
1
Copyright © 2020 OnlineProgrammingLessons.com

Lesson 12 Linear Regression Last Update Apr 18, 2021

Regression problems are supervised learning problems in which the response is
continuous.

Linear regression performs the task to predict a dependent variable value (y)

based on a given independent variable (x). The variable y is dependent on the

independent variable x. This means if you change x then y will change, Changing

the value of y has no effect on x, therefore y is dependent on the independent

variable x.

Linear Regression is a linear relationship between x (input) and y(output). If we

plot the independent variable (x) on the x-axis and dependent variable (y) on the

y-axis, linear regression gives us a straight line that best fits the data points using

the line equation. (note: linear means a straight line)

y= mx + b

Where b is the y-intercept and m is the slope of the line.

The y -intercept of a graph is the point where the graph crosses the y –axis when
x = 0

 y2 – y1 1 – (-2) 3
The slope m of a line is -------------- = ----------------- = ------
 x2 – x1 4 – 0 4

In the following graph m = 3/4 of has its y -intercept at −2 .

The equation of the line is y = mx + b = 3/4 x – 2

Using the equation of the line for any point x then y can be calculated.

Example:

 if x = 4 then y = mx + b = 3/4 (4) – 2 = 3 – 2 = 1

2
Copyright © 2020 OnlineProgrammingLessons.com

The linear regression algorithm gives us the most optimal value for the y-intercept
and the slope m. The y and x variables are the data features and are fixed values
that are not to be changed. The values that we can control are the intercept(b)
and slope(m). There can be multiple straight lines depending upon the values of
intercept and slope. Basically what the linear regression algorithm does, is fit
multiple lines on the data points and returns the line that results in the least error.

Linear regression is about drawing a straight line through as set of related x and y

points.

3
Copyright © 2020 OnlineProgrammingLessons.com

We will make an array of n random points then draw a straight line through them

 using the Equation for a line:

y = m x + b

m = slope of line
b = the y intercept of the line

where m is calculated as follows:

 (∑ y)(∑ x2) – (∑ x) (∑ x y)

m = --

 n (∑ x2) - (∑ x)2

b is calculated as follows:

 n (∑ x y) – (∑ x) (∑ y)

b = --

 n (∑ x2) - (∑ x)2

We make random data accordingly to the normal distribution using the numby

normal function.

using.numpy.normal(mean, std, size)

To use numpy functions you need to import the numpy module

import numpy as np

We make n number of x points with mean 0 and std of 1

n = 10

x = np.random.normal(0,1,n)

print(x)

[-1.03957644 -0.02273678 -1.1722456 -0.99033947 -0.07772752 -0.57631302
 0.27126607 0.20078075 1.2738824 0.67596517]

4
Copyright © 2020 OnlineProgrammingLessons.com

We make n number of y points with mean 0 abs std of .25

y = np.random.normal(0,.25,n)

 print(y)

[-0.19086382 -0.15621885 0.10118205 0.19180085 -0.18573354 -0.34741558
 0.62865553 0.14470035 0.36359903 0.01695659]

Next we calculate the slope m and intercept b from the above linear regression

equations:

 (∑ y)(∑ x2) – (∑ x) (∑ x y)

m = --

 n (∑ x2) - (∑ x)2

 n (∑ x y) – (∑ x) (∑ y)

b = --

 n (∑ x2) - (∑ x)2

We then predict the y values from the equation:

 ypred = m*x + b

Note: y and ypred are different values. y is the original y value for x, ypred is the

predicted y value for the corresponding x values. The ypred value forms a straight

line when plotted with x. The ypred values are the calculated values using the

equation for the line from the calculated m slope a b y-intercept.

Before we plot the data we set the bounds of our graph to -1 and 1 for both x and

y axis

 plt.axis([-1, 1, -1, 1])

5
Copyright © 2020 OnlineProgrammingLessons.com

We use matplot to plot the test data as a scatter plot

plt.scatter(x, y, color = "r", marker = "o", s = 30)

 and then plot the regression line using matplot plot function.

plt.plot(x, ypred, color = "b")

Where x is random numbers between -1 to 1 and ypred is the calculated

predicted y value for each random x value.

You need to import matplot before you can use it

import matplotlib.pyplot as plt

We can plot the points and the linear regression line from the calculated slope m

and intercept b using the equation of the line ypred = mx + b

Linear Regression model calculates results for m and b:

m = 0.13159616440312247

b = 0.10946191382798436

Here is the x and y points and linear regression line ypred = mx + b plotted on the

graph. The graph shows a straight line because we are plotting the ypred values

for each corresponding x value, using the y=mx+b line equation where the m and

b values have been fitted with the x and y original values.

6
Copyright © 2020 OnlineProgrammingLessons.com

Here is the complete program

"""
linearRegression.py
"""
import numpy as np
import matplotlib.pyplot as plt

print('Linear Regression')
print('y = mx + b')

n = 10 # number of points

make random normal distribution x,y points
mean , std, size
x = np.random.normal(0,1,n)
y = np.random.normal(0,.25,n)

ypred = mx + b

calculate m
(∑ y)(∑ x^2) – (∑ x) (∑ x y)
m = -----------------------------
n (∑ x^2) - (∑ x)^2

top = (np.sum(y)*np.sum(x*x) - np.sum(x) * np.sum(x*y))
bottom = (n * np.sum(x*x) - np.sum(x) * np.sum(x))
m = top / bottom
print('m = ',m)

calculate b
n (∑ x y) – (∑ x) (∑ y)
b = --
n (∑ x^2) - (∑ x)^2

top = (n * np.sum(x*y) - np.sum(x) * np.sum(y))
bottom = (n * np.sum(x*x) - np.sum(x) * np.sum(x))
b = top / bottom
print('b = ',b)

calculate y2 = mx + b
ypred = m*x + b

7
Copyright © 2020 OnlineProgrammingLessons.com

plot regression line

plotting x and y points as a scatter plot
plt.scatter(x, y, color = "r", marker = "o", s = 30)

set x-y axis dimensions
plt.axis([-1, 1, -1, 1])

plotting the regression line
plt.plot(x, ypred, color = "b")

set title
plt.title('linear regression')

set x,y labels
plt.xlabel('x')
plt.ylabel('y')

show plot
plt.show()

Todo

Try different values of mean, std and n size in the following normal distribution

for x and y

x = np.random.normal(0,1,n) # where 0 = mean, 1 = stn and n = size

y = np.random.normal(0,.25,n) # where 0 = mean, .25 = std and n = size

LEAST SQUARES

Here is a more simplified linear regression using the least squares method.

y =mx + b

Let X be the independent variable and Y be the dependent variable

8
Copyright © 2020 OnlineProgrammingLessons.com

Calculate slope m:

 ∑ (xi - x) (yi - ȳ)

m = ------------------------------

 ∑ (x i - x) 2

where :

xi is the independent variable data set

yi is the dependent variable data set

∑ (xi - x) (yi - ȳ) is the sum of the data set subtracting each mean

∑ (x i –) 2 is the sum of errors squares

Calculate b from mean y, mean x and slope m:

b = m * x

Calculate the y prediction y_pred

Y_pred = m * x + b

 Linear Regression Homework Question 1

Write python program using the Least Squares algorithm and plot the results

using matplot. Try large data set’s with different std’s You may want to make a

LeastSquares class that would store the m and b value and has a fit function that

receives a list of x and y values to fit the data and a predict function that will

return a predicted value for a x value or return a list of predicted y values for a list

of x values. Plot a scatter plot, barchart or histogram of y, y_pred and include a

plot of abs(y-y_pred). Plot the y and y prediction values on the same bar chart

(stacked)

9
Copyright © 2020 OnlineProgrammingLessons.com

You should get something like this:

10
Copyright © 2020 OnlineProgrammingLessons.com

LEAST SQUARES FITTING USING SCIPY

Scipy (Scientific python) is a library package has many machine learning

algorithms for you and operates on numpy arrays.

Scipy has the curve_fit function that takes a function f formula and data set x and
y and uses the least squares algorithm to fit the data using the specified function
f.

Scipy uses the non-linear least squares algorithm to fit a function, f, to data.

Assumes: ydata = f(xdata, *params) + eps

Where xdata is a list of x values

*params are a list of received argument values in our case will be the m and b

Our f function just returns the value y for the equation of line for the values m
and b received through *params. * is a unpacking operator converting the
argument m,b into separate values m and b so that you can use then in the
function separately.

 def f(x, m, b):

 return m*x + b

eps is the smallest representable positive number such that 1.0 + eps != 1.0.
(usually about .000001)

The Scipy curve_fit function returns 2 arrays popt and pcov

Results Description
pop a 1d array

Optimal values for the parameters so that the sum of the
squared residuals of f(xdata, *popt) - ydata is minimized

pcov a 2d array

The estimated covariance of popt. The diagonals provide
the variance of the parameter estimate.

11
Copyright © 2020 OnlineProgrammingLessons.com

We call curve_fit like this:

 pop, pcov = curve_fit(f, x, y)

where f is the function that returns y = mx + b

 def f(x, m, b):

 return m*x + b

We obtain slope m from pop and y-intercept b from pcov

m = pop[0]

b = pcov[0,1]

we print out the obtained values m and b

m = 0.02414388106444587 b = 0.00024679354443633

We calculate predicted y from line equation ypred = mx + b with m and b values

ypred = m*x + b

Lastly we plot the test data

 plt.scatter(x, y, color = "r", marker = "o", s = 30)

we plot the regression line

 plt.plot(x, ypred, color = "b")

our plot is as follows:

12
Copyright © 2020 OnlineProgrammingLessons.com

Here is the complete program:

"""
linearRegScipi.py
"""
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

print('Linear Regression using scipy')
print('y = mx + b')
n = 10 # number of points
make random normal distribution x,y points
mean , std, size
x = np.random.normal(0,1,n)
y = np.random.normal(0,.25,n)
straight line function y = f(x)
def f(x, m, b):
 return m*x + b
ypred = mx + b
pop, pcov= curve_fit(f, x, y) # your data x, y to fit
m = pop[0]
b = pcov[0,1]
print("m = ",m, "b = ", b)

13
Copyright © 2020 OnlineProgrammingLessons.com

calculate ypred = mx + b
ypred = m*x + b
plot regression line
plotting as scatter plot
plt.scatter(x, y, color = "r", marker = "o", s = 30)
axis dimensions
plt.axis([-1, 1, -1, 1])
plotting the regression line
plt.plot(x, ypred, color = "b")
title
plt.title('linear regression using scipy')
x,y labels
plt.xlabel('x')
plt.ylabel('y')
show plot
plt.show()

Todo

Try different values of mean, std and n size in the following normal distribution

for x and y

x = np.random.normal(0,1,n) # where 0 = mean, 1 = stn and n = size

y = np.random.normal(0,.25,n) # where 0 = mean, .25 = std and n = size

Linear regression using SkLearn

Sklearn also known as (SciKit) is a machine learning library for Python. It features

several regression, classification and clustering algorithms including SVMs,

gradient boosting, k-means and random forests. It is designed to work with

Python Numpy and Scipy.

 You can install sklearn onto python as follows:

pip install sklearn

14
Copyright © 2020 OnlineProgrammingLessons.com

We will use sklearn to do linear regression on a random data set.

You first need to import the required sklearn libraries.

from sklearn import datasets

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

Skilearn has the make_regression function to make test data for us with a

specified injected noise. We will have lots of noise.

x, y = datasets.make_regression(n_samples=n, n_features=1, noise=10)

For accurate testing we split up out test data into test data and training data sets.

We split 80% of the data to the training set while 20% of the data to test set using

the sklearn train_test_split function using test_size parameter.

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)

Once we split the real data into train and test set’s we make a linear model

reg = LinearRegression()

From the linear regression mode we fit the data using the training set x_train and

y_train using the sklearn fit function

reg.fit(x_train, y_train)

We train the data using the x_train and y_train data to calculate the m slope and

b y-intercept.

After the data is fitted we can retrieve the slope m and y intercept b

m = reg.coef_

b = reg.intercept_

We then print m and b out

m = 14.795286457868691 b = 0.5981177409678305

15
Copyright © 2020 OnlineProgrammingLessons.com

We can then predict the points from the test data using the sklearn predict

function and the x_test data. (predict always expects a 2 dimensional array)

y_pred = reg.predict(x_test)

We use the x_test data to calculate the y predictions. The slope m and b y-

intercept has been previously calculated in the fit function using the x_train and

y_train data sets.

We then we use matplot to plot the results

We first plot the complete x and y data as a scatter plot

plt.scatter(x , y , color = "r", marker = "o", s = 5)

then plot the regression line using the y_test data x_test for the x axis and the

predicted y data y_pred for the y axis

plt.plot(x_test, y_pred, color = "b")

Here is out plot:

At the end of the program we plot the y test data vs y predicted data on a

histogram for comparison.

16
Copyright © 2020 OnlineProgrammingLessons.com

plt.hist([y_test, y_pred], color=['orange', 'green'])

Here is the complete sklearn test program:

"""
linearRegSklearn.py
"""
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

print('Linear Regression using Sklearn')
print('y = mx + b')

n = 1000 # number of points

make random normal distribution x,y points
x, y = datasets.make_regression(n_samples=n, n_features=1, noise=10)

17
Copyright © 2020 OnlineProgrammingLessons.com

split 80% of the data to the training set
20% of the data to test set
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=.2, random_state=0)

make regression model
reg = LinearRegression()

fit model with training data
reg.fit(x_train, y_train)

retrieve slope and y-intercept b
m = reg.coef_
b = reg.intercept_
print("m = ",m, "b = ", b)

calculate y prediction values
y_pred = reg.predict(x_test)

plotting x,ydata as scatter plot
plt.scatter(x , y , color = "r", marker = "o", s = 5)

plotting the regression line
plt.plot(x_test, y_pred, color = "b")

title
plt.title('linear regression using sklearn')

x,y labels
plt.xlabel('x')
plt.ylabel('y')

show plot
plt.show()

plot train and prediction data as histogram
plt.hist([y_test, y_pred], color=['orange', 'green'])
plt.xlabel("x")
plt.ylabel("y")
plt.legend(['y ','y_pred'])
plt.title('y vs ypred')
plt.show()

18
Copyright © 2020 OnlineProgrammingLessons.com

Todo

Try different values data split percentages in train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=.2, random_state=0)

Try different noise levels.

x, y = datasets.make_regression(n_samples=n, n_features=1, noise=10)

Try predicting individual values using the Sklearn predict function.

You need to put the x test value in a 2 dimensional array. Sklearn expects the
x_test values as a 2 dimensional array. Like this ([[20]]) The predict function
returns a 1 dimensional array of values.

Example:

y_pred = reg.predict([[20]])

print("y_pred",y_pred[0],"x_test",20)

Prediction Models using Linear Regression

Simple linear regression is an approach for predicting a quantitative response
using a single feature (or "predictor" or "input variable"). It takes the following
form:

 =b0+b1

Where:

y is the response
 is the feature
 b0 is the intercept
 b1 is the coefficient for x

y_pred 1356.5079194842547 x_test 20

19
Copyright © 2020 OnlineProgrammingLessons.com

Together, b0 and b1 are called the model coefficients. To create your model, you
must "learn" the values of these coefficients. And once we've learned these
coefficients, we can use the model for prediction.

Example Sales Model

We want to model how many sales there are for amounts paid tor TV, newspaper

and radio advertising categories.

We will store the above data into a pandas DataFrame using a dictionary.

We need to import pandas for the data frame, sklearn.linear_model for linear

regression and sklearn.model_selection and for train test and split to be used

later.

import pandas as pd

import sklearn

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

We make a dictionary of the above sample data

data = { 'TV': [123,234,213,432,432,125,543,233,213,324],

'radio':[34,23,76,45,23,12,32,31,67,45],

'newspaper':[12,32,24,42,12,54,32,24,34,45],

'sales':[54,34,23,78,54,34,23,65,54,34]}

 TV radio newspaper sales

0 123 34 12 54

1 234 23 32 34

2 213 76 24 23

3 432 45 42 78

4 432 23 12 54

5 125 12 54 34

6 543 32 32 23

7 233 31 24 65

8 213 67 34 54

9 324 45 45 34

20
Copyright © 2020 OnlineProgrammingLessons.com

Using the above dictionary we load into a data frame

df = pd.DataFrame(data)

We can use pandas to plot the data frame

show data frame

print(df)

plot data frame

df.plot()

plt.show()

We can also use the pair plot function from seaborn to plot out the three

advertising categories:

import seaborn as sns

sns.pairplot(df, x_vars=['TV','radio','newspaper'], y_vars='sales', height=3)

plt.show()

21
Copyright © 2020 OnlineProgrammingLessons.com

We then use use sklearn to calculate regression for each advertising category TV,

radio and newspaier features.

create X and y
feature_cols = ['TV']
X = df[feature_cols]
y = df.sales

instantiate and fit (lm for linear model)
lmTV = LinearRegression()
lmTV.fit(X, y)

calculate y prediction values
y_pred = lmTV.predict(X)

plotting x,ydata as scatter plot
plt.scatter(X , y , color = "r", marker = "o", s = 5)

plotting the regression line
plt.xlabel('TV Cost')
plt.ylabel('Sales')

plt.title('TV Cost vs Sales')
plt.plot(X, y_pred, color = "b")
plt.show()

22
Copyright © 2020 OnlineProgrammingLessons.com

print the coefficients

print ('intercept: ',lmTV.intercept_)
print ('coefficient: ',lmTV.coef_[0])

predict sales forTV advertising cost of 200 using intercept and coefficient

sales = lmTV.intercept_ * lmTV.coef_* 200
print('Sales for TV: ',sales)

intercept: 43.980405165026205

coefficient: [0.00459469]

prediction Sales for TV 200: [44.89934307]

23
Copyright © 2020 OnlineProgrammingLessons.com

predict sales for TV advertising spend of 200 using sklearn for prediction

Note: We put the value 200 into a data frame for the TV column feature.

X_new = pd.DataFrame({'TV': [200]})
sales = lmTV.predict(X_new)
print("sklearn prediction Sales for TV 200:: ",sales)

R-Squared value

The most common way to evaluate the overall fit of a linear model is by the R-
squared value. R-squared is the proportion of variance explained, meaning the
proportion of variance in the observed data that is explained by the model, or the
reduction in error over the null model. (The null model just predicts the mean of
the observed response, and thus it has an intercept and no slope.)

R-squared is between 0 and 1, and higher is better because it means that more
variance is explained by the model.

r_squared = lmTV.score(X, y)
print("R-Squared: ",r_squared)

Here is the complete program:

Prediction Models using Linear Regression
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

sklearn prediction Sales for TV 200:: [44.89934307]

R-Squared: 0.0012325129765657916

24
Copyright © 2020 OnlineProgrammingLessons.com

data = { 'TV': [123,234,213,432,432,125,543,233,213,324],
 'radio':[34,23,76,45,23,12,32,31,67,45],
 'newspaper':[12,32,24,42,12,54,32,24,34,45],
 'sales':[54,34,23,78,54,34,23,65,54,34]}

#Using the above dictionary we load into a data frame
df = pd.DataFrame(data)
#We can use pandas to plot the data frame
show data frame
print(df)
plot data frame
df.plot()
plt.show()

pair plot
import seaborn as sns
sns.pairplot(df, x_vars=['TV','radio','newspaper'], y_vars='sales', height=3)
plt.show()

create X and y
feature_cols = ['TV']
X = df[feature_cols]
y = df.sales

instantiate and fit (lm for linear model)
lmTV = LinearRegression()
lmTV.fit(X, y)

calculate y prediction values
y_pred = lmTV.predict(X)

plotting x,ydata as scatter plot
plt.scatter(X , y , color = "r", marker = "o", s = 5)

plotting the regression line
plt.xlabel('TV Cost')
plt.ylabel('Sales')
plt.title('TV Cost vs Sales')
plt.plot(X, y_pred, color = "b")
plt.show()

print ('intercept: ',lmTV.intercept_)
print ('coefficient: ',lmTV.coef_[0])

25
Copyright © 2020 OnlineProgrammingLessons.com

sales = lmTV.intercept_ * lmTV.coef_* 200
print('Sales for TV: ',sales)

X_new = pd.DataFrame({'TV': [200]})
sales = lmTV.predict(X_new)
print("sklearn prediction Sales for TV 200:: ",sales)

r_squared = lmTV.score(X, y)
print("R-Squared: ",r_squared)

Linear Regression Homework 2

Using the above program “Prediction Models using Linear Regression” do
predictions also for Newspaper and Radio. Plot the x,y points the y prediction
regression lines and then predict some values. Calculate and print out the
r_squared value. Make 3 separate subplots each one for TV, Newspaper and Radio

Put all three plots in a 1 row by 3 column grid plot.

Hints:

Use the axes array from the subplot to reference each plot.

fig, axs = plt.subplots(1,3,figsize=(10,6))

Use a enumerate loop that has a index counter and selects the feature from a list

of features.

features = ['TV','radio','newspaper']
for i,feature in enumerate(features):

You should get something like this:

26
Copyright © 2020 OnlineProgrammingLessons.com

Plotting multiple regression lines with Seaborn

We can use seaborn to plot multiple regression line for our TV,radio, and newspaper

advertising amounts.

sns.pairplot(df, x_vars=['TV','radio','newspaper'], y_vars='sales', height=3, aspect=0.7, kind='reg')

plt.show()

27
Copyright © 2020 OnlineProgrammingLessons.com

Multiple Linear Regression

Simple linear regression can easily be extended to include multiple features. This
is called multiple linear regression:

 =b0+b1x1+b2x2...+bnxn

Each x represents a different feature, and each feature has its own coefficient.

In our advertising mode this can be b0..b3:

 =b0+b1× +b2× +b3×

Where y is the estimated sales for combined cost of TV, radio and newspaper
advertising costs

Using sklearn to estimate these coefficients:

feature_cols = ['TV', 'radio', 'newspaper']

X = df[feature_cols]
y = df.sales

make linear regression model lm and fit points

lm = LinearRegression()
lm.fit(X, y)

28
Copyright © 2020 OnlineProgrammingLessons.com

print out the intercept and the coefficients

print ("intercept: ",lm.intercept_)
print ("coefficient: ",lm.coef_)

Notice we now have 3 different coefficients 1 for each feature 'TV', 'radio',
'newspaper'

print(feature_cols, lm.coef_)

What the coefficients mean:

For a given amount of Radio and Newspaper ad spending, an increase of $1000 in
TV ad spending is associated with an increase in Sales of 3.69

We can get a list of predicted values combined for the three X features

predicte values
y_pred = lm.predict(X)

We can plot out the actual value vs the predicted values

plt.plot(y,label="actual")
plt.plot(y_pred,label="predicted")
plt.legend()
plt.title('predicted vs true value')
plt.xlabel('weeks')
plt.ylabel('sales')
plt.show()

intercept: 53.55388522521896

coefficient: [0.00369613 -0.05436979 -0.23169985]

['TV', 'radio', 'newspaper'] [0.00369613 -0.05436979 -0.23169985]

29
Copyright © 2020 OnlineProgrammingLessons.com

Model Evaluation Metrics for Evaluating Linear Regression

For regression algorithms, three evaluation metrics are commonly used:

Mean Absolute Error
Mean Squared Error
Root Mean Squared Error

Mean Absolute Error (MAE) is the mean of the absolute value of the errors

between predicted value and true value It is calculated as:

 1 n

MAE = --- ∑ (ypredj– yj)

 n j=1

Mean Squared Error (MSE) is the mean of the squared errors between predicted
value and true value and is calculated as:

 1 n
MSE = --- ∑ (ypredi – yi)2
 n i=1

30
Copyright © 2020 OnlineProgrammingLessons.com

Root Mean Squared Error (RMSE) is the square root of the mean of the squared
errors between predicted value and true value:

 1 n
RMSE = SQRT --- ∑ (ypredi – yi)2
 n i=1

We can use out previous predicted and actual true value to calculate MAE, MSE,
RMSE. Where y = true value.

print ("MAE:",sklearn.metrics.mean_absolute_error(y, y_pred))

print ("MSE:",sklearn.metrics.mean_squared_error(y, y_pred))

print ("RMSE:",np.sqrt(sklearn.metrics.mean_squared_error(y, y_pred)))

Not very accurate?

Here is the complete program for multiple linear regression:

Multiple Linear Regression
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
from sklearn.linear_model import LinearRegression

make dictionary of advertising costs to sales result
data = { 'TV': [123,234,213,432,432,125,543,233,213,324],
 'radio':[34,23,76,45,23,12,32,31,67,45],
 'newspaper':[12,32,24,42,12,54,32,24,34,45],
 'sales':[54,34,23,78,54,34,23,65,54,34]}

MAE: 14.30775238306735

MSE: 296.31803637577434

RMSE: 17.213890797137477

31
Copyright © 2020 OnlineProgrammingLessons.com

load dictionary into a data frame
df = pd.DataFrame(data)

feature_cols = ['TV', 'radio', 'newspaper']
X = df[feature_cols]
y = df.sales
#make linear regression model lm and fit points
lm = LinearRegression()
lm.fit(X, y)
#print out the intercept and the coefficients
print ("intercept: ",lm.intercept_)
print ("coefficient: ",lm.coef_)

print(feature_cols, lm.coef_)

predicte values
y_pred = lm.predict(X)
#We can plot out the actual value vs the predicted values
plt.plot(y,label="actual")
plt.plot(y_pred,label="predicted")
plt.legend()
plt.title('predicted vs true value')
plt.xlabel('weeks')
plt.ylabel('sales')
plt.show()

print ("MAE:",sklearn.metrics.mean_absolute_error(y, y_pred))
print ("MSE:",sklearn.metrics.mean_squared_error(y, y_pred))
print ("RMSE:",np.sqrt(sklearn.metrics.mean_squared_error(y, y_pred)))

Model Evaluation Using Train/Test Split

We will now split our data into 2 sets a train set for fitting the data and a test set
to test our prediction

X = df[['TV', 'radio', 'newspaper']]
y = df.sales

split data into train and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

make linear regression model
lm = LinearRegression()

32
Copyright © 2020 OnlineProgrammingLessons.com

fit train data
lm.fit(X_train, y_train)

predict data using x test set
y_pred = lm.predict(X_test)

calculate error between test y test set and y prediction
print ("RMSE:",np.sqrt(sklearn.metrics.mean_squared_error(y_test, y_pred)))

Todo:

Run the above code:

Then:

(1) remove newspaper and run code again and record RMSE

X = df[['TV', 'radio']]

(2) remove radio and run code again and record RMSE

X = df[['TV', 'newspaper']]

(3) remove TV and run code again and record RMSE test result

X = df[['radio', 'newspaper']]

(4) Which one has the highest RMSE score?

RMSE: 40.621959078406384

33
Copyright © 2020 OnlineProgrammingLessons.com

Next We plot all the regression lines for each feature: TV, radio and newspaper.

plot sales vs dollars spent per feature

plot TV
plt.scatter(X["TV"] , y , color = "k", marker = "o", s = 5)
plt.plot(X_test["TV"], y_pred, color = "r",label="TV")

plot radio
plt.scatter(X["radio"] , y , color = "k", marker = "o", s = 5)
plt.plot(X_test["radio"], y_pred, color = "g",label="radio")

plot newspaper
plt.scatter(X["newspaper"] , y , color = "k", marker = "o", s = 5)
plt.plot(X_test["newspaper"], y_pred, color = "b",label="newspaper")

add a Legend
plt.legend()

plot title an axis labels
plt.title('Sales vs dollars spent for advertising')
plt.xlabel('$ spent')
plt.ylabel('sales')

plt.show()

The graph defiantly show TV advertising is most costly for an increase in sales

34
Copyright © 2020 OnlineProgrammingLessons.com

Here is the complete program:

model evaluation
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

make dictionary of advertising costs to sales result
data = { 'TV': [123,234,213,432,432,125,543,233,213,324],
 'radio':[34,23,76,45,23,12,32,31,67,45],
 'newspaper':[12,32,24,42,12,54,32,24,34,45],
 'sales':[54,34,23,78,54,34,23,65,54,34]}

load dictionary into a data frame
df = pd.DataFrame(data)

X = df[['TV', 'radio', 'newspaper']]
y = df.sales

split data into train and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

make linear regression model
lm = LinearRegression()

fit train data
lm.fit(X_train, y_train)

predict data using x test set
y_pred = lm.predict(X_test)

calculate error between test y test set and y prediction
print ("RMSE:",np.sqrt(sklearn.metrics.mean_squared_error(y_test, y_pred)))

plot sales vs dollars spent per feature

plot TV
plt.scatter(X["TV"] , y , color = "k", marker = "o", s = 5)
plt.plot(X_test["TV"], y_pred, color = "r",label="TV")

35
Copyright © 2020 OnlineProgrammingLessons.com

plot radio
plt.scatter(X["radio"] , y , color = "k", marker = "o", s = 5)
plt.plot(X_test["radio"], y_pred, color = "g",label="radio")

plot newspaper
plt.scatter(X["newspaper"] , y , color = "k", marker = "o", s = 5)
plt.plot(X_test["newspaper"], y_pred, color = "b",label="newspaper")

add a Legend
plt.legend()

plot title an axis labels
plt.title('Sales vs dollars spent for advertising')
plt.xlabel('$ spent')
plt.ylabel('sales')

plt.show()

REGRESSION HOMEWORK QUESTION 3

We want to predict the best method of delivering parcels using trucks using gas,

electric or hybrid (gas and electric). The delivery company wants to know to buy

more gas, electric or hybrid trucks.

Our model is

Delivery costs = b0 m+ b1 gas + b2 electric + b3 hybrid

Sample data is available:

 Gas Electric Hybrid Cost

0 23 34 12 123

1 32 23 32 567

2 23 23 24 345

3 15 31 23 234

4 20 23 12 432

5 16 12 13 321

6 16 32 12 122

7 33 31 24 343

8 24 35 16 234

9 36 36 23 478

36
Copyright © 2020 OnlineProgrammingLessons.com

Use sklearn to calculate the coefficients, then find out the most efficient (lowest

cost) of buying more gas, electric or hybrid trucks.

You may want to make a enumeration loop similar to what we did in Question 2

to make your programming task easier. But plot all feature on one plot rather

than seperate plots.

Make scatter and line plots of your results.

Put all your regression homework in a py file called regression_homework.py

You may have something like this:

 Gas Electric Hybrid Cost
0 23 34 12 123
1 32 23 32 567
2 23 23 24 345
3 15 31 23 234
4 20 23 12 432
5 16 12 13 321
6 16 32 12 122
7 33 31 24 343
8 24 35 16 234
9 36 36 23 478
Gas intercept: 35.887897595034815
Gas coefficient: [11.93328161]
Electric intercept: 507.1295719844358
Electric coefficient: [-6.68677043]
Hybrid intercept: 62.35403025513659
Hybrid coefficient: [13.48408219]
Combined intercept: 226.111552230183
Combined coefficient: [12.46903092 -10.92949918 5.39536592]
all
RMSE: 85.31669817753428
omit gas
RMSE: 129.90167447170555
omit electric
RMSE: 81.91623331718274
omit hybrid
RMSE: 66.54192393144336

37
Copyright © 2020 OnlineProgrammingLessons.com

38
Copyright © 2020 OnlineProgrammingLessons.com

END

