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LESSON 14 LOGISTIC  REGRESSION                                  Updated May 10, 2021 
 
Conventions used in these lessons: 
 

bold  - headings, keywords, code 
italics -  code syntax 
underline  - important words 

 
Logistic Regression is a classification algorithm. A classification is a technique for 
determining which class the dependent variable y belongs to based on one or 
more independent variables  x. A classification problem occurs when the output 
variable is a “yes” or “no” category like  “disease” and “no disease”. 
Logistic regression transforms its output using the logistic sigmoid function to 
return a probability value which can then be mapped to two or more discrete 
classes.  
 
 

 Sigmoid Function 
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 sig =     ---------- 

                1 + e
 -y

             

 

 
 
Logistic regression is different from linear regression. Linear regression is 
continuous where as logistic regression is discrete values.  
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Example Logistic Regression could help us predict the student’s test score on a 
scale of 0  to 100. The scales could be fail (0-50), pass(50-70), good (80-90) and 
excellent (90-100).  The  linear regression predictions are continuous numbers in 
the  range 0 to 100. Can be any value between 0 an 100. 

Logistic Regression could help use predict whether the student passed or failed. 
Logistic regression predictions are only discrete  specific values or categories like 
passed or fail, yes or so, sick or not sick. 

Logistic regression is common and is a useful regression method for solving the 
binary classification problem. Logistic Regression can be used for various 
classification problems such as spam detection, diabetes prediction, or if a given 
customer will purchase a particular product or will they turn to another 
competitor. Logistic regression describes and estimates the relationship between 
one dependent binary variable and independent variables. 
It is a special case of linear regression where the target variable is categorical in 
nature. It uses a log of odds as the dependent variable. Logistic Regression 
predicts the probability of occurrence of a binary event utilizing a logic function. 
 

Linear Regression Equation: 
Y = B0 + B1X1 + B2X2 + B3X3 + ....+ Bn Xn 
Where, y is dependent variable and x1, x2 ... and Xn are explanatory variables. 
 
The Logistic Regression equation applies the sigmoid function on linear regression: 
 
Sigmoid Function: 
 
                   1 

 sig =     ---------- 

                1 + e
 -y

             

                                          1 

 sig =     -------------------------------------------- 

                1 +  e
-(1 + B0 + BiX1 + B2X2 + B3X3 + ....+ Bn Xn)

             

 

Linear regression is estimated using Ordinary Least Squares (OLS) while logistic 

regression is estimated using Maximum Likelihood Estimation (MLE) approach. 
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Ordinary Least squares  (OLS) estimates are computed by fitting a regression line 

on given data points that has the minimum sum of the squared deviations (least 

square error). Both are used to estimate the parameters of a linear regression model. 

Maximum Likelihood Estimation (MLE)  assumes a joint probability mass 

function, while OLS doesn't require any stochastic assumptions for minimizing 

distance. 
 

The sigmoid function, also called logistic function gives an ‘S’ shaped curve that 

can take any real-valued number and map it into a value between 0 and 1. If the 

curve goes to positive infinity, y predicted will become 1, and if the curve goes to 

negative infinity, y predicted will become 0. 

 

 

 Sigmoid Function 

                  1 

 sig =     ---------- 

                1 + e
 -y

             

 

 
 

Logistic Regression model: 

Output = 0 or 1 
Hypothesis => Z = WX + B 
ho(x) = sigmoid (Z) 
if z = +inf then ho(x) = 1 
if x = -inf then ho(x) = 0 
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Analysis of the hypothesis 

The output from the hypothesis is the estimated probability. This is used to infer 

how confident the  predicted value to the actual value when given an input X.  

Consider the below example, 

X = [x0 x1] = [1 IP-Address] 

Based on the x1 value, let’s say we obtained the estimated probability to be 0.8. 

This tells that there is 80% chance that an email will be spam. 

Mathematically this can be written as, 

HO(X) = P(Y=1|X;theta) 

 

Probability that y=1 given X which is parameterized by ‘theta’ 

 

P(Y=1|X;theta) + P(Y=0 | X;theta) = 1 

P(Y=0|X;theta) - P(Y=0 | X;theta) = 1 

This justifies the name ‘logistic regression’. Data is fit into linear regression model, 

which then be acted upon by a logistic function predicting the target categorical 

dependent variable. 

Types of Logistic Regression: 

1. Binary Logistic Regression 

The categorical response has only two 2 possible outcomes. Example: Spam or 

NotSpam , Pass/Fail) 

2. Multinomial Logistic Regression 

Three or more categories without ordering. Example: Predicting which food is 

preferred more (Veg, Non-Veg, Vegan) or (Cats, Dogs, Sheep) 

3. Ordinal Logistic Regression 

Three or more categories with ordering. Example: Movie rating from 1 to 5 

(Low, Medium, High) 
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Decision Boundary 

To predict which class a data belongs, a threshold can be set. Based upon this 
threshold, the obtained estimated probability is classified into classes. 

If the  predicted value ≥ 0.5, then classify email as spam else as not spam. 

Decision boundary can be linear or non-linear. Polynomial order can be increased 
to get complex decision boundary. 

Cost Function 

The cost function is used to measure the error. Error is calculated as predicted 
value – actual value. The goal is to have minimize error. 

error = predicted value – actual value 

 
Gradient Descent 

A Gradient is the direction of a slope going up or down. Gradient Descent is  used 

to minimize the error. Gradient Descent is an iterative process that finds the 

minima of a function using the derivative of the cost. A derivative is the rate of 

change for some small time unit, T Gradient Descent is an optimization algorithm 

using incremental steps that finds the parameters or coefficients of a function 

where the function has a minimum  cost value.  
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Although this function does not always guarantee to find a global minimum and 

can get stuck at a local minimum. 

 

The global minimum is the least value of a function while a local minimum is the 

least value of a function in a certain neighborhood. 

Gradient descent will converge into global minimum only if the function is convex. 

 

A non-convex function can result in false minimum where as a convex function 
will find the true minimum. 

Calculating Gradient Descent Example 

We calculate gradient descent from the price of houses and the square area of 
the house indicating the size of the house. 
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Square Area (1000) Price (100,000) 

.5 1.4 
2.3 1.9 

2.9 3.2 

Every  machine learning algorithm has an optimization algorithm at its core that 

wants to minimize its cost function. 

Logistic regression is used to optimize linear regression. When we fit a line with a 

Linear Regression, we optimize the intercept and the slope. When we use Logistic 

Regression for classification, we optimize a curve or squiggle. 

To fit the best fit line we have to optimize the slope of the line and the y-intercept 

of the line. The equation of a line is y = m x  + b. Where m is the slope and b is the 

y intercept.  The  y intercept is the value of y when x = 0, where as the x intercept 

is the value of x when y is zero.  

 

The slope m  of a line is rise/run 

              rise                      y2 - y1 
m =  --------------   =    ------------------ 
              run                      x2 – x1 

 

 

y = mx + b 

y-intercept b is where the line crosses the y axis at x = 0 
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We will first use gradient descent optimize the y-intercept b.  After this  we will  

optimize the y-intercept and slope simultaneously.  We will use a approximate 

slope m  of .64. 

Calculating Minimum of Residual Errors 

First, we calculate the residual errors for each for slope and intercept. A residual 

error is the error between the predicted value and the actual value. 

  Residual error = predicted value – actual value 

Where the predicted value is:  

 Predicted_value = yintercept + slope * x 

 
The gradient descent is usually provided with a random guess for the value of the 
yintercept. We take a random guess of zero, so the equation becomes 
 

 Predicted_value = slope * x  (when yintercept = 0) 

In our graph below the line is the predicted value, the dots are the actual value and 

Residual errors  are red dotted lines connecting the predicted value to the actual 

value. The goal of gradient descent is to optimize residual errors to a minimum. 

 

Square Area (1000) Price (100,000) 
.5 1.4 

2.3 1.9 
2.9 3.2 
 

Residual error 
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Next, we calculate the squared residual error for each point. 

Predicted_value = yintercept + slope * x        

 

Squared Residual error = (actual_value – predicted_value)^2 

The squaring is necessary to remove any negative signs. It also gives more weight 

to larger differences. We are predicting house prices from area. 

Calculating the first point:  

squared residual error = (area-(0 + slope * .price))^2   
                       = (1.4-(0 + .64 * .5))^2  
                       = (1.4-0.32)^2 = (1.16)^2 
 

x 
(price) 

 y 
(area) 

Intercept 
(b) 

Slope  
(m) 

Predicted 
intercept + slope * x 

 (actual-predicted)^2 squared residual 
error 

.5 1.4 0 .64 0 + .64 * .5 = .32  (1.4 - .32)^2 (1.08)  ^ 2 = 1.16 

2.3 1.9 0 .64 0 + .64 * 2.3 = 1.472 (1.9 - 1.472)^2  (.428)^2 = .183 

2.9 3.2 0 .64 0 + .64 * 2.9 = 1.856 (3.2-1.856)^2 (1.34)^2 = 1.79 

 

The sum of squared error = 1.16 + .183 + 1.79 = 3.13 

Cost Function 

We continue and calculate  all the squared residual error for all the intercept 
points 0 to 2  

We then  plot all the sum of squared error points for all intercepts 0 to 2 . The plot 
represents the cost function. 
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Our goal is to find the value of the y-intercept  b, where the  cost curve is at the 

minimum point. 

 

Logistic Regression homework Question 1 

Using the house data of area and prices from the above example, calculate all the 
squared error points for all y-intercepts 0 to 2 using a DataFrame. The Data 
Frame should have columns area (x)  and price (y) . You can also have columns 
predicted and squared_residual_error to store calculations. Use the following 
equations to calculate predicted_value and squared Residual error: 

Predicted_value = yintercept + slope * x 

 

Squared Residual error = (actual error - predicted)^2 

You should have a list to store the squared error sums and the y-intercept values 0 
to 2. Use a step size of 0.1. Plot a scatter plot  the regression line with m = .64 and 
b = 0.  In another plot , plot the squared error points for each intercept 0 to 2.   
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Step 1: 

Make a data frame using a dictionary of area and prices: 

Area Price 

.5 1.4 
2.3 1.9 

2.9 3.2 
 

Step 2: 

Make a list of sums and intercepts 

sums = [] 
intercepts = [] 
m = .64 

in a loop b from 0 to 2 step by .1 calculate:   (use np.arrange for the loop) 

predicted = m * area + b 
            squared_residual_error = (price - predicted) ** 2 
            sum_errors =  sum(squared_residual_error) 

sums += sum_errors                         note: += means append 
            intercepts += b 

Step 3: 

plot  a scatter plot of  area vs price where x = area and y = price. 

Use m = .64 and the value of b where the sums of errors are minimum plot a 
regression line of x and y where x = area and y = price. 

Hint: use numpy argmin function to find b where the sums are minimum. 
All plots should have x and y labeled axis and a title 
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step 4: 

plot intercepts,sums  as a line plot as the cost function curve 

The lowest point on the curve is the optimized y-intercept b having the lowest 
(minimum) sum of squared residual errors  

all plots should have x and y labeled axis and a title 

Put everything in a file called logic_regression_homework_123.py. 

You should get something like this. 
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Using Gradient Descent to Optimize Intercept  

 

 

 

 

 

The primary task of Gradient Descent is to find the minimum of this cost function. 
To find the minimum point, we find its derivatives with respect to the y-intercept. 
So the equation of this cost function is given by 

f(intercept) = (price1 - predicted_price1)^2 + 

               (price2 - predicted_price2)^2 +  

               (price3 – predicted_price3)^2 

 

f(intercept) = (price1 – (intercept + slope * area1))^2 + 

               (price2 - (intercept + slope * area2))^)^2 +  

               (price3 – (intercept + slope * area3))^)^2 

 

f(intercept) = (price1-(intercept + 0.64 * area1))^2 + 

               (price2-(intercept + 0.64 * area2))^2 +  

               (price3-(intercept + 0.64 * area3))^2 

 

f(intercept) = (1.4-(intercept+ 0.64 * 0.5))^2 + 

               (1.9-(intercept+0.64 * 2.3))^2 +  

               (3.2-(intercept+0.64 * 2.9))^2 
 

 

The derivative of this function with respect to intercept is given by 
 

derivative = d/d(intercept)(1.4-(intercept+ 0.64 * 0.5))^2 

          + d/d(intercept) (1.9-(intercept+0.64 * 2.3))^2 

          + d/d(intercept)(3.2-(intercept+0.64 * 2.9))^2 
 

We find derivative of each term individually and add them up. Note that the slope 
is taken constant so its derivative is zero. 
 

derivative of (1.4-(intercept+0.64 * 0.5))^2  =  -2 * (1.4-(intercept+0.64 * 0.5)) 
 

 

Vary y-intercept till minimum cost 

found but do not change slope 
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In a similar way we find derivatives of next two terms and the value we get is: 
 
derivative = -2 * (1.4-(intercept+0.64 * 0.5))+ 

         -2 * (1.9-(intercept+0.64 * 2.3))+ 

             -2 * (3.2-(intercept+0.64 * 2.9)) 
 

If you know calculus:  d/dx(x^2)   = 2x 

 

Let us put the value of intercept=0 to find the value of the next intercept 
 

derivative =  -2 * (1.4-(0+0.64 * 0.5))+ 

          -2 * (1.9-(0+0.64 * 2.3))+ 

              -2 * (3.2-(0+0.64 * 2.9)) 

      =  -5.7 

Gradient descent subtracts the step size from the current value of intercept to get 
the new value of intercept. This step size is calculated by multiplying the 
derivative which is -5.7 to a small number called the learning rate. Usually, we 
take the value of the learning rate to be 0.1, 0.01 or 0.001. The value of the step 
should not be too big as it can skip the minimum point and thus the optimization 
can fail. It is a hyper-parameter and you need to experiment with its values. A 
hyperparameter is a parameter whose value is used to control the learning 
process. 

 

We are using a  learning rate of 0.1, then the step size is equal to 

Step_size  is:  intercept * learning rate; 
Step_size = -5.7 * .1 = -.57 
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Our old intercept was 0 
 

Our new intercept is = old_intercept – step_size 
New_intercept = 0 – (-.57) = .57 

We now plug the new intercept into our equation 

d (sum of squared error)/d(intercept) =  -2 * (1.4-(0.57+0.64 * 0.5))+ 
                  -2 * (1.9-(0.57+0.64 * 2.3))+ 
                                         -2 * (3.2-(0.57+0.64 * 2.9)) 
              = -2.3 
 

Now we calculate the next step size: 
 
Step size =-2.3*0.1 = -0.23 
 
New intercept = old intercept-step size 
             = 0.57 - (-0.23) = 0.8 
 
Again let us now put the new intercept in the derivative function 
 
d (sum of squared error) /d(intercept) = -2 *(1.4-(0.8+0.64 * 0.5)) + 
                   -2 *(1.9-(0.8+0.64 * 2.3)) + 
                                                                        -2 *(3.2-(0.8+0.64 * 2.9)) 
              =  -0.9 
Step size = -0.9*0.1 = -0.09 
 
New intercept = old intercept-step size 
       = 0.8 - (-0.09) = 0.89 

You might have noticed that the value of the step is high when the optimal 
solution is far away and this value is less as we approached an optimal solution. 
Thus we can say that gradient descent takes a bigger step when away from the 
solution and takes small steps when nearer to an optimal solution. This is the 
reason why gradient descent is efficient and fast. 
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LOGISTIC REGRESSION HOMEWORK QUESTION 2 

Continue calculating the sum of square derivative and new intercepts.  Use the 
data frame from previous homework. You will need some new calculation 
columns. Use a learning rate of .1. Loop till the absolute sum of differences is less 
than .001. Plot sum of difference vs intercepts and costs function vs intercepts, 
provide a legend of labels.  Finally make a scatter plot and regression line from 
the final calculated value of b. Print out  m and b and number of iterations. Try 
out different accuracy values. 

step 1: 

Make a data frame using a dictionary of area and prices: 

Area Price 
.5 1.4 

2.3 1.9 
2.9 3.2 

step  2: 

Make lists to store derivatives, intercepts and costs 

derivatives = [] 
intercepts = [] 
costs = [] 
b = 0 
m = .64 
learning_rate = .1 
sum_derivatives = 100 
iterations = 0 

step 3: 

loop while  abs(sum_derivatives) > .001  
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calculate: 

# calculate intercept 
intercept = (price  - (b + m * area))**2  
                    + (price - (b + m * area))**2  
                    + (price - (b + m * area))**2 
sum_cost =  sum(intercept) 
 costs += sum_cost                                                              note: += means append 
 
# calculate derivative 
 derivative = -2 *(price - (b + m * area)) 
 sum_derivatives = sum(derivative) 
 derivatives += sum_derivatives                                         note: += means append 
 intercepts +=b 
 b = b - sum_derivatives * learning_rate; 

Repeat step 3 till accuracy found 

step 4:    

plot:  intercepts,derivatives  as derivatives 
plot:  intercepts,costs   as cost function 
plot:  scatter plot of area and price 
plot:  regression line using new values of b where m = .64 
 

step 5: 

Print out  m and b and number of iterations. 

You should get something like this: 
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m =  0.64 b =  0.9506267928166401 iterations:  11 

 

Using Gradient Descent to Optimize Slope and Intercept 

 

 

 

 

Vary slope and y-intercept still 

minimum cost found 
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As before we take the derivatives but this time of this equation: 

f(intercept) = (price1-(intercept + slope * area1))^2 + 

               (price2-(intercept + slope * area2))^2 +  

               (price3-(intercept + slope * area3))^2 

 

f(intercept) =  (1.4-(intercept + slope * 0.5))^2+ 

                (1.9-(intercept + slope * 2.3))^2+  

                (3.2-(intercept + slope * 2.9))^2 
 

 

We find the derivative with respect to intercept keeping slope as constant: 
 

Derivative w.r.t intercept = -2*(1.4-(intercept+slope * 0.5))+ 

                       -2*(1.9-(intercept+slope * 2.3))+ 

                           -2*(3.2-(intercept+slope * 2.9)) 
 

Now we find derivative with respect to slope and consider intercept as constant 
 

Derivative w.r.t slope = -2(0.5) (1.4-(intercept+slope * 0.5))+ 

                    -2(2.3) (1.9-(intercept+slope * 2.3))+ 

                        -2(2.9)(3.2-(intercept+slope * 2.9) 

When we have two or more derivatives of the same function, they are called 
gradients. We use these gradients to descend down the cost function. Thus the 
algorithm is called gradient descent. 

The cost function we have been using so far is the sum of the square residuals. 

As before we initialize intercept and slope randomly as 0 and 1. Now putting 
these values in the above gradients. 

Derivative w.r.t intercept = -2*(1.4-(0+1 * 0.5)) + 

                         -2*(1.9-(0+1 * 2.3)) + 

                             -2*(3.2-(0+1 * 2.9)) 

                           = -1.6 
 

We take a different learning rate here of .01: 
 

Step size = -1.6 * 0.01 = -0.016 

New intercept = 0-(-0.016) = 0.016 

 

d/d(slope)= -2(0.5) * (1.4-(0+1 * 0.5)) + 

        -2(2.3) * (1.9-(0+1 * 2.3)) + 

            -2(2.9) * (3.2-(0+1 * 2.9)) 

             =-0.8 
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Step size= -0.8*0.01=-0.008 

New slope= 1-(-0.008)=1.008 

Repeating this process until we get step size near zero for both slope and intercept 

gives us an optimal solution and best fit line. 

 

LOGISTIC REGRESSION HOMEWORK QUESTION 3 

Continue calculating the sum of square derivative and new intercepts and new 
slopes.  Use the data frame from previous homework. You will need some new 
calculation columns. Use a learning rate of .01. Loop till the absolute sum of 
differences  and slopes is less is less than .001. Plot sum of difference vs 
intercepts  sum of slopes and costs function vs intercepts, provide a legend of 
labels.  Finally make a scatter plot and regression line from the final calculated 
value of m and b. Try out different accuracy values. 

Print out m and b and number of iterations. 

Step 1: 

Make a data frame using a dictionary of area and prices: 

Area Price 
.5 1.4 

2.3 1.9 

2.9 3.2 

Step 2: 

Make  the following lists:  

derivative_intercepts = [] 
derivative_slopes = [] 
intercepts = [] 
slopes = [] 
costs=[] 
b = 0 
m = 1 
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learning_rate = .01 
sum_derivative_intercepts = 100 
sum_derivative_slopes = 100 
iterations=0 

step 3: 

loop while (abs(sum_derivative_intercepts) > .001 and 
abs(sum_derivative_slopes) > .001): 

step 4: 

   # calculate y intercept 
   intercept = price-(b + m * area))**2  
                     + (price-(b + m * area))**2  
                      + (price-(b + m * area))**2 
   sum_cost =  sum(intercept) 
   costs+=sum_cost                                                             note: += means append    

    # calculate derivative intercepts 
    derivative_intercepts = -2 *(price - (b + m * area)) 

sum_derivative_intercepts = sum(derivative_intercepts) 
    derivative_intercepts += sum_derivative_intercepts        note: += means append 
 
    # calculate derivative slopes     
    derivative_slopes = -2*area *(price - (b + m * area)) 
    sum_derivative_slopes = sum(derivative_slopes) 
    derivative_slopes += sum_derivative_slopes                note: += means append     
    # store and calculate new y intercept 
    intercepts+=b 
    b = b - sum_derivative_intercepts * learning_rate; 
     
    # store and calculate new slope 
    slopes+=m 
    m = m - sum_derivative_slopes * learning_rate; 
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step 5:    

plot:  intercepts,derivatives  as derivatives 
plot:  intercepts,costs   as cost function 
plot:  slopes,derivative_slopes as slopes 
plot:  scatter plot of area and price 
plot:  regression line using new values of b and m 

step 6: 

Print out  m and b and number of iterations. 

You should get something like this: 

 

m =  0.6418829376708766 b =  0.94670578027403 iterations:  534 
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More Than 1 x Parameter 

If we have more than one parameter, such as the number of rooms, the process 

remains the same but the number of derivatives increases. Also here we used the 

sum of squared residuals as loss function, but we can use any other loss function as 

well such as least squares. 
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To briefly summaries the process, here are some points 

1. Take the gradient of the loss function which means  take the derivative of 

the loss function for each parameter in it. 

2. Randomly select the initialization values. 

3. Substitute these parameter values in the gradient 

4. Calculate step size by using appropriate learning rate. 

5. Calculate new parameters 

6. Repeat from step 3 until an optimal solution is obtained. 

Gradient Descent Example 

Our cost function is the sum of the residual errors squared: 

 

 Taking the log of both sides 

 

Our  cost function is now: 
 

        Cost(ho(x), Y(actual)) = -y log(ho(x)) – (1-y) log(1-ho(x))  

 

If y = 1, (1-y) term will become zero, therefore – log (ho*x) alone will be present 

If y = 0, (y) term will become zero, therefore – log (1-ho*x) alone will be present 
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MLE Approach: 

Logistic regression uses a method called maximum likelihood estimation (MLE) to 

find the best fit line.  MLE works as follows: 

 Pick a probability curve at random using the probability function we created 

above. 

 Calculate the likelihood (probability) of the outcome of a single data point. 

 Calculate likelihoods for all data points and multiply likelihoods of all data 

points. 

 Shift the probability curve and repeat the process. 

 Select the curve with the highest (“Maximum”) likelihoods. 

 

We now Calculate the formula for gradient descent: 

 
Z = w1x + w2x + b   -> y  = a  = r(z)   -> L(y ,y)     a = y  
 
dL          dL        da           dz 
---     =  -----   .  ------   .  ----- 
dw1       da        dz            dw1 
 
 using the chain rule 
 
 
 
 
 
 

 

 
 
 
 
dL         d 
----  =   ----  (-y log a – (1-y) log (1-a)) 
da         da 
 

Chain rule: 

 If a variable z depends on the variable y, which itself depends on the variable 

x (i.e., y and z are dependent variables), then z, via the intermediate variable 

of y, depends on x as well. In which case, the chain rule states that:  
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dL         -y         (1 – y) 
----  =   ----  +  -----------    
da         a          (1 – a) 
 
da 
----    =  a (1 – a) 
dz 
 
dz 
----    =  x1      
dw1 
 
substituting into: 
 
dL          dL          da           dz 
---     =  -----   *  ------   *  ----- 
dw1       da        dz            dw1 
 
dL            -y          (1-y)       
---     =     ---     +   -----     *  (a) (1-a)  *  x1   =  (a-y)  *  x1 
dw1          a         1 – a 
 
dL         -y (1-a)     +  a  (1-y)       
---     =     ----------------------      *  (a) (1-a)  *  x1    
dw1              a     (1 – a) 
 
  
dL 
-----      =    -y +ya + a – ay   * x1  = (a-y)  *  x1 
Dw1 
 
 
 
 
 
 
 

Derivative of a log function 
 
d                                1 
---     log (x)    =      ----  
dz                              x 
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Sample Test Program 
 
We want a program that will classify number as even or odd. We represent 
numbers as binary as only digits 0 and 1. 
 
number Binary Result 

0 000 Even 
1 001 Odd 

2 010 Even 

3 011 Odd 
4 100 Even 

5 101 Odd 
6 110 Even 

7 111 Odd 
 
We divide our number  into a train set and a test set. The train set is used to train 
the classifier. The test set is used to test the classifier for accuracy after training 
has finished. The number of features are the number of columns in the X data. 
 
#Split test data into train set and test set 
x_train = np.array([[0,0,0],  
              [0,0,1], 
              [0,1,0], 
              [0,1,1], 
              [1,0,1], 
              [1,1,0]]) 
 
y_train = np.array([0,1,0,1,1,0])    
 
x_test =  np.array([[0,0,0],  
              [0,0,1], 
              [0,1,0], 
              [1,0,1], 
              [1,1,0], 
              [1,1,1]]) 
 
y_test = np.array([0,1,0,1,0,1])  

 

n_features = x_train.shape[1] 
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Logistic Regression Program Flow: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here is the complete program: 
""" 
logisticregression.py 
logistic regression 
""" 
import numpy as np 
 
def weightInitialization(n_features): 
    w = np.zeros((1,n_features)) 
    b = 0 
    return w,b 

Initialize weights 
w, b = weightInitialization(n_features) 

Train classifier 
coeff, gradient, costs = model_predict(w, b, x_train, 
y_train, learning_rate=0.0001,no_iterations=5000) 

final_train_pred = sigmoid_activation(np.dot(w,x_train.T)+b) 
final_test_pred = sigmoid_activation(np.dot(w,x_test.T)+b) 

Calculate and print accuracy 
m_tr =  x_train.shape[0] 
m_ts =  x_test.shape[0] 
 
y_tr_pred = predict(final_train_pred, m_tr) 
print(y_tr_pred) 
print('Training Accuracy',accuracy(y_tr_pred, y_train )) 
 
y_ts_pred = predict(final_test_pred, m_ts) 
print(y_ts_pred) 
print('Test Accuracy',accuracy(y_ts_pred, y_test)) 
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def sigmoid_activation(result): 
    final_result = 1/(1+np.exp(-result)) 
    return final_result 
 
def model_optimize(w, b, X, Y): 
    m = X.shape[0] 
     
    #Prediction 
    final_result = sigmoid_activation(np.dot(w,X.T)+b) 
    Y_T = Y.T 
    cost = (-1/m)*(np.sum((Y_T*np.log(final_result)) + ((1-Y_T)*(np.log(1-final_result)))))     
 
    #Gradient calculation 
    dw = (1/m)*(np.dot(X.T, (final_result-Y.T).T)) 
    db = (1/m)*(np.sum(final_result-Y.T)) 
     
    grads = {"dw": dw, "db": db}     
    return grads, cost 
 
def model_predict(w, b, X, Y, learning_rate, no_iterations): 
    costs = [] 
    for i in range(no_iterations): 
        # train model 
        grads, cost = model_optimize(w,b,X,Y) 
        #get gradients 
        dw = grads["dw"] 
        db = grads["db"] 
        #weight update 
        w = w - (learning_rate * (dw.T)) 
        b = b - (learning_rate * db) 
         
        if (i % 100 == 0): 
            costs.append(cost) 
            #print("Cost after %i iteration is %f" %(i, cost)) 
     
    #final parameters 
    coeff = {"w": w, "b": b} 
    gradient = {"dw": dw, "db": db} 
     
    return coeff, gradient, costs 
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# return predictions 
def predict(final_pred, m): 
    y_pred = np.zeros((1,m)) 
    for i in range(final_pred.shape[1]): 
        if final_pred[0][i] > 0.5: 
            y_pred[0][i] = 1 
    return y_pred 
 
# return accuracy score 
def accuracy_score(predicted_labels, actual_labels): 
    diff = predicted_labels - actual_labels 
    return 1.0 - (float(np.count_nonzero(diff)) / len(diff)) 
 
# train data 
x_train = np.array([[0,0,0],  
              [0,0,1], 
              [0,1,0], 
              [0,1,1], 
              [1,0,1], 
              [1,1,0]]) 
 
print("x train") 
print(x_train) 
 
# even/odd numbers    
y_train = np.array([0,1,0,1,1,0])    
print("y train")  
print(y_train) 
 
# test data 
x_test =  np.array([[0,0,0],  
              [0,0,1], 
              [0,1,0], 
              [1,0,1], 
              [1,1,0], 
              [1,1,1]]) 
     
print("x test") 
print(x_test) 
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# even/odd numbers     
y_test = np.array([0,1,0,1,0,1])  
 
print("y test") 
print(y_test) 
 
#Get number of features 
n_features = x_train.shape[1] 
print('Number of Features', n_features) 
w, b = weightInitialization(n_features) 
 
#Gradient Descent 
coeff, gradient, costs = model_predict(w, b, x_train, y_train, 
learning_rate=0.0001,no_iterations=4500) 
 
#Final prediction 
w = coeff["w"] 
b = coeff["b"] 
 
print('Optimized weights', w) 
print('Optimized intercept',b) 
 
# proabilities 
final_train_pred = sigmoid_activation(np.dot(w,x_train.T)+b) 
final_test_pred = sigmoid_activation(np.dot(w,x_test.T)+b) 
 
# model train and test 
m_tr =  x_train.shape[0] 
m_ts =  x_test.shape[0] 
 
# y train predictions 
y_tr_pred = predict(final_train_pred, m_tr) 
print(y_tr_pred) 
print('Training Accuracy',accuracy_score(y_tr_pred, y_train )) 
 
# y test predictions 
y_ts_pred = predict(final_test_pred, m_ts) 
print(y_ts_pred) 
print('Test Accuracy',accuracy_score(y_ts_pred, y_test)) 
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Test Program Output: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Todo: 
 
Copy and paste the above program into a file called logisticregression.py and run  
it. Try different training and test values. 
 
 
 
 
 
 
 
 

logistic regression 

x train 

[[0 0 0] 

 [0 0 1] 

 [0 1 0] 

 [0 1 1] 

 [1 0 1] 

 [1 1 0]] 

y train 

[0 1 0 1 1 0] 

x test 

[[0 0 0] 

 [0 0 1] 

 [0 1 0] 

 [1 0 1] 

 [1 1 0] 

 [1 1 1]] 

y test 

[0 1 0 1 0 1] 

Number of Features 3 

Optimized weights [[-0.00079864 -0.04158738  0.12165701]] 

Optimized intercept -0.0024190394042546545 

[[0. 1. 0. 1. 1. 0.]] 

Training Accuracy 1.0 

[[0. 1. 0. 1. 0. 1.]] 

Test Accuracy 1.0 
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Logistic Regression using SkLearn 
 
Sklearn has many pre-built classifiers that make classification quite easy to do. 
 
We first import all the required libraries: 

 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.model_selection import train_test_split  
from sklearn.linear_model import LogisticRegression 
from sklearn import metrics 
import pandas as pd 

 
We use the previous data:  
 
x is binary numbers 0 to 7 
 

x =  np.array([[0,0,0],  
               [0,0,1], 
              [0,1,0], 
              [0,1,1], 
              [1,0,0], 
              [1,0,1], 
              [1,1,0], 
              [1,1,1]]) 
 
y is  even/odd  result 
y = np.array([0,1,0,1,0,1,0,1]) 
 
we use train_test_split function to split the data into a training set and a test set 
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.4) 
We  make the LogisticRegression model 
 

logreg = LogisticRegression() 
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We  fit the model with data 
 

logreg.fit(x_train,y_train) 
 
We get the prediction results: 
 

y_pred=logreg.predict(x_test) 
print("prediction") 
print(y_pred) 

 
We make  confusion matrix: 
 

cnf_matrix = metrics.confusion_matrix(y_test, y_pred) 
 
 
A confusion matrix is a table is used to describe the performance of a 
classification model (or “classifier”) on a set of test data for which the true values 
are known. It allows the visualization of the performance of an algorithm. 
It allows easy identification of confusion between classes e.g. one class is 
commonly mislabeled as the other 
 
The number of correct and incorrect predictions are summarized with count 
values and broken down by each class.  
 
 

 Class  1 
Predicted 

Class 2 
Predicted 

Class 1 
Actual 

True 
Positive 

False 
Negative 

Class 2 
Actual 

False 
Positive 

True 
Negative 

 
 
We plot confusion matrix and a heat map together 
 

A heatmap is a way of representing the data in a 2-dimensional form. The data 

values are represented as colors in the graph. The goal of the heatmap is to provide 

a colored visual summary of information. We use the Seaborn heatmap function to 

plot our confusion matrix. 
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class_names=[0,1]  
fig, ax = plt.subplots() 
tick_marks = np.arange(len(class_names)) 
plt.xticks(tick_marks, class_names) 
plt.yticks(tick_marks, class_names) 
 
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g') 

ax.xaxis.set_label_position("top") 
plt.tight_layout() 
plt.title('Confusion matrix', y=1.1) 
plt.ylabel('Actual label') 
plt.xlabel('Predicted label') 
plt.show() 
 

 
 
we  print the statistics 
 

print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) 
print("Precision:",metrics.precision_score(y_test, y_pred)) 
print("Recall:",metrics.recall_score(y_test, y_pred)) 

 
  
  
 

Accuracy: 1.0 

Precision: 1.0 

Recall: 1.0 
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We  plot ROC curve to show accuracy: 
 

A Receiver Operator Characteristic (ROC) curve is a graphical plot used to 

show the diagnostic ability of binary classifiers. The ROC curve shows the trade-

off between sensitivity True Positive Rate (or TPR) and specificity  1-False 

Positive RAATE (1 – FPR). The true positive rate is the proportion of observations 

that were correctly predicted to be positive out of all positive observations (TP/(TP 

+ FN)). Similarly, the false positive rate is the proportion of observations that are 

incorrectly predicted to be positive out of all negative observations (FP/(TN + FP)). 

For example, in medical testing, the true positive rate is the rate in which people 

are correctly identified to test positive for the disease in question. 

 For binary classifiers ROC  give a probability or score that reflects the degree to 

which an instance belongs to one class rather than another. To compare different 

classifiers, it can be useful to summarize the performance of each classifier into a 

single measure.  The area under the ROC curve, which is abbreviated to AUC. is 

equivalent to the probability that a randomly chosen positive instance is ranked 

higher than a randomly chosen negative instance. 
 
y_pred_proba = logreg.predict_proba(x_test)[::,1] 
fpr, tpr, _ = metrics.roc_curve(y_test,  y_pred_proba) 
auc = metrics.roc_auc_score(y_test, y_pred_proba) 
plt.plot(fpr,tpr,label="data 1, auc="+str(auc)) 
plt.legend(loc=4) 
plt.title("ROC") 
plt.show() 
 

 
We are very accurate. 
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Here is the complete program: 

 
#  Logistic Regression using SkLearn 
 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.model_selection import train_test_split  
from sklearn.linear_model import LogisticRegression 
from sklearn import metrics 
import pandas as pd 
 
# x is binary numbers 0 to 7 
x =  np.array([[0,0,0],  
               [0,0,1], 
              [0,1,0], 
              [0,1,1], 
              [1,0,0], 
              [1,0,1], 
              [1,1,0], 
              [1,1,1]]) 
 
# y is  even/odd  result 
y = np.array([0,1,0,1,0,1,0,1]) 
 
# split the data into a training set and a test set 
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.4) 
 
# make logic regression model 
logreg = LogisticRegression() 
 
# fit the model with data 
logreg.fit(x_train,y_train) 
 
# predict results: 
y_pred=logreg.predict(x_test) 
print("prediction") 
print(y_pred) 
 
# plot confusion matrix: 
cnf_matrix = metrics.confusion_matrix(y_test, y_pred) 
class_names=[0,1]  
fig, ax = plt.subplots() 
tick_marks = np.arange(len(class_names)) 
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plt.xticks(tick_marks, class_names) 
plt.yticks(tick_marks, class_names) 
 
# plot heat map 
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g') 
ax.xaxis.set_label_position("top") 
plt.tight_layout() 
plt.title('Confusion matrix', y=1.1) 
plt.ylabel('Actual label') 
plt.xlabel('Predicted label') 
plt.show() 
 
# print statistics 
print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) 
print("Precision:",metrics.precision_score(y_test, y_pred, zero_division=1)) 
print("Recall:",metrics.recall_score(y_test, y_pred, zero_division=1)) 
 
# plot ROC curve 
y_pred_proba = logreg.predict_proba(x_test)[::,1] 
fpr, tpr, _ = metrics.roc_curve(y_test,  y_pred_proba) 
auc = metrics.roc_auc_score(y_test, y_pred_proba) 
plt.plot(fpr,tpr,label="data 1, auc="+str(auc)) 
plt.legend(loc=4) 
plt.show() 
 
 
todo: 
 
Type in or copy/paste in the above program and run it. 
Try different values of test size for the train_test_split. 
 
 

LOGISTIC REGRESSION HOMEWORK    Question 4 

 
For the Logistic Regression sample program above calculate the confusion matrix 
using sklearn, plot the heatmap using a Data Frame and Seaborn.  Calculate 
Accuracy, Precision and Recall using the sklearn. Finally calculate  ROC and AUC 
using sklearn and plot the ROC curve using matplotlib. Label all plots.  Save your 
homework 4 into a file called logistic_regression_homework4.py  
You can use the following to extract the y test probabilities: 
 
                    y_proab = final_test_pred[0] 
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Here are the steps to follow: 
 

Step 1: 

 

Copy the logistic regression program into file  logistic_regression_homework4.py 

 

Step 2: make confusion matrix 

 
from sklearn import metrics 

 

#  make confusion matrix 

cnf_matrix = metrics.confusion_matrix(y_test, y_ts_pred[0]) 

 

Step 3: plot confusion matrix using seaborn and a data  frame 

 
import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

 

# plot confusion using seaborn and a data frame 

sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g') 

plt.show() 

 

Step 4: Calculate Accuracy, Precision and Recall using the sklearn. 

 
# Calculate Accuracy, Precision and Recall 
print("Accuracy:",metrics.accuracy_score(y_test, y_ts_pred[0])) 
print("Precision:",metrics.precision_score(y_test, y_ts_pred[0])) 
print("Recall:",metrics.recall_score(y_test, y_ts_pred[0])) 
 

Step 5:  calculate  ROC and AUC using sklearn  

 
# calculate  ROC and AUC using sklearn 
y_proab = final_test_pred[0] 
fpr, tpr, _ = metrics.roc_curve(y_test,  y_proab) 
auc = metrics.roc_auc_score(y_test, y_proab) 

 

Step 6:  plot the ROC curve using matplotlib 

 
plt.plot(fpr,tpr) 
plt.title("ROC" + " auc="+str(auc)) 
plt.show() 
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You should get something like this: 
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Multinomial Logistic Regression 
 

In Multinomial Logistic Regression, the output variable can have more than two 

possible discrete outputs. Our binary digits now have outputs 0 to 7. 

Multinomial Logistic Regression uses the softmax function rather than the sigmoid 

function. 

The Softmax function calculates the probabilities distribution of the event over ‘n’ 
different events. In general way of saying, this function will calculate the 
probabilities of each target class over all possible target classes. Later the 
calculated probabilities will be helpful for determining the target class for the 
given inputs. 

The main advantage of using Softmax is the output probabilities range. The range 
will 0 to 1, and the sum of all the probabilities will be equal to one. If the softmax 
function used for multi-classification model it returns the probabilities of each 
class and the target class will have the high probability. 

The formula computes the exponential (e-power) of the given input value and 
the sum of exponential values of all the values in the inputs. Then the ratio of the 
exponential of the input value and the sum of exponential values is the output of 
the softmax function.  

 

 

we use the previous data:  

# x is binary numbers 0 to 7 
x =  np.array([[0,0,0],  
               [0,0,1], 
              [0,1,0], 
              [0,1,1], 
              [1,0,0], 
              [1,0,1], 
              [1,1,0], 
              [1,1,1]]) 
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Y is the number 0 to 7 to represent the binary numbers above 
 

y = np.array([0,1,2,3,4,5,6,7]) 

 
We use the x and y values are used as both train and test values for greater 
accuracy. There is not enough bits for separate train and test data 
 

x_train=x 
x_test=x 
y_train=y 
y_test=y; 

 
we  make the LogisticRegression model 
 

logreg = LogisticRegression() 

 
we  fit the model with data 
 

logreg.fit(x_train,y_train) 

 
we get  prediction results 
 

y_pred=logreg.predict(x_test) 
print("prediction") 
print(y_pred) 

 
we make  confusion matrix 
 

cnf_matrix = metrics.confusion_matrix(y_test, y_pred) 
 
 

 Class  1 
Predicted 

Class 2 
Predicted 

Class 1 
Actual 

True 
Positive 

False 
Negative 

Class 2 
Actual 

False 
Positive 

True 
Negative 
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We plot confusion matrix and a heat map together 
 

sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g') 
plt.title('Confusion matrix') 
plt.ylabel('Actual ') 
plt.xlabel('Predicted') 
plt.show() 

 
We print out the statics, we need to set average='weighted' because we no longer  
have binary classification 

 
print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) 
print("Precision:",metrics.precision_score(y_test, y_pred,average='weighted')) 

 

Here is the result 
 

 
 

Accuracy: 1.0 

Precision: 1.0 
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Here is the complete program: 
#  Multinomial Logistic Regression 
 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.model_selection import train_test_split  
from sklearn.linear_model import LogisticRegression 
from sklearn import metrics 
import pandas as pd 
 
# x is binary numbers 0 to 7 
x =  np.array([[0,0,0],  
               [0,0,1], 
              [0,1,0], 
              [0,1,1], 
              [1,0,0], 
              [1,0,1], 
              [1,1,0], 
              [1,1,1]]) 
 
# Y is the number 0 to 7 to represent the binary numbers x 
y = np.array([0,1,2,3,4,5,6,7]) 
 
# use the x and y values are used as both train and test values for greater accuracy.  
# there is not enough bits for separate train and test data 
x_train=x 
x_test=x 
y_train=y 
y_test=y; 
 
# make the LogisticRegression model 
logreg = LogisticRegression() 
 
# fit the model with data 
logreg.fit(x_train,y_train) 
 
#get  prediction results 
y_pred=logreg.predict(x_test) 
print("prediction") 
print(y_pred) 
 
# make  confusion matrix 
cnf_matrix = metrics.confusion_matrix(y_test, y_pred) 
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# plot confusion matrix and a heat map together 
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g') 
 
plt.title('Confusion matrix') 
plt.ylabel('Actual label') 
plt.xlabel('Predicted label') 
plt.show() 
 
print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) 
print("Precision:",metrics.precision_score(y_test, y_pred,average='weighted')) 

 
todo: 

 

Try different binary inputs and output numbers. 

 

 

LOGISTIC REGRESSION HOMEWORK    Question 5 

 

Use Multinomial Logistic Regression to solve the house area and price problem  from 
homework’s question 1,2 and 3 Use x-axis for area and y –axis price. 
 

Square Area (1000) Price (100,000) 

.5 1.4 
2.3 1.9 

2.9 3.2 
 

Use whole numbers not fractions so multiply everything by 10. Plot a seaborn heat 
map and a dual plot of x_test vs y_pred and y_test vs y_pred. Save your homework 5 
into a file called logistic_regression_homework5.py  
 
Step 1: Multinomial Logistic Regression into file logistic_regression_homework5.py 
 
Step 2: replace x with square area 
 
# square area 
x =  np.array([[5],  
               [23], 
              [29] 
              ]) 
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Step 3: replace y with prices 
 
# prices 
y = np.array([14,19,32]) 
 
 
Step 4:  plot of x_test vs y_pred and y_test vs y_pred 
 
plt.plot(x_test, y_pred,label="x_test vs y_pred") 
plt.plot(y_test, y_pred,label="y_test vs y_pred") 
 
 

You should get something like this: 
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End 


