e-03]]
[[1 1 1 0 0 0 1 1 1]] [[1 0 0 0 0 0]]
: [[9.96553211e-01 1.10593518e-03 2.33968709e-03 1.14235776e-09 2.73522814e-07 8.92274441e-07]]

Here is the complete code:

dice_neural_network.py
import numpy as np

print program title
print("Dice Digits Neural Network")

dice patterns 1 to 6
X = np.array([[[0,0,0,0,1,0,0,0,0]],
 [[1,0,0,0,0,0,0,0,1]],
 [[1,0,0,0,1,0,0,0,1]],
 [[1,0,1,0,0,0,1,0,1]],
 [[1,0,1,0,1,0,1,0,1]],
 [[1,1,1,0,0,0,1,1,1]]])

outputs
Y = np.array([[[0, 0, 0, 0, 0, 1]],
 [[0, 0, 0, 0, 1, 0]],
 [[0, 0, 0, 1, 0, 0]],
 [[0, 0, 1, 0, 0, 0]],
 [[0, 1, 0, 0, 0, 0]],
 [[1, 0, 0, 0, 0, 0]]])

Copyright © 2020 OnlineProgrammingLessons.com
 26

constants
num_iterations = 50000
learning_rate = .1
tolerence = .01

sizes (row, middle, columns)
num_inputs = X.shape[2] # 9
num_hiddens = Y.shape[2]-1 # 5
num_outputs = Y.shape[2] # 6
num_test_cases = X.shape[0] # 6

hidden layer random weights
Wh = np.random.random((num_inputs, num_hiddens))

hidden layer random bias
Bh = np.random.random((num_hiddens))

output layer random weights
Wo = np.random.random((num_hiddens,num_outputs))

output layer random bias
Bo = np.random.random((num_outputs))

sigmoid function
def sigmoid(z):
 return 1 / (1 + np.exp(-z))

sigmoid derivative function
def sigmoid_derivative(z):
 return sigmoid(z) * (1-sigmoid(z))

softmax function
def softmax(A):
 expA = np.exp(A)
 return expA / expA.sum()

forward_propagation to calculate layer outputs
returns outputs
def forward_propagation(x, y, wh,bh,wo,bo):

 # calculate hidden layer output
 zh = np.dot(x,wh) + bh
 ah = sigmoid(zh)

Copyright © 2020 OnlineProgrammingLessons.com
 27

 # calculate output layer output
 zo = np.dot(ah,wo) + bo
 ao = softmax(zo)

 return zh, ah, zo, ao

backward propagation to adjust weights using gradient descent
returns output error

def backward_propagation(x, y, wh,zh,ah,bh,zo,ao,wo,bo):
 # calculate error = desired - actual
 error = y-ao;

 d_wo = np.dot(ah.T,error)
 d_bo = error

 dah = np.dot(error,wo.T)

 dzh = sigmoid_derivative(zh)
 d_wh = np.dot(x.T,dzh*dah)
 d_bh = dah * dzh;

 # adjust weights of output layer
 wo += learning_rate * d_wo

 # adjust hidden bias
 bo += learning_rate * d_bo.sum()

 # adjust weights of hidden layer
 wh += learning_rate * d_wh

 # adjust hidden bias
 bh += learning_rate * d_bh.sum()

 #print(error)
 return error # return output error

train neural network
print("training Neural Network")

total_error = 0;

Copyright © 2020 OnlineProgrammingLessons.com
 28

for i in range(num_iterations+1):

 error = 0

 # for each input case
 for j in range(num_test_cases):

 # do forward propagation
 Zh, Ah, Zo, Ao = forward_propagation(X[j], Y[j], Wh,Bh,Wo,Bo)

 # do backward propagation
 error += backward_propagation(X[j], Y[j], Wh,Zh,Ah,Bh,Zo,Ao,Wo,Bo)

 # early termination if in tolerence
 sum_error = np.sum(abs(error))
 total_error += sum_error
 if sum_error/len(error) < tolerence:
 break

print out error and num iterations
print("total error: ",total_error,"number iterations: ",i)

print out results
for j in range(num_test_cases):
 Zh, Ah, Zo, Ao = forward_propagation(X[j], Y[j], Wh,Bh,Wo,Bo)
 print(X[j],Y[j],":",Ao)

to do:

Type in or copy and paste the above code and get it running.

Homework Question 2

Make a neural network with 15 inputs (5*3) grid to represent digit shapes 0 to 9

and 10 outputs and to classify digits 0 to 9.

Copyright © 2020 OnlineProgrammingLessons.com
 29

You can make a digit 4 like this.

1 1

1 1

1 1 1

 1

 1

The inputs would be represented by:

1 0 1 1 0 1 1 1 1 0 0 1 0 0 1

The output would be (indicating the digit 4))

0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 0 0 0 0 0

Where width is 3 and height is 5

Call your py file neurualnetworkhomework2.py

END

