
1
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Lesson5 Using Pandas Data Frames Last Update: Apr 24, 2021

Conventions used in these lessons:

bold - headings, keywords, code

italics - code syntax

underline - important words

A data frame stores data as rows and columns similar to a spread sheet. Each

column has a heading. Each row contains the data for each column heading. We

can make the following data frame to store information about cars having a make,

model, number of doors , car type and selling price.

Make Model Doors Price

Ford Mustang 2 12000

GM Spitfire 2 34000
Toyota Yarris 4 26000

Nissan Sentra 2 18000
Honda Accord 2 16000

To use data frames you first need to import pandas into your python

import pandas as pd

You also may need to load in the pandas module into your python

pip install pandas

2
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

To make the data frame, we first make a python dictionary of the above rows

and columns and then store in a data frame. The dictionary keys represent a

column heading where as the dictionary values are represented by a list of

column values for each row.

cars = {'make':['Ford','GM','Toyota','Nissan', 'Honda'],

 'model':['Mustang','Spitfire','Yarris','Sentra', 'Accord'],

 'doors':[2,2,4,2,2],

 'price':[12000,34000,26000,18000,16000]}

We print out the dictionary as follows:

print(cars)

Next we load the dictionary of cars into a pandas data frame called df

df = pd.DataFrame(cars)

Then we print out the data frame

print(df)

{'make': ['Ford', 'GM', 'Toyota', 'Nissan', 'Honda'],

'model': ['Mustang', 'Spitfire', 'Yarris', 'Sentra', 'Accord'],

'doors': [2, 2, 4, 2, 2],

 'price': [12000, 34000, 26000, 18000, 16000]}

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

2 Toyota Yarris 4 26000

3 Nissan Sentra 2 18000

4 Honda Accord 2 16000

3
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

We now have a data frame based on our cars dictionary. Note each list values in

the dictionary is represented by a column row value’s in the data frame.

Note: We have automatic indexes 0 to 3 supplied to us. Indexes represent a

lookup for each row. Row 0 is index 0. Later on we will specify a column to be an

index.

You can make a empty data frame by not supplying a dictionary.

df= pd.DataFrame()

print(df)

We have empty column names and indexes.

We can then add rows to the data frame like this:

df['make'] = ['Ford','GM','Toyota','Nissan', 'Honda']
df['model'] = ['Mustang','Spitfire','Yarris','Sentra', 'Accord']
df['doors'] = [2,2,4,2,2]
df['price'] = [12000,34000,26000,18000,16000]

Some data frames can be quite large , you can use df.head() to print out the first

5 rows.

print(df.head())

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

2 Toyota Yarris 4 26000

3 Nissan Sentra 2 18000

4 Honda Accord 2 16000

Empty DataFrame

Columns: []

Index: []

4
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

You can also specify the number of rows to print out. Here we specify to print out

the first 2 rows.

print(df.head(2))

Loading a data frame from a csv file

We can also load a data frame from a csv file cars.csv

cars.csv

To load a pandas data frame from a csv file we use the pandas read_csv functions

and specify a file name. We load the above csv file called “cars.csv” into our data

frame. The csv file must be in the same folder as your py files in order to access it.

df = pd.read_csv('cars.csv')

We then print out the data frame.

print(df)

make,model,doors,price

Ford,Mustang,2,12000

GM,Spitfire,2,34000

Toyota,Yarris,4,26000

Nissan,Sentra,2,18000

Honda,Accord,2,16000

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

2 Toyota Yarris 4 26000

3 Nissan Sentra 2 18000

4 Honda Accord 2 16000

5
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Note: Again we have automatic indexes 0 to 3 supplied to us. Indexes represent a

lookup index for each row. Row 0 is index 0.

Removing NaN’S from a data frame.

Many csv file have blank cell entries that become NaN in a data frame. NaN

stands for Not a Number. To demonstrate NaN’s we have loaded the data frame

from a csv file with blank entries.

cars2.csv

df = pd.read_csv('cars2.csv')

The best thing to do is set all NaN (Not a Number) to 0. To change all Nan’s to 0

we use the pandas fillna function. We need to specify inplace = True or else the

values will not changed in our data frame.

df.fillna(0,inplace=True)

 Without specifying inplace = True a new data frame is returned instead, you

would have to the returned data frame to itself or another one.

 df = df.fillna(0)

 make model doors price

0 Ford Mustang 2.0 12000.0

1 GM Spitfire NaN 34000.0

2 Toyota Yarris 4.0 NaN

3 Nissan Sentra 2.0 1800.0

4 Honda Accord 2.0 16000.0

make,model,doors,price

Ford,Mustang,2,12000

GM,Spitfire,,34000

Toyota,Yarris,4,

Nissan,Sentra,2,18000

Honda,Accord,2,16000

6
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

We print out the updated data frame. Notice all NaN’s have been changed to 0.

print(df)

Note: You can also put NaN’s in a dictionary or data frame using numpy np.NaN

To continue we reload our data frame with the original data frame.

df = pd.DataFrame(cars)

 print(df)

or you can read from the csv file again.

df = pd.read_csv('cars.csv')

print(df)

Printing out column names

Once you got your data frame loaded you can print out the column names

indexes by using the data frame columns property

print(df.columns)

 make model doors price

0 Ford Mustang 2.0 12000.0

1 GM Spitfire 0.0 34000.0

2 Toyota Yarris 4.0 0.0

3 Nissan Sentra 2.0 1800.0

4 Honda Accord 2.0 16000.0

Index(['make', 'model', 'doors', 'price'], dtype='object')

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

2 Toyota Yarris 4 26000

3 Nissan Sentra 2 18000

4 Honda Accord 2 16000

7
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

You can also use tolist to just print out the columns names as a list instead.

print(df.columns.tolist())

Printing out indexes

Once you got your data frame loaded you can print out the row index details by

using the data frame index property

print(df.index)

You can use tolist to print out the row indexes as a list instead.

print(df.index.tolist())

Getting number of rows and columns in a Data frame

You can use the len function to get the number of rows in a data frame.

print(len(df))

You can also use the python len function on the columns list to get the number of

columns in a data frame.

5

['make', 'model', 'doors', 'price']

RangeIndex(start=0, stop=5, step=1)

[0, 1, 2, 3, 4]

8
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

print(len(df.columns))

Printing out individual rows

To print out individual rows or group of rows we use index slicing

 df[start_index=0 : end_index=rows : step=1]

The default start index is 0, the default end index is the number of rows and a the

default step size is 1. Note: The end_index never gets selected.

To print out the first row you can use print(df[0:1]) or default print(df[:1]) where

the [:1] means [0:1]

print(df[0:1])

To print out a group of rows like row 1 to 3 you can use print(df[1:4])

print(df[1:4])

To print out the last row we use -1 as the start index since you may not know how

many rows you have.

print(df[-1:])

 make model doors price

0 Ford Mustang 2 12000

 make model doors price

1 GM Spitfire 2 34000

2 Toyota Yarris 4 26000

3 Nissan Sentra 2 1800

 make model doors price

4 Honda Accord 2 16000

4

9
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

To print all rows except the last one you can use print(df[:-1])

print(df[:-1])

You can even reverse a data frame using df[::-1])

print(df[::-1])

Accessing individual columns

You can access column data by the column name. The column names are case

sensitive. To access a column you specify the column name in quotes enclosed by

square brackets as follows:

df['column_name'] (return data frame as a series)

The data is returned as a series of values rather than as a data frame. A pandas

series contains the row index as the key and associated column row values for

that column row. A series is similar to a 1 dimensional array, only having rows and

1 column, where as a data frame is similar to a 2 dimensional array having rows

and many columns.

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

2 Toyota Yarris 4 26000

3 Nissan Sentra 2 18000

 make model doors price

4 Honda Accord 2 16000

3 Nissan Sentra 2 18000

2 Toyota Yarris 4 26000

1 GM Spitfire 2 34000

0 Ford Mustang 2 12000

10
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Here we return the make column as a series.

print(df['make'])

dtype refers to the data type of the column in our case it’s a object representing

string object.

You can cases individual values by specifying a row index

To access the make value first row in the column use row index 0 like:

value = df['make'][0]

print(value)

to do:

Access one of the other column values using a row index.

For convenience you can also convert the column values to a list using tolist

function.

print(df['make'].tolist())

0 Ford

1 GM

2 Toyota

3 Nissan

4 Honda

Name: make, dtype: object

Ford

['Ford', 'GM', 'Toyota', 'Nissan', 'Honda']

11
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

To return a data frame instead of a series you specify the column name enclosed

in double square brackets as follows:

df[['column_name']] (return column as a dataframe)

Here we return a data frame just with the make column

print(df[['make']])

You can also return a data frame with multiple columns like ‘make’ and ‘model’.

print(df[['make','model']])

Locating rows using loc and iloc

loc uses labels to locate rows and column data

iloc uses integer indexes to locate rows and columns data.

We will first work with iloc.

With iloc you can specify either row or columns or both. iloc has both a row

selection and a column selection. You can use row selection, or column selection

or both.

df.iloc[<row selection>,<column selection>]

 make model

0 Ford Mustang

1 GM Spitfire

2 Toyota Yarris

3 Nissan Sentra

4 Honda Accord

 make

0 Ford

1 GM

2 Toyota

3 Nissan

4 Honda

12
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Where row selection can be start_index : end_index and where column selection

can also be start_index: end_index

You can visualize row selection and column selection like this:

df.iloc[start_index : end_index, start_index : end_index]

Data can be returned as a series of values or as a data frame.

When a single row is selected and enclosed by a single bracket than data is

returned as a series for the column values in the specified row index.

Returning a Series using iloc

Here we return row 0 as a series of column values for the specified row 0.

print(df.iloc[0])

To do:

Print the value of the doors using a column index. Convert the series to a list using

tolist() like this:

print(df.iloc[0].tolist())

make Ford

model Mustang

doors 2

price 12000

Name: 0, dtype: object

13
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Returning a DataFrame using iloc

If double brackets are used then data is returned in a data frame for a specified

row. Here we return row 0 as a data frame.

print(df.iloc[[0]])

Selecting columns

We can use the column selection to return a data frame for specified column(s)

df.iloc[:,<column selection>]

df.iloc[:, start_index : end_index]

where ‘ :’ means all rows

We now select just the make and model columns

print(df.iloc[:,0:2])

Note we use ':' to specify all rows.

 make model doors price

0 Ford Mustang 2 12000

 make model

0 Ford Mustang

1 GM Spitfire

2 Toyota Yarris

3 Nissan Sentra

4 Honda Accord

14
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Specifying rows and columns

We can use the row selection and column selection to specify desired rows and

columns.

df.iloc[<row selection>,<column selection>]

df.iloc[start_index : end_index, start_index : end_index]

Here we return rows 1 and 2 of the make and model and columns 0 and 1 as a

data frame. Remember you always get row index -1 and column index – 1 in the

specified range.

print(df.iloc[1:3,0:2])

using loc

specifying columns using loc

We can use loc to specify columns by name.

df.loc[<row selection>,<column selection>]

df.loc[start_index : end_index, [column_name_list]]

 Here we specify ‘make’ and ‘model’ columns using loc. We print out all rows of

the data frame for columns 'model','make' specifying : for the rows.

print(df.loc[:,['model','make']])

 make model

1 GM Spitfire

2 Toyota Yarris

 model make

0 Mustang Ford

1 Spitfire GM

2 Yarris Toyota

3 Sentra Nissan

4 Accord Honda

15
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

You can specifying rows using slices. Here we select rows 1 to 3 and columns

specifying rows by index and columns by labels
print(df.loc[1:3,['model','make']])

Making an index column

An index column lets use specify rows by a index column value. All pandas data

frames have a default index column having values 0 to the length of the data

frame-1 .

Making an index column inplace

You make a index column by using the pandas set_index function and the column

name. We set the index to the ‘make’ column using the set_index function. We

use inplace = True to do this in place.

df.set_index("make", inplace=True)

print(df)

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

2 Toyota Yarris 4 26000

3 Nissan Sentra 2 18000

4 Honda Accord 2 16000

 model make

1 Spitfire GM

2 Yarris Toyota

3 Sentra Nissan

16
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

You can tell make is an index column because it is below all the other column

names. You can print out the index column by using the pandas index property

print(df.index)

Read in a csv file and set index column

You can also read in a csv file and set the index column at the same time using the

index_col parameter

df = pd.read_csv('cars.csv', index_col=0)

print(df)

Specifying rows using loc

To specify a row using loc, you need to use a label index column or to use loc as a

lookup condition looking for a column data value. We first locate rows using loc

and using the index column label value.

Index(['Ford', 'GM', 'Toyota', 'Nissan', 'Honda'], dtype='object', name='make')

 model doors price

make

Ford Mustang 2 12000

GM Spitfire 2 34000

Toyota Yarris 4 26000

Nissan Sentra 2 18000

Honda Accord 2 16000

 model doors price

make

Ford Mustang 2 12000

GM Spitfire 2 34000

Toyota Yarris 4 26000

Nissan Sentra 2 18000

Honda Accord 2 16000

17
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

using loc to locate rows using a index column label

Using an index column label is convenient because you can locate rows by a

certain label value.

We locate the row having the make index column label value ‘Ford’, where the

index column is make and the label value is ‘Ford’

Lookup a row using index column and return as a Series

df.loc[row label] (as a Series)

print(df.loc['Ford'])

Note: the row Ford is return as a series of values. Notice we no longer have the

‘make’ returned because the make column is now the index column.

Lookup a row using index column and return as a DataFrame

If we enclose in square brackets then data is returned as a data frame.

df.loc[[row label]] (as a Data Frame)

print(df.loc[['Ford']])

model Mustang

doors 2

price 12000

Name: Ford, dtype: object

 model doors price

make

Ford Mustang 2 12000

 model doors price

 model doors price

make

Ford Mustang 2 12000

GM Spitfire 2 34000

Toyota Yarris 4 26000

Nissan Sentra 2 18000

Honda Accord 2 16000

18
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Looking up more than 1 row using a index column

 df.loc[start_row_label: end_row_label] (as a Data Frame)

 print(df.loc['Ford':'GM'])

We have located locate ‘Ford’ and ‘GM’ cars.

Note: 2 or more rows are returned as a data frame where a single row is returned

as a series of values.

Specifing columns when looking up rows by index

df.loc[start_row_label: end_row_label.,[column_list]]

Columns are specified in a list like this:

[column_name, column_name]

You need to put the column names in a list.

Here we locate Ford and GM row with model and price

 print(df.loc['Ford':'GM',['model','price']])

Note: The inner square brackets [] is a list of column names.

 model doors price

make

Ford Mustang 2 12000

GM Spitfire 2 34000

 model price

make

Ford Mustang 12000

GM Spitfire 34000

19
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Specifying a range of columns

You can also use slicing to specify a range of column names like this

df.loc[start_row_label: end_row_label,start_column:end_column]

column_name : column_name

Here we locate Ford and GM row with model and price

 print(df.loc['Ford':'GM','model':'price'])

Note: We do not include inner square brackets because we are specifying a

continuous range of column names mot individual specified column names.

If you just specify one column name you will get a series returned.

df.loc[start_row_label: end_row_label,column] (as a Series)

 print(df.loc['Ford':'GM','model'])

 model doors price

make

Ford Mustang 2 12000

GM Spitfire 2 34000

make

Ford Mustang

GM Spitfire

Name: model, dtype: object

20
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

If you enclose the column name in square brackets ['model'] a DataFrame is

returned because you a specifying a column name in a list.

 df.loc[start_row_label: end_row_label,[column]] (as a Data Frame)

 print(df.loc['Ford':'GM',['model']])

Using loc with conditions

It maybe easier to just state a column and a value to look for rather than change

data frame to use indexes instead. We can look up a value in a column like this:

df.loc.df [‘column_name’] == value

We first need to reload our data frame to restore it back to default integer

indexes rather than label index.

You can use you cars dictionary like this:

df= pd.DataFrame(cars)

 print(df)

Or reload from the cars.csv file like this:

df = pd.read_csv('cars.csv')

 print(df)

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

2 Toyota Yarris 4 26000

3 Nissan Sentra 2 18000

4 Honda Accord 2 16000

 model

make

Ford Mustang

GM Spitfire

21
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Here we look up the row having the column make ‘Ford’

result = df.loc[df['make']=='Ford']

 print(result)

Our result above is return as a data frame.

Conditions work as a two step process.

df['make']=='Ford'

print(df['make']=='Ford')

The condition returns a series of True and False values for the values you are

looking for.

0 True

1 False

2 False

3 False

4 False

Name: make, dtype: bool

Then we feed the True and False value to loc to locate the rows in the specified
column that has the True values.

result = df.loc[df['make']=='Ford']
print(result)

In this situation a data frame is returned where a True value is found in the result
series.

 make model doors price

0 Ford Mustang 2 12000

 make model doors price

0 Ford Mustang 2 12000

22
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

You can get the individual values from the data frame column returned as a one
item series like this:

 print(result['make'])

You would get the value using the index 0 of the series(we only have 1 value so
only 1 index) like this:

print(result['make'][0])

A one step solution would be like this:

print(df.loc[df['make']=='Ford']['make'][0])

Here is another example using the ‘model’ column:

print(result['model'])

0 Ford
Name: make, dtype: object

Ford

0 Mustang
Name: model, dtype: object

Ford

23
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

You would get the value using the index 0 of the sries (we only have 1 value so
only 1 index) like this:

print(result['model'][0])

 A one step solution would be like this:

print(df.loc[df['model']=='Mustang']['model'][0])

Accessing a cell using iloc

You can access a particular cell in the data frame using iloc, the row index and the
column name. When 1 row is returned the row index is 0. A scalar value is
returned. A scalar value is a single value.

x = result.iloc[0]['model']
print(x)

If more than 1 column is specified a Series is returned rather than a scalar value.

x = result.iloc[0][['model','doors']]

print(x)

Mustang

model Mustang

doors 2

Name: 0, dtype: object

Mustang

Mustang

24
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

In this situation you can specify the cell you want by the series row index or label

column name to get a scalar value.

print(x[0])
print(x[1])

print(x['model'])
print(x['doors'])

You can look up more than 1 condition by using the & (AND) logical operator. In

this situation each condition must be enclosed in round brackets.

print(df.loc[(df['make']=='Ford') & (df['model']=='Mustang')])

Looking for multiple conditions comes in handy when you have many same values

in the same column and you use a second condition to get specific rows

When more than 1 row is returned for a lookup condition

If more than 1 row is returned for the condition lookup then you need to specify

which row and column you want to access the cell data. Here we get many rows

are returned for cars with 2 doors.

Mustang

2

Mustang

2

 make model doors price

0 Ford Mustang 2 12000

25
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

result = df.loc[df['doors']==2]

print(result)

We have 4 rows returned with cars having doors of value 2

We can the model value from row index 0 using iloc:

x = result.iloc[0]['model']

print(x)

We can the model value from row index 1 using iloc:

x = result.iloc[1]['model']

print(x)

We can get more than 1 column value using iloc returned as a series:

x = result.iloc[1][‘make’,’model']

 print(x)

 make model doors price

0 Ford Mustang 2 12000

1 GM Spitfire 2 34000

3 Nissan Sentra 2 18000

4 Honda Accord 2 16000

Mustang

Spitfire

make GM
model Spitfire
Name: 1, dtype: object

26
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

You can now get individual values of the series using indexes:

x = result.iloc[1][['make','model']][0]

print(x)

x = result.iloc[1][['make','model']][1]

print(x)

to do

Print out the model for rows index 2 and 3.

Print out the price for row index 0 and 1.

looking up more than 1 column

Next we look up ‘Ford’ from the make column and specifying the columns model

and price to be displayed

print(df.loc[df['make']=='Ford',['model','price']])

Our result is returned as a data frame.

 model price

0 Mustang 12000

GM

Spitfire

27
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

We can also lookup more than 1 car like ‘Ford’ and ‘GM’. In this case we use the

isin function. Here we lookup look up ‘Ford’ and ‘GM’ in the make column.

 print(df.loc[df['make'].isin(['Ford','GM']),['model','price']])

isin is for Rows

If you want to see the make column in the printout you also need to specify in

the column selector as well.

print(df.loc[df['make'].isin(['Ford','GM']),['make','model','price']])

PANDAS HOMEWORK

Question 1

Make a csv file or a dictionary of animals. Animals have a type like cat, dog or lion,

and they have a name’s like ‘fluffy’, ‘rover’ or ‘tony’. They make sounds like ‘purr’,

‘bark’ and ‘roar’. You should have data frame columns: ‘type’, ‘name’ and ‘sound’.

Load your csv file or dictionary into a data frame.

Print out the animal types on the screen.

Then ask the user to type in their favorite animal from the list.

Next print out the names of the animals.

 model price

0 Mustang 12000

1 Spitfire 34000

 make model price

0 Ford Mustang 12000

1 GM Spitfire 34000

28
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Ask the user what is the name of the animal.

Then look up the name of the animal selected.

If they are correct print out the sounds of the animals.

Then look up the sound of the animal selected.

Ask the user what sound the animal makes.

If they are correct tell them congratulations .
If they are wrong let them try again.

Hints:

Access a column as a series:
df['column_name ']

Access a column as a list:
df['column_name '] .tolist()

Get a individual row value in the series column:
df['column_name '][row_index]

Access a column as a data frame:
 df['column_name ']

Get a individual row value in the data frame column:
df['column_name '].iloc[row_index]

Access a row as a series:
df.iloc[row_index]

Get a individual column value in the row as a series:
df.iloc[row_index][column_index]

Access a row as a data frame:
df.iloc[[row_index]]

29
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Access a row and column of a data frame:
df.iloc[row_index, column_index]

Access a row where a column has a certain value as a DataFrame
df.loc[df['column_name]==value]

Access a column in a row where a column has a certain value as a series
df.loc[df['column_name]==value][‘column_name2’]

Access a column in a row where a column has a certain value as a series
df.loc[df['column_name]==value][‘column_name2’].iloc[0]

or:

Access a column in a row where a column has a certain value as a series
df.loc[df['column_name]==value] .iloc[0] [‘column_name2’]

You should get something like this:

['cat', 'dog', 'lion']
what is your favourite animal? lion
['fluffy', 'rover', 'tony']
what is the name of the lion? tony
you are correct!
['purr', 'bark', 'roar']
what sound does a lion make ? roar
you are correct

Question 2

Repeat the above but make the ‘type’ column to be a index column.
Use tolist to print out the column without the index column.

Hints:

30
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Print out index names as a list:
 print(df.index.tolist())

Get the value of a column by specifying a row index label

 value = df.loc[‘index_label]’[‘column_name’]

or

 sound = df.loc[df.index == index_label]['column_name'].iloc[0]

You should get something like this:

['cat', 'dog', 'lion']
what is your favourite animal? dog
['fluffy', 'rover', 'tony']
what is the name of the dog? rover
you are correct!
['purr', 'bark', 'roar']
what sound does a dog make ? bark
you are correct

Call your python file pandas_homework.py

End

