
Copyright © 2020 OnlineProgrammingLessons.com
 1

Natural Language Processing Last Update June 3, 2021

Natural Language Processing involves translation written sentences into meaning.

A good example is a Chatbot. A Chatbot is also known as a digital assistant. Chat

box are used every where to answer questions from customers and provide

accurate answers. When you phone your bank you can ask for your bank account

balance and a digital assistant will answer you with the correct balance. You could

also ask out the digital assistant to go out for lunch, but they might reply they are

not available today but may be tomorrow. A Chatbot interacts with a person ,

picks out important words, queries a data base to give the correct response.

The database connected to a chatbot could return Reponses for typical responses

or more accurate responses for actual questions, like the balance on somebody’s

bank account.

Chatbots use NLP (Natural Language Processing) to analyze, understand, and

derive meaning from human language.

Chat Bot Database

question

answer

lookup

result

Copyright © 2020 OnlineProgrammingLessons.com
 2

PreProcessing Text

In order to process text for a computer we must pre-process the text as follows:

pre-processing includes:

 convert the text into lowercase

 Word Tokenizing converting the text strings into a list of tokens

 Sentence Tokenizing converting the sentence text into a list of
sentences

 Remove Punctuation

 Remove Stop words, words that are common like at, this, a and an that
are not needed

 Stem words to their base form known as Stemming.

if the words end s in s remove the ‘s’: runs -> run
if the word ends in 'ed', remove the 'ed': stopped -> stop
if the word ends in 'ing', remove the 'ing': running -> run
if the word ends in 'ly', remove the 'ly': slowly -> slow

 Lemmatization

Lemmatization is similar to Stemming it links words with similar meaning
to one word. Stemming converts words to their base where as
Lemmatization converts words to a base meaning. Results For
Lemmatization and Stemming may different or the same depending on
the words encountered.

 Examples of lemmatization:

 rocks : rock

 corpora : corpus

 better : good

 running : run

 ran : run

Copyright © 2020 OnlineProgrammingLessons.com
 3

 Examples of Stemming:

 rocks : rock

 corpora : corpus

 better : good

 running : run

 ran : ran

Term Frequency-Inverse Document Frequency TF-IDF

Term Frequency: is a scoring of the frequency of the word in the current
document.
Tf-idf weight is a statistical measure used to evaluate how important a word is to
a document in a collection or corpus. A Corpus is a language resource consisting
of a large and structured set of texts.

 Number of times A term appears in a document

TF = --

 Number of terms in the document

Inverse Document Frequency: is a scoring of how rare the word is across
documents.

 IDF = 1+log(N/n)

 Where:

 N is the number of documents

 n is the number of documents a term has appeared in.

Example calculation:

We have a document with 100 words and that the words apple

 Number of times a term appears in a document 5

TF = --- = ------ = .05

 Number of terms in the document 100

If we have 5 documents

 IDF = 1+log(N/n) = 1 + log(5/.05) = 1 + log(100) = 1 + 2 = 3

Copyright © 2020 OnlineProgrammingLessons.com
 4

Cosine Similarity

TF-IDF is a transformation applied to texts to get two real-valued vectors in vector
space. Cosine similarity is a measure of similarity between two non-zero vectors.
We can then obtain the Cosine similarity of any pair of vectors by taking their dot
product and dividing that by the product of their norms. That yields the cosine of
the angle between the vectors.

 Using this formula, we can find out the similarity between any two documents d1
and d2.

 Dot product(d1, d2)
Cosine Similarity (d1, d2) = -------------------------

 ||d1|| * ||d2||

where d1,d2 are two non zero vectors.

NATURAL language processing using NTLK

The NLTK (Natural Language Toolkit) is a platform for building Python programs to work with

human language.

To install in your python:

pip install nltk

To run in your program:

import nltk

All the NTLK modules are available to down using the following NTLK module

down loader.

nltk.download()

You can choose the modules you want to download, but for these lessons you do

not need to use the downloader. It will take a long time to down load everything

from nltk, so you should not do it.

Copyright © 2020 OnlineProgrammingLessons.com
 5

Sentence tokenize

The NLTK library has the sent_tokenize function to convert text into a list of
sentences.

Example Sentence tokenizing using these test sentences:

text = "I was slowly taking a ride in the car that suddenly stopped. I was slowly riding in a car

that suddenly stopped."

You will first need to download the punkt resource.

nltk.download('punkt')

Once loaded into you system you do not need to load again

You first need to convert all text to lower case

text = text.lower()

print(text)

Copyright © 2020 OnlineProgrammingLessons.com
 6

Next we tokenize the text into a list of sentences

from nltk.tokenize import sent_tokenize
sentences = nltk.sent_tokenize(text)

print("sentence tokens:")
print(sentence_tokens)

You should get something like this:

Remove punctuation

To remove punctuation we make dictionary of punctuation letters where the key
are the punctuation letters and the value are empty strings.

import string
punct_dict = dict((ord(punct), None) for punct in string.punctuation)

Next we use the python translate string method to remove all punctuation

text=text.translate(punct_dict)
print(text)

You should get something like this

['i was slowly taking a ride in the car that suddenly stopped.',

 'i was slowly riding in a car that suddenly stopped.']

i was slowly taking a ride in the car that suddenly stopped i was slowly riding in a car that

suddenly stopped

Copyright © 2020 OnlineProgrammingLessons.com
 7

Word tokenize

The NLTK library has the word_tokenize() function to convert a sentence to
tokens.

You will first need to download the punkt resource if you have not already did so.
Once loaded into you system you do not need to load again

from nltk.tokenize import word_tokenize
tokens = nltk.word_tokenize(text)
print("word tokens:")
print(word_tokens)

You should get something like this:

Note: Before word tokenizing we have already removed punctuation. The
word_tokenize does not simply split a string based on whitespace, but also
separates punctuation into tokens.

remove stopwords

Stop words are common words like at, this, a and an that are not needed. You

first need to down load the stop words resource.

nltk.download('stopwords')

You only need to do this once. Once that are in your system you do not need to
do this again.

Once you have loaded in the stopwords resource you can get a list of stop words
for your language and then use these stop words to remove the stop words from
your word list.

['i', 'was', 'slowly', 'taking', 'a', 'ride', 'in', 'the', 'car', 'that', 'suddenly', 'stopped', 'i', 'was',

'slowly', 'riding', 'in', 'a', 'car', 'that', 'suddenly', 'stopped']

Copyright © 2020 OnlineProgrammingLessons.com
 8

from nltk.corpus import stopwords
stop_words = stopwords.words('english')
word_tokens_stop = [w for w in word_tokens if not w in stop_words]
print("word tokens stop:")
print(word_tokens_stop)

You should get something like this:

stemming

Stemming converts convert words into their base form

You first need to make a stemmer , we are using the PorterStemmer from the

nltk library.

from nltk.stem.porter import PorterStemmer
stemmer = PorterStemmer()

Once you got the stemmer you use the stemmer on each word in the word list

stemmed_words = [stemmer.stem(w) for w in word_tokens_stop]

print("stemmed words")

print(stemmed_words)

You should get something like this:

['slowli', 'take', 'ride', 'car', 'suddenli', 'stop', 'slowli', 'ride', 'car',

'suddenli', 'stop']

['slowly', 'taking', 'ride', 'car', 'suddenly', 'stopped', 'slowly', 'riding', 'car',

'suddenly', 'stopped']

Copyright © 2020 OnlineProgrammingLessons.com
 9

We can make a table to Compare actual word to stemmed word

Actual Stemmed

Slowly Slowly

Taking Take

Ride Ride

Car Car

Suddenly Suddenly

Stopped Stop

Slowly Slowly

Riding Ride

Car Car

Suddenly Suddenly

Stopped Stop

lemmatization

Lemmatization normalizes a word based on the context and vocabulary of the
text. In NLTK, you can lemmatize sentences using the WordNetLemmatizer class.

First, you need to download the wordnet resource from the NLTK downloader in
the Python terminal.

nltk.download('wordnet')

wordnet is a semantically-oriented dictionary of English
once you down loaded wordnet into your system you do not need to load it in
again

Next we import the WordNetLemmatizer class and make a WordNetLemmatizer
object.

 from nltk.stem.wordnet import WordNetLemmatizer
 len = WordNetLemmatizer()

Copyright © 2020 OnlineProgrammingLessons.com
 10

Sometimes, the same word can have a multiple lemmas based on the meaning /

context. We need to determine the parts of speech for each word POS if is a noun

or verb.

Lemmatizing can lemmatize a word to a verb using the ‘v’ parameter or a noun

using the ‘n’ parameter or other parts of speech.

lemmed_words_verb = [lemmer.lemmatize(w,'v') for w in word_tokens_stop]

print("lemmed words verb")

print(lemmed_words_verb)

lemmed_words_noun = [lemmer.lemmatize(w,'n') for w in word_tokens_stop]

print("stemmed words noun")

print(lemmed_words_noun)

You should get something like this:

It may not be possible manually provide the current Parts of speech tag POS tag

for every word for large texts. So, instead, we will find out the correct POS tag for

each word, map it to the right input character that the WordnetLemmatizer

accepts and pass it as the second argument to lemmatize().

lemmed words verb
['slowly', 'take', 'ride', 'car', 'suddenly', 'stop', 'slowly', 'rid', 'car', 'suddenly', 'stop']

stemmed words noun
['slowly', 'taking', 'ride', 'car', 'suddenly', 'stopped', 'slowly', 'riding', 'car', 'suddenly',
'stopped']

Copyright © 2020 OnlineProgrammingLessons.com
 11

We can make a table to Compare actual word to stemmed word

Actual Lemmed verb Lemmed noun

Slowly slowly slowly

Taking take taking

Ride ride Ride

Car car Car

Suddenly suddenly suddenly

Stopped stop stopped

Slowly slowly slowly

Riding rid Ride

Car car Car

Suddenly suddenly suddenly

Stopped stop stopped

Determining parts of speech POS

In nltk, it is available through the nltk.pos_tag() method. It accepts only a list (list

of words), even if its a single word.

pos
pos = nltk.pos_tag(word_tokens_stop)
print("POS")
print(pos)

POS
[('slowly', 'RB'), ('taking', 'VBG'), ('ride', 'NN'), ('car', 'NN'), ('suddenly', 'RB'), ('stopped', 'VBD'),
('slowly', 'RB'), ('riding', 'VBG'), ('car', 'NN'), ('suddenly', 'RB'), ('stopped', 'VBD')]

Copyright © 2020 OnlineProgrammingLessons.com
 12

Here is a table of the parts of speech

POS tag list:

CC coordinating conjunction

CD cardinal digit

DT determiner

EX existential there (like: "there is" ... think as "there exists")

FW foreign word

IN preposition/subordinating conjunction

JJ adjective 'big'

JJR adjective, comparative 'bigger'

JJS adjective, superlative 'biggest'

LS list marker 1)

MD modal could, will

NN noun, singular 'desk'

NNS noun plural 'desks'

NNP proper noun, singular 'Harrison'

NNPS proper noun, plural 'Americans'

PDT predeterminer 'all the kids'

POS possessive ending parent\'s

PRP personal pronoun I, he, she

PRP$ possessive pronoun my, his, hers

RB adverb very, silently,

RBR adverb, comparative better

RBS adverb, superlative best

RP particle give up

TO to go 'to' the store.

UH interjection errrrrrrrm

VB verb, base form take

VBD verb, past tense took

VBG verb, gerund/present participle taking

VBN verb, past participle taken

VBP verb, sing. present, non-3d take

VBZ verb, 3rd person sing. present takes

WDT wh-determiner which

WP wh-pronoun who, what

WP$ possessive wh-pronoun whose

WRB wh-abverb where, when

We can now decide which word is a noun, verb, adjective or adverb.

we use the following function to determine the parts of speech where the noun is

the default.

Copyright © 2020 OnlineProgrammingLessons.com
 13

def get_wordnet_pos(word):

 # Map POS tag to first character
 tag = nltk.pos_tag([word])[0][1][0].upper()

 # make dictionary of tags
 tag_dict = {"J": wordnet.ADJ,
 "N": wordnet.NOUN,
 "V": wordnet.VERB,
 "R": wordnet.ADV}

 # return pos_tag default is wordnet.NOUN

return tag_dict.get(tag, wordnet.NOUN)

We call the function on each word

lemmed_words = [lemmer.lemmatize(w,get_wordnet_pos(w)) for w in word_tokens_stop]

You should get something like this:

Our table of lemmed words is now

We can make a table to Compare actual word to stemmed word

Actual POS

Slowly RB slowly

Taking VBG Take

Ride NN Ride

Car NN Car

suddenly RB suddenly

Stopped VBD Stop

Slowly RB slowly

Riding VBG Rid

Car NN Car

suddenly RB suddenly

Stopped VBD Stop

['slowly', 'take', 'ride', 'car', 'suddenly', 'stop', 'slowly', 'rid', 'car', 'suddenly', 'stop']

Copyright © 2020 OnlineProgrammingLessons.com
 14

Frequency distribution

Nltk has the FreqDist function to print out the frequency distribution each word.

We first import the FreqDist module

from nltk import FreqDist

Then we calculate the frequency distribution of the lemmed words

frequency distribution
Freq_dist = FreqDist(lemmed_words)

We just print out the first 10

print("frequency distribution")
print(freq_dist.most_common(10))

You should get something like this:

tdif

TF-IDF stands for “Term Frequency — Inverse Data Frequency”.

Term Frequency (tf): gives us the frequency of the word in each document in the

corpus. It is the ratio of number of times the word appears in a document

compared to the total number of words in that document. It increases as the

number of occurrences of that word within the document increases. Each

document has its own tf.

frequency distribution
[('slowly', 2), ('car', 2), ('suddenly', 2), ('stop', 2), ('take', 1), ('ride', 1), ('rid', 1)]

Copyright © 2020 OnlineProgrammingLessons.com
 15

 Number of times A term appears in a document

TF = --

 Number of terms in the document

Inverse Data Frequency (idf): used to calculate the weight of rare words across all

documents in the corpus. The words that occur rarely in the corpus have a high

IDF score. It is given by the equation below.

 IDF = 1+log(N/n)

 Where:

 N is the number of documents

 n is the number of documents a term has appeared in.

Combining these two we come up with the TF-IDF score (w) for a word in a

document in the corpus. It is the product of tf and idf:

 TF-IDF = TF * IDF

We now calculate the TF-IDF for our two above lemmed sentences, assuming

each in separate documents.

Sentence1: 'slowly', 'take', 'ride', 'car', 'suddenly', 'stop',

Sentence2: 'slowly', 'ride', 'car', 'suddenly', 'stop'

Calculating tf-idf of two sentences, (each in separate documents)

 TF TF*IDF
Word A B IDF A B

Slowly 1/6 1/6 log(2/2)=0 0 0
Take 1/6 0/6 log(2/1)=.3 .05 0

Ride 1/6 1/6 log(2/2)=0 0 0

Car 1/6 1/6 log(2/2)=0 0 0
Suddenly 1/6 1/6 log(2/2)=0 0 0

Stop 1/6 1/6 log(2/2)=0 0 0
Rid 0/6 1/6 log(2/1)=.3 0 .05

Copyright © 2020 OnlineProgrammingLessons.com
 16

From the above table, we can see that TF-IDF of common words was zero, which

shows they are not significant. On the other hand, the TF-IDF of “take” and “rid”

are non-zero. These words have more significance.

Using sklearn to calculate TF-IDF

Text Analysis is a major application field for machine learning algorithms.
However the raw data, a sequence of symbols cannot be fed directly to the
algorithms themselves as most of them expect numerical feature vectors with a
fixed size rather than the raw text documents with variable length.

In order to address this, scikit-learn provides utilities for the most common ways
to extract numerical features from text content, namely:

 tokenizing strings and giving an integer id for each possible token, for
instance by using white-spaces and punctuation as token separators.

 counting the occurrences of tokens in each document.
 normalizing and weighting with diminishing importance tokens that occur

in the majority of samples / documents.

In this scheme, features and samples are defined as follows:

 each individual token occurrence frequency (normalized or not) is treated
as a feature.

 the vector of all the token frequencies for a given document is considered a
multivariate sample.

A corpus of documents can thus be represented by a matrix with one row per
document and one column per token (e.g. word) occurring in the corpus.

We call vectorization the general process of turning a collection of text
documents into numerical feature vectors. This specific strategy (tokenization,
counting and normalization) is called the Bag of Words or “Bag of n-grams”
representation. Documents are described by word occurrences while completely
ignoring the relative position information of the words in the document.

Copyright © 2020 OnlineProgrammingLessons.com
 17

Tf–idf term weighting

In a large text corpus, some words will be very present (e.g. “the”, “a”, “is” in
English) hence carrying very little meaningful information about the actual
contents of the document. If we were to feed the direct count data directly to a
classifier those very frequent terms would shadow the frequencies of rarer yet
more interesting terms.

Sklern has the TfidfVectorizer module that convert a collection of raw documents

to a matrix of TF-IDF features.

First, we will import TfidfVectorizer from sklearn.feature_extraction.text:

from sklearn.feature_extraction.text import TfidfVectorizer

Now we make a TfidfVectorizer object using English stop words and then call

fit_transform method to calculate the TF-IDF score for the text.

vectorizer = TfidfVectorizer(stop_words='english')
tfidf = vectorizer.fit_transform(sentence_tokens)
print("tfidf")
print(tfidf)

We also print out the word features

print("feature names")
print(vectorizer.get_feature_names())

Copyright © 2020 OnlineProgrammingLessons.com
 18

You should get something like this:

Cosine Similarity

Cosine similarity is a measure of similarity between two non-zero vectors. We can
then obtain the Cosine similarity of any pair of vectors by taking their dot product
and dividing that by the product of their norms. That yields the cosine of the
angle between the vectors.

 Using this formula, we can find out the similarity between any two documents d1
and d2.

 Dot product(d1, d2)
 Cosine Similarity (d1, d2) = ----------------------
 ||d1|| * ||d2||

where d1,d2 are two non zero vectors.

Mathematically:

tfidf
 (0, 4) 0.35464863330313684
 (0, 5) 0.35464863330313684
 (0, 0) 0.35464863330313684
 (0, 1) 0.49844627974580596
 (0, 6) 0.49844627974580596
 (0, 3) 0.35464863330313684
 (1, 2) 0.5749618667993135
 (1, 4) 0.40909010368335985
 (1, 5) 0.40909010368335985
 (1, 0) 0.40909010368335985
 (1, 3) 0.40909010368335985
feature names
['car', 'ride', 'riding', 'slowly', 'stopped', 'suddenly', 'taking']

Copyright © 2020 OnlineProgrammingLessons.com
 19

Cosine similarity measures the cosine of the angle between two vectors projected
in a multi-dimensional space. The smaller the angle, higher the cosine similarity.

Calculating cosine similarity with sklearn

Sklearn has the cosine_similarity function to calculate Cosine similarity between
tf-idf’s.

We first import the cosine_similarity module from sklearn.metrics.pairwise

from sklearn.metrics.pairwise import cosine_similarity

We calculate cosine_similariry between the last tf-idf tfidf[-1] and the tf-idf from
previous section.

 print("tfidf[-1]")
print(tfidf[-1])

tfidf[-1]
 (0, 2) 0.5749618667993135
 (0, 4) 0.40909010368335985
 (0, 5) 0.40909010368335985
 (0, 0) 0.40909010368335985
 (0, 3) 0.40909010368335985

Copyright © 2020 OnlineProgrammingLessons.com
 20

print("tfidf")
print(tfidf)

 print("cosine_similarity")
print(cosine)

The 0.58033298 represents the cosine similarity between the last td-idf compared

to all the td-idf. The 1.0 is the td-idf itself.

We then extract the 1D array of values

values = cosine[-2]

print("values")

print(values)

cosine_similarity
[[0.58033298 1.]]

tfidf
 (0, 4) 0.35464863330313684
 (0, 5) 0.35464863330313684
 (0, 0) 0.35464863330313684
 (0, 1) 0.49844627974580596
 (0, 6) 0.49844627974580596
 (0, 3) 0.35464863330313684
 (1, 2) 0.5749618667993135
 (1, 4) 0.40909010368335985
 (1, 5) 0.40909010368335985
 (1, 0) 0.40909010368335985
 (1, 3) 0.40909010368335985

values
[0.58033298 1.]

Copyright © 2020 OnlineProgrammingLessons.com
 21

We then get a list of sorted indexes

indexes = values.argsort()
print("indexes")
print(indexes)

The first index represents the first document to the last document

Which is the first sentence in our list of sentences

 Closest_index = indexes[-2]

We then flatten and sort the values

 flat = values.flatten()

 flat.sort()

The closest tdif is the first one

 req_tfidf = flat[-2]
 print("req_tfidf")
 print(req_tfidf)

We now have enough information to code our chatbot.

indexes
[0 1]

0

[0.58033298 1.]

0.5803329846765686

Copyright © 2020 OnlineProgrammingLessons.com
 22

Natural Language Homework 1

Make a function called get_lemmed_tokens(text): that will convert al text to

lower case, remove all punctuation, remove stop words and lemmatize using pos

tags.

Test it like this

TfidfVector = TfidfVectorizer(stop_words='english')

Then calculate the cosine similarity and choose the best response.

Put your python code in a file called natural_language1.py

Chatbot Algorithm

The Chatbot algorithm is quite simple, we just get a text information document

from the internet known as a corpus. We consider each sentence a separate

document. We ask then user to type in a question. We attach the question to the

end of our document. Then we lemmatize each word per sentence in the

document. We then calculate the cosine similarity between the last tfidf and all

the tfidf's. We then choose the best tfidf from the cosine similarity result. We

print out the best sentence using the cosine similarity index. Example if we had a

documents continuing information about fruits and we ask what is an apple, we

could get the response an “apple is a delicious red fruit” , if we could not find a

match and we could get the answers “I do not know the answer”.

Here are the steps:

Step 1:

Choose a corpus information document from the internet. The most popular one

is the Chabot page on Wikipedia https://en.wikipedia.org/wiki/Chatbot.

Just put the text portion into a file called chstbot.txt.

https://en.wikipedia.org/wiki/Chatbot

Copyright © 2020 OnlineProgrammingLessons.com
 23

Step 2:

Read in the file

convert to lower case

Step 3:

Tokenize sentences

Step 4:

Lemmatize words in sentences accordable to POS

Step 5:

Make some standard input and outputs sentences
standard_inputs = ("hello", "hi", "who are you","what is your name")
standard_responses = ("I am robo","How are you today")

Step 6:

Print a greeting

print("Hello, my name is Robo, I am a chat bot.")
print("Ask me questions about Chatbot's. To exit type Bye!: ")

Step 7:

Get user input
Of input one of the standard inputs respond with a random standard output
If input is bye then exit

Step 8:

Lemmatize user input and add the lemmatized sentences

Step 9:

Calculate tdidf from the lemmatized sentences

Copyright © 2020 OnlineProgrammingLessons.com
 24

Step 10

Calculate cosine similarity

Step 11

Get a list of sorted cosine indexes
Store index of user cosine entry

Step 12

Get tfidf score
If the requested tfidf is 0 ask for more information
Else print out the sentence for the associated index

 Here is the complete program

"""
chatbot.py

simple chatbot
"""

import nltk
import random

needed to suppress warnings
import warnings
warnings.filterwarnings('ignore')

download nltk modules
nltk.download() # for nltk downloading packages (not needed)

nltk.download('punkt') # run once only
nltk.download('wordnet') # run once only

Copyright © 2020 OnlineProgrammingLessons.com
 25

get list of stop words
nltk.download('stopwords')
from nltk.corpus import stopwords
stop_words = stopwords.words('english')

get punctuation string
import string
punct_dict = dict((ord(punct), None) for punct in string.punctuation)

make lemmer
from nltk.corpus import wordnet
from nltk.stem.wordnet import WordNetLemmatizer
lemmer = WordNetLemmatizer()

function to return POS for a word
def get_wordnet_pos(word):

 # Map POS tag to first character
 tag = nltk.pos_tag([word])[0][1][0].upper()

 # make dictionary of tags
 tag_dict = {"J": wordnet.ADJ,
 "N": wordnet.NOUN,
 "V": wordnet.VERB,
 "R": wordnet.ADV}

 # return pos_tag default is wordnet.NOUN
 return tag_dict.get(tag, wordnet.NOUN)

function to return lemmed words of a text with POS
def get_lemmed_tokens(text):

 # to lower case
 text = text.lower()

 # remove punctuation
 text=text.translate(punct_dict)

 # make word tokens
 word_tokens = nltk.word_tokenize(text)

 # remove stop words
 word_tokens_stop = [w for w in word_tokens if not w in stop_words]

Copyright © 2020 OnlineProgrammingLessons.com
 26

 # get lemmed tokens for POS
 lemmed_tokens = [lemmer.lemmatize(w,get_wordnet_pos(w)) for w in word_tokens_stop]

 # return lemmed words
 return " ".join(lemmed_tokens)

make function to lemminize a sentence without POS
def lemminize(text):

 # change to lower case
 text = text.lower()

 # make a dictionary of punctuation
 punct_dict = dict((ord(punct), None) for punct in string.punctuation)

 # remove punctuation
 tokens = nltk.word_tokenize(text.translate(punct_dict))

 # leminize tokens
 lemmers = [lemmer.lemmatize(token) for token in tokens]

 return lemmers

read in corpus
f=open('chatbot.txt','r',errors = 'ignore')
text=f.read()

convert to lowercase
text = text.lower()

get a list of sentence tokens
sent_tokens = nltk.sent_tokenize(text)

lem sent tokens
lemmed_sent_tokens = []
for sent in sent_tokens:
 lemmed_tokens = get_lemmed_tokens(sent)
 lemmed_sent_tokens.append(lemmed_tokens)

Copyright © 2020 OnlineProgrammingLessons.com
 27

standaed inputs
standard_inputs = ("hello", "hi", "who are you","what is your name")
standard_responses = ("I am robo","How are you today")

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

return reponse from chatbot
def get_response():

 # make TfidfVectorizer
 #TfidfVec = TfidfVectorizer(tokenizer=lemminize, stop_words='english')
 TfidfVec = TfidfVectorizer(stop_words='english')

 # get tfidf's
 tfidf = TfidfVec.fit_transform(lemmed_sent_tokens)

 # calculate cosinse simularity of last tdif to all tdif
 cosines = cosine_similarity(tfidf[-1], tfidf)

 # get list of sorted indexes
 indexes=cosines.argsort()[0]

 # get index of reponse with greatest similarity
 index = indexes[-2]

 # get list of sorted cosines
 flat = cosines.flatten()
 flat.sort()

 # get reqest tdif
 req_tfidf = flat[-2]

 # check for a response
 if(req_tfidf==0):
 response = "I do not, know the answer, please give me more details:"
 else:
 response = sent_tokens[index]
 return response

Copyright © 2020 OnlineProgrammingLessons.com
 28

print greeing
print("Hello, my name is Robo, I am a chat bot.")
print("Ask me questions about Chatbot's. To exit type Bye!: ")

user = ""
while(user != 'bye'):
 user = input("> ").lower()

 # exit
 if user == 'bye' or user == 'goodbye' or user == 'exit' or user == 'quit':
 print ("Have a nice day")

 # help
 elif user == 'help' or user == '?':
 print("Hello, my name is Robo, I am a chat bot.")
 print("Ask me questions about Chatbot's. To exit type Bye!: ")

 # general questions answered
 elif user in standard_inputs:
 print(random.choice(standard_responses))

 # respond to user
 else:

 # lem user
 lemmed_user = get_lemmed_tokens(user)

 # add user response to sentence tokens
 lemmed_sent_tokens.append(lemmed_user)

 # get response from chat bot
 response = get_response()
 print(response)

 # remove user response from sentencetokens
 lemmed_sent_tokens.remove(lemmed_user)

Copyright © 2020 OnlineProgrammingLessons.com
 29

Running the program

[nltk_data] Downloading package punkt to
[nltk_data] C:\Users\ADMIN\AppData\Roaming\nltk_data...
[nltk_data] Package punkt is already up-to-date!
[nltk_data] Downloading package wordnet to
[nltk_data] C:\Users\ADMIN\AppData\Roaming\nltk_data...
[nltk_data] Package wordnet is already up-to-date!
[nltk_data] Downloading package stopwords to
[nltk_data] C:\Users\ADMIN\AppData\Roaming\nltk_data...
[nltk_data] Package stopwords is already up-to-date!
Hello, my name is Robo, I am a chat bot.
Ask me questions about Chatbot's. To exit type Bye!:

> hello
I am robo

> what is a chatbox
I do not, know the answer, please give me more details:

> what is a chatbot?
chatbot
from wikipedia, the free encyclopedia

a virtual assistant chatbot

a chatbot is a software application used to conduct an on-line chat conversation via text or text-
to-speech, in lieu of providing direct contact with a live human agent.

> who is eliza?
development[edit]
among the most notable early chatbots are eliza (1966) and parry (1972).

> what is natural learning?
[37] these intelligent chatbots make use of all kinds of artificial intelligence like image
moderation and natural language understanding (nlu), natural language generation (nlg),
machine learning and deep learning.

> what is natural language processing?
[14]
one pertinent field of ai research is natural language processing.

Copyright © 2020 OnlineProgrammingLessons.com
 30

> what is ai?
[14]
one pertinent field of ai research is natural language processing.

> bye
Have a nice day

Conclusion

The chatbot program is based on similarity matching. Although the answers are

impressive it is not really answering our questions, just giving us a matching

response, but it is a beginning in natural language processing. Out next Chatbot

will be an AI Chatbot using neural networks to provide matching using categories.

AI Chatbot

The AI Chatbot uses a neural network to match known questions to known

answers organized by categories.

Here are the steps to make the AI ChatBot

Step 1: pick categories

We first pick out some categories from our previous corpus document.

Overview

Background

Development

Applications

Limitations

Jobs

Copyright © 2020 OnlineProgrammingLessons.com
 31

Step 2: make questions for answers

We then choose some important information and formulate some question to

the provided information.

We start with each category, each category will get a few questions and a

answers.

Overview

 Question 1: What is a chat bot?

 Answer 1: A chatbot is a software application used to conduct an on-line

chat conversation

 Question 2: What are the uses for a chat bot?

 Answer 2: Chatbots are used in service, request routing, or information

gathering

 Question 3: Where are chatbots used?

 Answer 3: Chat bots are used in e-commerce , education, entertainment,

finance, health and news

Background

Question 1: What is Eliza?

 Answer 1: involves the recognition of clue words or phrases, and the

outputs corresponding pre-prepared or pre-programmed responses

 Question 2: How does Eliza work?

 Answer 2: it is actually based on rather simple pattern-matching

Development

Question 1: Who were the early charbots

 Answer 1: Early chatbots are ELIZA (1966) and PARRY (1972) and later

A.L.I.C.E., Jabberwacky and D.U.D.E

https://en.wikipedia.org/wiki/Jabberwacky

Copyright © 2020 OnlineProgrammingLessons.com
 32

 Question 2: How did the early chatbot’s work

 Answer 2: Purely based on pattern matching techniques without any

reasoning capabilities

Applications

Question 1: What are applications for chatbots
 Answer 1: Messaging apps, Company internal platforms, Customer Service,
and Healthcare

Limitations

Question 1: What are the limitations of Chatbots?

 Answer 1: efficiency highly depends on language processing , require a

large amount of conversational data to train

 Question 2: How does Eliza work?

 Answer 2: it is actually based on rather simple pattern-matching

Jobs

Question 1: What jobs can a chatbot do?

 Answer 1: often are used to automate tasks that do not require skill-based

talents

 Question 2: What jobs can a chatbot replace?

 Answer 2: customer service, and call center workers and telemarketing.

Step 3: put categories, questions and answers in a file

We can put our categories, questions and answers in a file so we can update them.

Using the format:

Category
Question
Answer

Copyright © 2020 OnlineProgrammingLessons.com
 33

Aichatbot.txt

Overview
What is a chat bot?
A chatbot is a software application used to conduct an on-line chat conversation
Overview
What are the uses for a chat bot?
Chatbots are used in service, request routing, or information gathering
Overview
Where are chatbots used?
Chat bots are used in e-commerce , education, entertainment, finance, health and news
Background
What is Eliza?
Involves the recognition of clue words or phrases t, and the outputs corresponding pre-prepared or pre-
programmed responses
Background
How does Eliza work?
It is actually based on rather simple pattern-matching
Development
Who were the early charbots
Early chatbots are ELIZA (1966) and PARRY (1972) and later A.L.I.C.E., Jabberwacky and D.U.D.E
Development
How did the early chatbot’s work
Purely based on pattern matching techniques without any reasoning capabilities
Applications
What are applications for chatbots
Messaging apps, Company internal platforms, Customer Service, and Healthcare
Limitations
What are the limitations of Chatbots?
Efficiency highly depends on language processing , require a large amount of conversational data to
train
Limitations
How does Eliza work?
it is actually based on rather simple pattern-matching
Jobs
What jobs can a chatbot do?
Often are used to automate tasks that do not require skill-based talents
Jobs
What jobs can a chatbot replace?
Customer service, and call center workers and telemarketing.

Copyright © 2020 OnlineProgrammingLessons.com
 34

Step 4: store information in lists

We read in the file of categories, questions and answers and put the information

in lists.

store info
categories = []
questions = []
answers = []

open file
f=open("aichatbot.txt","r")

read lines from file
line = f.readline().strip()
while(line):

 categories.append(line)
 line = f.readline().lower().strip()
 questions.append(line)
 line = f.readline().lower().strip()
 answers.append(line)
 line = f.readline().strip()

step 5 map question words to word list, map question to a category

Example mapping sentence to words:

if a sentence has a word in it from all the words then put a 1 else put a 0

 Word1
cat

Word2
dog

Word3
sat

Word 4
house

Word 5
rat

Word 6
bite

Word 7
ate

Sentence1
the cat sat on the rat

1 0 1 0 1 0 0

Sentence2
the cat bite the dog

1 1 0 0 0 1 0

Sentence3
the cat sat on the rat

1 0 1 0 1 0 0

Sentence4
the cat ate the rat

1 0 0 0 0 0 1

Copyright © 2020 OnlineProgrammingLessons.com
 35

Example mapping sentence to a category:
For each sentence state the category

 Category 1
sitting

Category 2
bitting

Category 3
eating

Category 4
running

Sentence1
the cat sat on the rat

1 0 0 0

Sentence2
the cat bite the dog

0 1 0 0

Sentence3
the cat ran after the rat

1 0 0 1

Sentence4
the cat ate the rat

0 0 1 0

stem word tokens
stemmed_words = [stemmer.stem(w) for w in word_tokens_stop]
stemmed_words = sorted(list(set(stemmed_words)))

sort categories
sorted_categories = sorted(list(set(categories)))

training = []
output = []

map questions to words
for i, question in enumerate(questions_tokenized_stopped):

 training_row = []

 # stem tokens
 stemmed_question = [stemmer.stem(token) for token in question]

 # check foe matched word
 for w in stemmed_words:
 if w in stemmed_question:
 training_row.append(1)
 else:
 training_row.append(0)

Copyright © 2020 OnlineProgrammingLessons.com
 36

 # map question to category
 output_row = [0] * len(sorted_categories)
 output_row[sorted_categories.index(categories[i])] = 1

 training.append(training_row)
 output.append(output_row)

Step 6: Setup neural network

We are using tensorflow that works quite fast. We have a input size for the number of words in
the word list. We have 2 hidden layer each of 8 nodes. We have output node of size of the
categories. The output layer use “softmax” where the output follows the input positively.

neural net input and outputs
training = numpy.array(training)
output = numpy.array(output)

#tensorflow.reset_default_graph()
ops.reset_default_graph()

make neural net
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

make neural network model
model = tflearn.DNN(net)

train neural network
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)

Step 7 make prediction

Each query is mapped the question words and the sent to the neural network for category
prediction. From the prediction results one is chosen randomly.

Copyright © 2020 OnlineProgrammingLessons.com
 37

get response from neural network
def get_response(query, words):

 # empty row
 row = [0] * len(words)

 # to lower case
 query = query.lower()

 # remove punctuation
 query=query.translate(punct_dict)

 # word tokenize question
 tokens = nltk.word_tokenize(query)

 #remove stop words
 tokens_stop = [w for w in tokens if not w in stop_words]

 # stem words
 stemmed_tokens = [stemmer.stem(word) for word in tokens_stop]

 # map query to question words
 for stemmed_word in stemmed_tokens:
 for i, w in enumerate(words):
 if w == stemmed_word:
 row[i] = 1

 # return row pattern
 return numpy.array(row)

def chat():
 print("Hi, I am Chatbot, ask me questions about chatbots's, type bye to exit:")
 while True:

 # enter query
 query = input("> ")
 if query.lower() == "bye":
 print("Have a nice day")
 break

 # get neural network reponse for query
 response = get_response(query, stemmed_words)

Copyright © 2020 OnlineProgrammingLessons.com
 38

 # do prediction
 results = model.predict([response])

 # choose largest result
 results_index = numpy.argmax(results)

 # get category for index
 tag = sorted_categories[results_index]
 print(tag)

 # match category
 responses = []
 for i,category in enumerate(categories):
 if category == tag:
 responses.append(answers[i])

 # pick random response
 print(random.choice(responses))

chat()

Here is the complete code for AI Chatbot:

"""
AIchatbotex.py
"""

import numpy
import tflearn
#import tensorflow
from tensorflow.python.framework import ops
#ops.reset_default_graph()
import random

needed to suppress warnings
import warnings
warnings.filterwarnings('ignore')

download nltk modules
nltk.download() # for nltk downloading packages (not needed)

Copyright © 2020 OnlineProgrammingLessons.com
 39

import nltk
nltk.download('punkt') # run once only
#nltk.download('wordnet') # run once only

get list of stop words
nltk.download('stopwords')
from nltk.corpus import stopwords
stop_words = stopwords.words('english')

get punctuation string
import string
punct_dict = dict((ord(punct), None) for punct in string.punctuation)

make stemmer
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()

store info
categories = []
questions = []
answers = []

open file
f=open("aichatbot.txt","r")

read lines from file
line = f.readline().strip()
while(line):

 categories.append(line)
 line = f.readline().lower().strip()
 questions.append(line)
 line = f.readline().lower().strip()
 answers.append(line)
 line = f.readline().strip()

print out data
print("categories:")
print(categories)
print("questions:")
print(questions)

Copyright © 2020 OnlineProgrammingLessons.com
 40

print("answers:")
print(answers)

make list of words, sentence words and sentence categories
word_tokens_stop = []
questions_tokenized_stopped = []

for each question
for i,question in enumerate(questions):
 # remove punctuation
 question=question.translate(punct_dict)
 # word tokenize question
 tokens = nltk.word_tokenize(question)
 # remove stop words
 tokens_stop = [w for w in tokens if not w in stop_words]
 word_tokens_stop.extend(tokens_stop)
 questions_tokenized_stopped.append(tokens_stop)

print out data
print("word tokens stop:")
print(word_tokens_stop)
print("sentence_tokenized:")
print(questions_tokenized_stopped)

stem word tokens
stemmed_words = [stemmer.stem(w) for w in word_tokens_stop]
stemmed_words = sorted(list(set(stemmed_words)))

sort categories
sorted_categories = sorted(list(set(categories)))

training = []
output = []

map questions to words
for i, question in enumerate(questions_tokenized_stopped):

 training_row = []

 # stem tokens
 stemmed_question = [stemmer.stem(token) for token in question]

Copyright © 2020 OnlineProgrammingLessons.com
 41

 # check foe matched word
 for w in stemmed_words:
 if w in stemmed_question:
 training_row.append(1)
 else:
 training_row.append(0)

 # map question to category
 output_row = [0] * len(sorted_categories)
 output_row[sorted_categories.index(categories[i])] = 1

 training.append(training_row)
 output.append(output_row)

neural net input and outputs
training = numpy.array(training)
output = numpy.array(output)

#tensorflow.reset_default_graph()
ops.reset_default_graph()

make neural net
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

make neural network model
model = tflearn.DNN(net)

train neural network
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)

get response from neural network
def get_response(query, words):

 # empty row
 row = [0] * len(words)

Copyright © 2020 OnlineProgrammingLessons.com
 42

 # to lower case
 query = query.lower()

 # remove punctuation
 query=query.translate(punct_dict)

 # word tokenize question
 tokens = nltk.word_tokenize(query)

 #remove stop words
 tokens_stop = [w for w in tokens if not w in stop_words]

 # stem words
 stemmed_tokens = [stemmer.stem(word) for word in tokens_stop]

 # map query to question words
 for stemmed_word in stemmed_tokens:
 for i, w in enumerate(words):
 if w == stemmed_word:
 row[i] = 1

 # return row pattern
 return numpy.array(row)

def chat():
 print("Hi, I am Chatbot, ask me questions about chatbots's, type bye to exit:")
 while True:

 # enter query
 query = input("> ")
 if query.lower() == "bye":
 print("Have a nice day")
 break

 # get neural network reponse for query
 response = get_response(query, stemmed_words)

 # do prediction
 results = model.predict([response])

 # choose largest result

Copyright © 2020 OnlineProgrammingLessons.com
 43

 results_index = numpy.argmax(results)

 # get caregory for index
 tag = sorted_categories[results_index]
 print(tag)

 # match category
 responses = []
 for i,category in enumerate(categories):
 if category == tag:
 responses.append(answers[i])

 # pick random response
 print(random.choice(responses))

chat()

to do:

Type in or copy and pastein the above code and run it. Try out sone queries.

You should get something like this:

Hi, I am Chatbot, ask me questions about chatbots's, type bye to exit:

> Who were the early charbot

Development

early chatbots are eliza (1966) and parry (1972) and later a.l.i.c.e., jabberwacky

and d.u.d.e

> How does Eliza work?

Limitations

efficiency highly depends on language processing , require a large amount of

conversational data to train

> What is a chat bot?

Copyright © 2020 OnlineProgrammingLessons.com
 44

Applications

messaging apps, company internal platforms, customer service, and healthcare

> What are applications for chatbots

Applications

messaging apps, company internal platforms, customer service, and healthcare

> What are the limitations of Chatbots?

Limitations

efficiency highly depends on language processing , require a large amount of

conversational data to train

> bye

Have a nice day

NaturalLanguageProcessing Question 2

Replace the random choice instead use a TfidfVector and then calculate the cosine
similarity and choose the best response.
Put your python code in a file called natural_language2.py

END

