
1
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson3 Plotting with Matplot Last Update Mar 28, 2021

Matplot lets you plot data on a chart. Matplot has many types of charts available:

 line chart

 scatter charts

 bar charts

 histograms

Plotting a simple line chart with Matplot

We will first make a simple line chart. A chart has a x and y axes with x and y

values. To use matplot you need to import the matplotlib.pyplot library:

import matplotlib.pyplot as plt

You may also need to add the matplotlib module to your python using the shell:

pip install matplot

Next you need a set of x and y points. We make 2 lists of x and y points.

x = [0,1,2,3,4,5,6,7,8,9]

y = [0,1,2,3,4,5,6,7,8,9]

We then add some x and y axes labels, all charts need axes labels.

plt.xlabel('x')

plt.ylabel('y')

All charts also need a title:

plt.title('x vs y')

Finally we call the plot function, the default chart is a line chart

plt.plot(x,y)

2
copyright © 2020 www.onlineprogramminglessons.com For student use only

To show the plot we must call the show function

plt.show()

Here is the complete program:

line plot

import matplotlib.pyplot as plt

make x points
x = [0,1,2,3,4,5,6,7,8,9]

make y points
y = [0,1,2,3,4,5,6,7,8,9]

make x-axis labels
plt.xlabel('x')
make y-axis labels
plt.ylabel('y')

3
copyright © 2020 www.onlineprogramminglessons.com For student use only

add a title
plt.title('x vs y')

plot line chart
plt.plot(x,y)

show plot
plt.show()

We can plot dots instead of lines using a third fmt parameter with a value of ‘o’

Here is the complete program:

dot plot

import matplotlib.pyplot as plt

x = [0,1,2,3,4,5,6,7,8,9]

y = [0,1,2,3,4,5,6,7,8,9]

plt.xlabel('x')

plt.ylabel('y')

plt.title('x vs y')

plt.plot(x,y,'o')

plt.show()

4
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can also change the color of the dots by specifying a color letter b,g,r,c,m,y,k

or u the default color is b (blue). Each letter specifies a common color.

We specify red dots 'ro' where r = ‘red’ o = ‘dots

 plt.plot(x,y,'ro')

We can now have a chart with red dots.

5
copyright © 2020 www.onlineprogramminglessons.com For student use only

To do:

Change the chart to green dots or try some of the other colours.

Changing the length and width of a chart

You can change the length and width of a chart using

 plt.figure(figsize=(10,5))

where the first number is width in inches and the second number is height in

inches. The above sets a plot figure of 10 width by 5 height inches.

6
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here is the complete program:

large dot plot
import matplotlib.pyplot as plt
x = [0,1,2,3,4,5,6,7,8,9]
y = [0,1,2,3,4,5,6,7,8,9]

change plot size 10 wide by 5 inches high
plt.figure(figsize=(10,5))
plt.xlabel('x')
plt.ylabel('y')
plt.title('x vs y')
plt.plot(x,y,'ro')
plt.show()

chart fmt specifiers:

The fmt specifier lets you specify a chart with a marker, type of line and line color.

The markers can be dots, circles triangles etc. The line style may solid, dashes or

dots. The colors are one of b,g,r,c,m,y,k or u.

 fmt = '[marker][line][color]'

7
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here are all of all markers, line styles and colors for your reference:

Line Styles

character Description

'-' solid line style

'--'
dashed line
style

'-.'
dash-dot line
style

':'
dotted line
style

Colors

character Color

'b' Blue

'g' Green

'r' Red

'c' Cyan

'm' Magenta

'y' Yellow

'k' Black

'w' White

Markers

character Description

'.' point marker

',' pixel marker

'o' circle marker

'v'
triangle_down
marker

'^' triangle_up marker

'<' triangle_left marker

'>'
triangle_right
marker

'1' tri_down marker

'2' tri_up marker

'3' tri_left marker

'4' tri_right marker

's' square marker

'p' pentagon marker

'*' star marker

'h' hexagon1 marker

'H' hexagon2 marker

'+' plus marker

'x' x marker

'D' diamond marker

'd'
thin_diamond
marker

'|' vline marker

'_' hline marke

8
copyright © 2020 www.onlineprogramminglessons.com For student use only

Example format styles:

Format Example

'b' blue markers with default shape
'or' red circles

'-g' green solid line

'--' dashed line with default color
'^k:' black triangle_up markers connected by a dotted line

Plotting more than one line on a chart

We can plot more than 1 line on a chart with a succession of plot calls. We will

plot the following mathematical functions on a chart:

f(x) = x

f(x) = log (x)

f(x) = x ^2

f(x) = x log (x)

where y = f(x)

We use the numpy arrange function to make values for the x axes where as the

y values would be one of our f(x) functions.

The numpy arrange function returns evenly spaced stop and start values within a

given interval.

numpy.arange([start,]stop, [step,]dtype=None)
x = np.arange(.1, 10, 0.1)

9
copyright © 2020 www.onlineprogramminglessons.com For student use only

We set the y-axis values to the result of each function

y axes formulas

y1 = x

y2 = [math.log(x) for x in x]

y3 = x**2

y4 = [x * math.log(x) for x in x]

We can add labels to our chart using the label parameter and the function title.

add label

plt.plot(x, y1,'r--', label='y=x')

plt.plot(x, y2,'g--', label='y=log x')

plt.plot(x, y3,'b--', label='y=x^2')

plt.plot(x, y4,'m--', label='y=x log x')

We use the grid function to show a grid with a specified grid alpha level and line

style. The alpha level specifies the grid brightness level. We want our grid lines to

be solid and dim.

add a grid

plt.grid(alpha=.4,linestyle='-')

We use the legend function to show the legend accordingly to our specified

function labels

add a Legend

plt.legend()

show chart

plt.show()

10
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here is the complete program:

multi-line plot
import matplotlib.pyplot as plt
import math
import numpy as np

x-axes
.1 to 10 by .1 intervals
x = np.arange(.1, 10, 0.1)

y axes formulas
y1 = x
y2 = [math.log(x) for x in x]
y3 = x**2
y4 = [x * math.log(x) for x in x]

add label
plt.plot(x, y1,'r--', label='y=x')
plt.plot(x, y2,'g--', label='y=log x')
plt.plot(x, y3,'b--', label='y=x^2')
plt.plot(x, y4,'m--', label='y=x log x')

11
copyright © 2020 www.onlineprogramminglessons.com For student use only

add a grid
plt.grid(alpha=.4,linestyle='-')

add a Legend
plt.legend()

show chart
plt.show()

Scatter plots

Each dot in the scatter plot represents a x, y coordinate. For this example we use

the numpy.random.normal function to generate random x and y points.

numpy.random.normal(mean, standard deviation, size)

numpy.random.normal(10, 1.0, 100)

We generate 100 numbers having a center of 10 and deviation of 1. Deviation

means the x and y random values will deviate between center value by 1

Here is the complete program:

scatter plot

import numpy

import matplotlib.pyplot as plt

make x,y points

x = numpy.random.normal(10.0, 1.0, 100)

y = numpy.random.normal(10.0, 1.0, 100)

plt.scatter(x, y,c='g',marker='o')

plt.title('scatter plot')

plt.show()

12
copyright © 2020 www.onlineprogramminglessons.com For student use only

Bar chart

A bar chart display values as vertical or horizontal bars. 2 arrays are needed 1 for

the bar name’s and the other one for the bar values. You make a bar chart with

the matplot bar function.

Here is the bar chart complete program:

bar chart of fruits

import matplotlib.pyplot as plt

names = ['Apples', 'Oranges', 'Pears','Bananas', 'Peaches']

values = [20, 10, 80, 30, 50]

plt.bar(names, values)

plt.title('Bar chart of fruits')

plt.xlabel('names')

plt.ylabel('values')

plt.show()

13
copyright © 2020 www.onlineprogramminglessons.com For student use only

Printing label names vertically

You can use the xticks function to rotate the names label by a certain angle like

90 degrees.

plt.xticks(rotation=90)

Here is the complete program with rotated xticks:

bar chart of fruits

import matplotlib.pyplot as plt

names = ['Apples', 'Oranges', 'Pears','Bananas', 'Peaches']
values = [20, 10, 80, 30, 50]
plt.bar(names, values)
rotate xticks 90 degrees
plt.xticks(rotation=90)
plt.title('Bar chart of fruits')
plt.xlabel('names')
plt.ylabel('values')
plt.show()

14
copyright © 2020 www.onlineprogramminglessons.com For student use only

Horizontal Bar Chart

You can use plt.barh to plot a horizontal bar chart

15
copyright © 2020 www.onlineprogramminglessons.com For student use only

Potting a Bell Curve

The formula for normal distribution is as follows:

The µ mean is the center where the σ standard deviation specifies the spread

from the center, pi is defined as the ratio between a circle's circumferencen to

its diameter and the letter e represents the mathematical constant Euler’s

number which is approximately 2.71828 calculated from the sum of (1 + 1/n)n

 A particular normal distribution is completely determined by the mean and

standard deviation. The variance is the square of standard deviation.

The above formula is used for calculating probabilities that are related to a

normal distribution. (probability density function pdf). We can calculate the

normal distributions for mean and standard deviation and plot on a chart as

follows:

https://www.thoughtco.com/the-number-e-2-7182818284590452-3126351

16
copyright © 2020 www.onlineprogramminglessons.com For student use only

plotting bell curve

import matplotlib.pyplot as plt

mean = 0

std = 1

variance = np.square(std)

x = np.arange(-5,5,.01)

y = np.exp(-np.square(x-mean)/2*variance)/(np.sqrt(2*np.pi*variance))

plt.plot(x,y)

plt.xlabel('x')

plt.ylabel('gaussian distribution')

plt.title('Bell Curve')

plt.show()

We can also write text on chart using matplot text function at specified x and y

coordinates

plt.text(-4.5, .15, r'$\mu=0,\ \sigma=1$')

-4.5 is the x coordinate .15 is the y coordinate to position the text and '\mu' is

the mean character µ and '\sigma' is the std character σ and '\ ' is a space

The while expression is enclosed in a r’ that signifies that the string is a raw

string. In this case the backslashes are converted to matplot back slashes for

plotting special characters µ (mean) and σ (std deviation) on the chart.

17
copyright © 2020 www.onlineprogramminglessons.com For student use only

to do: try different values of mean and std

Histogram

A histogram is similar to a bar chart but displays the y values sequentially as filled

in bars. Each bar on a histogram displays the number or count of samples that

have the same values. The histogram displays frequencies rather than values.

Our histogram example plots the normal distribution of N random points for a

specified number of bins. Our normal distribution is a sequence of random values.

We use the numpy randn function to Return a sample samples from the standard normal

distribution.

 x = np.random.randn(N)

We then call the matplot hist function to plot the histogram. The hist function

also returns the calculated y values and x bin values so we can plot a curve around

the histogram. The returned y value length are n-1 of the bin values

Here is the complete program:

plotting histogram

import matplotlib.pyplot as plt

N = 100000

bins = 100

x = np.random.randn(N)

y,x,p= plt.hist(x, bins) # plot histogram

plt.title('Histogram')

plt.plot(x[:-1],y) # plot a orange curve around the histogram

plt.show()

18
copyright © 2020 www.onlineprogramminglessons.com For student use only

The peak of the histogram is at the center because the majority of the random

numbers are centered around 0. The mean is at 0 and the standard deviation

(spread) is 1.

To do:

Try different N and bin values.

Plot a Histogram with a Normal Distribution curve

We will use the scipy module , python scientific programming module.

pip install scipy

We first need to import the norm function from scipy.stats

from scipy.stats import norm

import matplotlib.pyplot as plt

We then generate 1000 samples of center 50 with deviation of 5

sample = np.random.normal(loc=50, scale=5, size=1000)

We then calculate the mean and std of the sample

19
copyright © 2020 www.onlineprogramminglessons.com For student use only

sample_mean = np.mean(sample)

sample_std = np.std(sample)

From the sample mean and std we use scipy stats function to calculate the

normal distribution

dist = norm(sample_mean, sample_std)

Using list compression we make a list of all values between 30 and 70

values = [value for value in range(30, 70)]

Using the distribution we calculate the probability density function (pdf) for each

value in values. The probability density function (pdf) represents a continuous

probability distribution.

probabilities = [dist.pdf(value) for value in values]

We can now plot the pdf probabilities:

plt.hist(sample, bins=10, density=True)

plt.plot(values, probabilities)

plt.title('Mean=%.3f, Standard Deviation=%.3f' % (sample_mean, sample_std))

plt.show()

20
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here is the complete program:

import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt

generate 1000 samples of center 50 with deviation of 5
sample = np.random.normal(loc=50, scale=5, size=1000)

#calculate the mean and std of the sample
sample_mean = np.mean(sample)
sample_std = np.std(sample)

#calculate the normal distribution
dist = norm(sample_mean, sample_std)

#make a list of all values between 30 and 70
values = [value for value in range(30, 70)]

calculate probabilities of the pdf using dist distribution
probabilities = [dist.pdf(value) for value in values]

21
copyright © 2020 www.onlineprogramminglessons.com For student use only

plot the pdf probabilities:
plt.hist(sample, bins=10, density=True)
plt.plot(values, probabilities)
plt.title('Mean=%.3f, Standard Deviation=%.3f' % (sample_mean, sample_std))
plt.show()

Todo: change the sample parameters and see what happens.

Difference between Bar Chart and Histogram

Histograms are used to show frequency distributions of variables while bar charts

are used to show values for comparisons. Histograms plot quantitative data with

ranges of the data grouped into bins or intervals while bar charts plot categorical

data.

A good example is the value of each coin and amount of coins. Each coin has a

value 1 cent, 5 cent, 10 cents, 25 cents and 1 dollar. Where you may have 26

pennies, 14 nickels, 23 dimes, 34 quarters, 45 half dollars and 28 dollar coins.

The Coin Bar Chart will show the amounts of the coins in the y axis and the

number of coins in the x axis. In the Coin Histogram the x axis will show the

amounts and the y axis will shows the frequencies.

Bar Chart of Coins

Coins by Amount

Coin Number Coins Total Amount

penny 26 26
nickel 14 70

dime 23 230
quarter 34 850

Half Dollar 12 600
Dollar 5 500

22
copyright © 2020 www.onlineprogramminglessons.com For student use only

We can now group by frequencies

Histogram of Coins

Range Number Coins Coins

0-100 2 Penny, Nickel

100-200 1
200-300 1 Dime

300-400 0

400-500 0

500-600 1 Dollar
600-700 1 Half Dollar

700-800 0

800-900 1 Quarter
900-1000 0

Here are the Charts:

23
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here is the codes:

bar chart of coin values
names = ['penny', 'nickel', 'dime','quarter', 'half-dollar','dollar']
values = [26,14*5,23*10,34*25,12*50, 5*100]

plt.bar(names, values)
plt.title('Coin Bar Chart')
plt.xlabel('Coin')
plt.ylabel('Value')
plt.xticks(rotation=90)
plt.show()

plot histogram of coin values
x = [26,14*5,23*10,34*25,12*50, 5*100]

plt.hist(x)
plt.title('Coin Histogram')
plt.xlabel('Counts')
plt.ylabel('frequencies')

plt.show()

SUBPLOTS

Figures contain axes and subplots

Each figure can contain many axes and subplots:

The subplot() command specifies number rows, number columns and

plot_number where plot_numbers range from 1 to number rows*number

columns. The commas in the subplot command are optional if number rows *

number columns < 10. So subplot(211) is identical to subplot(2, 1, 1).

211 = 2 rows, 1 column a plot number 1

Subplots can be vertical, horizontal or grid formations

24
copyright © 2020 www.onlineprogramminglessons.com For student use only

Horizontal sub plots

Horizontal subplots have row number equal to 1

First we make x and y axes data

horizontal subplots

x = range(10)

y = range(10)

then we make a figure

plt.figure()

we then specify 1 row 2 columns and plot #1 (121)

plt.subplot(121)

plt.plot(x,y)

we then specify 1 row 2 columns and plot #2 (122)

plt.subplot(122)

plt.plot(x,y)

plt.show()

25
copyright © 2020 www.onlineprogramminglessons.com For student use only

Vertical sub plots

Vertical subplots have column number equal to 1

First make x and y axes data

vertical subplots

x = range(10)

y = range(10)

then we make a figure

plt.figure()

we then specify 2 rows and 1 columns and plot #1 (211)

plt.subplot(211)

plt.plot(x,y)

we then specify 2 rows 1 columns and plot #2 (212)

plt.subplot(212)

plt.plot(x,y)

plt.show()

26
copyright © 2020 www.onlineprogramminglessons.com For student use only

Grid subplots

Grid subplots have equal number or rows and columns

Here is the Grid plot sample program: (2 rows and 2 columns)

grid plot

x = range(10)

y = range(10)

plt.figure()

plt.subplot(221)

plt.plot(x,y)

plt.subplot(222)

plt.plot(x,y)

plt.subplot(223)

plt.plot(x,y)

plt.subplot(224)

plt.plot(x,y)

plt.show()

27
copyright © 2020 www.onlineprogramminglessons.com For student use only

Using axes

The axes object contains the methods for plotting, as well as most customization

options, while the figure object stores all of the figure-level attributes and allow

the plot to output as an image. It is good to know how to use the axes object.

The subplot function returns the figure and the axes list. From the axes list we

can do our plots. We can also use the figure object to set the size of the plot

using the set_size_inches function.

using axes

x = range(10)

y = range(10)

fig, ax = plt.subplots(nrows=1, ncols=2)

fig.set_size_inches(2, 2)

ax[0].plot(x,y)

ax[1].plot(x,y)

plt.show()

Drawing markers on an Image

You may want to draw markers on an image or even a scatter plot or regression

line. You first load the image then draw on it. You can then save the image back to

the image file using plt.savefig(filename). We set the plot coordinates to the

latitude and longitude of the map using the set_xlim and set_ylim plot functions.

28
copyright © 2020 www.onlineprogramminglessons.com For student use only

drawing markers on an image

load image small map
filename = "map1.png"
image = plt.imread(filename)

#make subplots
fig, ax = plt.subplots(figsize = (10,10))

#set map bounds
min_long = -123.5
max_long = -122.5
min_lat = 48
max_lat = 48.5
#put map bounds in rectangle (bounding box)
BBox = (min_long,max_long,min_lat, max_lat)

draw some markers
ax.plot(-123.0, 48.12, 'b^',markersize=10)
ax.plot(-123.02, 48.11, 'b^',markersize=10)
ax.plot(-123.04, 48.1, 'b^',markersize=10)

plot markers as a scatter plot
lats = [48.1,48.12, 48.13,481.4, 48.15]
longs =[-122.74,-122.75,-122.76,-122.77,-122.78]
ax.scatter(longs,lats,c='r',marker='^', s=20)

we use set_xlim to set the min and max longitude coordinates on the map
we use set_ylim to set the min and max latitude coordinates on the map
ax.set_xlim(BBox[0],BBox[1])
ax.set_ylim(BBox[2],BBox[3])

#set labels, and title
ax.set_title('Markers on a Map')
ax.set_xlabel("longitude")
ax.set_ylabel("latitude")

29
copyright © 2020 www.onlineprogramminglessons.com For student use only

show and plot image
ax.imshow(image, zorder=0, extent = BBox, aspect= 'equal')
save image back to file
plt.savefig(“new”+filename)
plt.show()

Our map image with some markers and scatter plot drawn on it:

3D Scatter Plot

With matplot we can also plot 3D Scatter plot. We must first import the axes3d

library

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import axes3d

make a figure and subplot

fig = plt.figure()

30
copyright © 2020 www.onlineprogramminglessons.com For student use only

retrieve the axes from the subplot to do the 3d plot.

ax = fig.add_subplot(111, projection='3d')

plot 3 color groups each having 100 points each:

n = 100

assign color , and low high values for 3 groups
for c,low,high in [('r', 0, 33), ('g', 33, 66), ('b',66,100)]:
 # calculate x random value between low and high
 x = (high-low)*np.random.rand(n)+low
 # calculate y random value between low and high
 y = (high-low)*np.random.rand(n)+low

 # calculate random z value between low and high
 z = (high-low)*np.random.rand(n)+low

 # plot point x,y,z

ax.scatter(x, y, z, c=c, marker='o')

plot lables and title
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
ax.set_title('3d plot')

plot 2d plot
plt.show()

31
copyright © 2020 www.onlineprogramminglessons.com For student use only

HOMEWORK

Question 1

Make a 2x2 Grid plot, put a scatter plot in the first grid, a line chart on the second

grid, a bar chart on the third grid and a histograms in the last grid.

You can use random or fixed data. In one chart use numpy arrange function for

the x axis in another chart use numpy linspace function for the x axis.

Use excerpts from out numpy lesson:

arrange function

#create an array with a sequence of 0 to 18 by step of 2

x = np.arange(0, 20, 2)

[0, 2, 4, 6, 8,10,12,14,16,18]

32
copyright © 2020 www.onlineprogramminglessons.com For student use only

linspace function

#create an array of even space between a given range of values

(divides 0 to 1 evenly by 5)

x = np.linspace(0, 1, 5)

You should get something like this:

Question 2

Make a line plot that plots two type of advertising mediums that effects costs

against sales. Sales can range between-0 and 60 (million)and advertising costs can

range between 0 and 80 (thousand). One type of advertising can be TV another

one could be a smart phone. Hard code the sales values and adverting cost

values in arrays. Use circle and square markers for the plots. Make a legend.

([0., 0.25, 0.5 , 0.75, 1.])

33
copyright © 2020 www.onlineprogramminglessons.com For student use only

You should get something like this:

Question 3

Change the 3d plot so that all the color groups are mixed together. (maybe add

some more colors)

You should get something like this:

34
copyright © 2020 www.onlineprogramminglessons.com For student use only

PDF, CDF and KDE

The probability density function (PDF) and cumulative distribution function

(CDF), both give a complete description of the probability distribution of a

random variable.

The PDF is the probability that a random sample X will be near the given value x)

for a given mean (mu) and standard deviation (sigma).

The CDF is the probability that a random sample X will be less than or equal to x.

Whereas Probability is the chance that the variable has a specific value.

The Kernel density estimation (KDE) is a way to estimate the probability density

function (PDF) of a random variable.

We denote:

 The probability density function, pdf, as f(x).

 The cumulative distribution function, cdf, as F(x).

The mathematical relationship between the pdf and cdf is given by:

F(x)=∫x0f(s)ds

where s is a dummy integration variable.

Conversely:

f(x)=d(F(x))dx

35
copyright © 2020 www.onlineprogramminglessons.com For student use only

The following figure illustrates a pdf.

The cdf is the area under the probability density function up to a value of x. The

total area under the pdf is always equal to 1

The well-known normal (or Gaussian) distribution is an example of a probability
density function. The pdf for this distribution is given by:

where μ is the mean and σ is the standard deviation.

Kernel Density Estimation KDE

A density plot is a smoothed, continuous version of a histogram estimated from

the data. The most common form of estimation is known as kernel density

estimation (KDE). The kernel density estimation (KDE) is used to smooth the

histogram which filters out the noise.

36
copyright © 2020 www.onlineprogramminglessons.com For student use only

In this method, a continuous curve known as the kernel is drawn at every

individual data point and then all of these curves are then added together to

make a single smooth density estimation. The density plot is calculated from the

sum of theses curves. The kernel most often used is a Gaussian which produces a

Gaussian bell curve at each data point.

Plotting PDF, CDF and KDE density

To plot the pdf, cdf and KDE density we first need to import numpy, scipy and the

matplot libraries.

import numpy as np
from numpy.random import normal
from numpy import mean
from numpy import std
from scipy import stats
import scipy
import matplotlib.pyplot as plt

37
copyright © 2020 www.onlineprogramminglessons.com For student use only

We first make 100 samples with mean 50 and std deviation of 10 using the numpy

random normal function

generate 100 samples for mean and std
where loc = mean std = scale
sample = np.random.normal(loc=50, scale=10, size=100)

From the sample we calculate mean and std using the numpy mean and std

functions

calculate parameters
sample_mean = np.mean(sample)
sample_std = np.std(sample)
print(sample_mean,sample_std)

We then use the scipy norm function to store the norm distribution mean and std.
The scipy.stats.norm() represents a normal continuous random variable. A
continuous random variable whose probabilities are described by the normal
distribution with mean μ and standard deviation σ is called a normally distributed
random variable, or a normal random variable for short, with mean μ and
standard deviation σ.

The norm distribution is scaled with the mean (loc) and the std (scale) when mean
is not 0 and std not equal to 1.

 y = (x - loc) / scale.

We use the scipy stats.norm function to obtain the normal mean of 0 and the std
of 1 or to store our own mean and std value to calculate our distribution values.

store the norm distribution mean and std
dist = scipy.stats.norm(sample_mean, sample_std)

The dist just store’s the sample_mean and sample std. The returned result from
dist = scipy.stats.norm(sample_mean, sample_std) is called a rv_frozen object
once set it cannot be changed. You can obtain the values from the dist. We can
print out the dist and the stored mean and std.

38
copyright © 2020 www.onlineprogramminglessons.com For student use only

print(dist);
print("mean:",dist.mean());
print("std:".dist.std());

The print out would be:

norm distribution: <scipy.stats._distn_infrastructure.rv_frozen object at 0x03BDFC10>
mean: 50.26921089112706
std: 10.15038305498074

whereas:

dist = scipy.stats.norm()
print("mean:",dist.mean());
print("std:".dist.std());

would print out:

mean: 0.0
std: 1.0

Since these are the normal distribution defaults.

From the norm distribution we can calculate the pdf probabilities for each 100
values. We calculate pdf’s using the norm distribution mean and std stored in
dist.

x values 0 to 99
values = [value for value in range(0, 100)]

calculate pdf's using normal distribution for x values
pdfs = [dist.pdf(value) for value in values]

calculate cdf's using normal distribution for x values
cdfs = [dist.cdf(value) for value in values]

39
copyright © 2020 www.onlineprogramminglessons.com For student use only

Note:

dist.pdf(value)

 dist.cdf(value)

really means

stats.norm.pdf(value,dist.mean(), dist.std())
stats.norm.cdf(value,dist.mean(), dist.std())

The dist object is just used for convenience

In out lot we need to make a second axes for CDF because CDF’s have a range
from 0 to 1. Whereas histograms, pdf and cdf have a smaller range 0 to .05.
Without a second axes the histogram, pdf and density would be too small to view.

plot histogram, pdf and density on 1 subplot
fig, ax1 = plt.subplots()

next we assign a title

assign plot title

plt.title('Mean=%.3f, Standard Deviation=%.3f' % (sample_mean, sample_std))

We can now plot the histogram pdf, cdf and density on the first axes.

plot the histogram and pdf
ax1.hist(sample, bins=10, density=True)
ax1.plot(values, pdfs,c='r',label="pdf")

set x and y labels for axes 1
ax1.set_ylabel('pdf density')
ax1.set_xlabel('x values')

40
copyright © 2020 www.onlineprogramminglessons.com For student use only

we make a second axes to plot cdf’s

second axes for cdf
ax2 = ax1.twinx()

We use the second axes to plot cdf

ax2.plot(values, cdfs,c='m',label="cdf")
ax2.set_ylabel('cdf')

We use the scipy.stats.kde.gaussian_kde function to calculate the KDE from the

sample data. The scipy.stats.kde.gaussian_kde function is a representation of a

kernel-density estimate using Gaussian kernels. Whereas kernel density

estimation is a way to estimate the probability density function (PDF) of a random

variable in a non-parametric way

calculate kde density
density = scipy.stats.kde.gaussian_kde(sample)

We then plot the density on axes 1 for our 100 values. We are using the same
sample and values as above used for calculating and plotting PDF and CDF

plot kde density
ax1.plot(density(values),c='b',label="density")

We add legend’s for PDF, density and CDF

display legend's
ax2.legend(loc=1)
ax1.legend(loc=2)

plt.show()

41
copyright © 2020 www.onlineprogramminglessons.com For student use only

Our plot is as follows:

The density is calculated from the kernel-density estimate using Gaussian kernels

where as the pdf and cdf’s are calculated from the sample mean and std of the

histogram.

Here is the complete program:

plot histogram, pdf, density and cdf
import numpy as np
from numpy.random import normal
from numpy import mean
from numpy import std
from scipy import stats
import scipy
import matplotlib.pyplot as plt

42
copyright © 2020 www.onlineprogramminglessons.com For student use only

generate 100 samples for mean and std
loc = mean std = scale
sample = np.random.normal(loc=50, scale=10, size=100)

calculate sample mean and std
sample_mean = np.mean(sample)
sample_std = np.std(sample)

print(sample_mean,sample_std)

define the norm distribution
dist = scipy.stats.norm(sample_mean, sample_std)

print("norm distribution: ",dist);
print("mean:",dist.mean());
print("std:",dist.std());

x values 0 to 99
values = [value for value in range(0, 100)]

calculate pdf's using normal distribution for x values
pdfs = [dist.pdf(value) for value in values]

calculate cdf's using normal distribution for x values
cdfs = [dist.cdf(value) for value in values]

plot histogram, pdf and density on 1 subplot
fig, ax1 = plt.subplots()

assign plot title
plt.title('Mean=%.3f, Standard Deviation=%.3f' % (sample_mean, sample_std))

plot the histogram and pdf
ax1.hist(sample, bins=10, density=True)
ax1.plot(values, pdfs,c='r',label="pdf")

43
copyright © 2020 www.onlineprogramminglessons.com For student use only

set x and y labels for axes 1
ax1.set_ylabel('pdf density')
ax1.set_xlabel('x values')

second axes for cdf
ax2 = ax1.twinx()

plot cdf
ax2.plot(values, cdfs,c='m',label="cdf")
ax2.set_ylabel('cdf')

plot kde density
density = scipy.stats.kde.gaussian_kde(sample)
ax1.plot(density(values),c='b',label="density")

display legend's
ax2.legend(loc=1)
ax1.legend(loc=2)

plt.show()

Example calculating the KDE by summing Gaussian Kernels

In this example we calculate each Gaussian kernel of the histogram bin’s using

the Gaussian pdf. We obtain the bin centers from the plt.hist function,.

 (n, bins, patches) = plt.hist(sample, bins=10, density=True)

We obtain each Gaussian pdf using the scipy.stats.norm function. The

scipy.stats.norm takes in a mean and a std. We obtain the mean from the

histogram bin and the std is the histogram bandwidth THE number of bins. The

scipy.stats.norm function using the mean and std calculate the pdf for the data

points using the pdf function.

 kernel = scipy.stats.norm(bin_i, bandwidth).pdf(values)

44
copyright © 2020 www.onlineprogramminglessons.com For student use only

Next we sum up the kernels to calculate the kde.

density = np.sum(kernels, axis=0)

Here is the complete program that uses the same sample data from the previous

program

plot Gaussian kernel
calculate and plot KDE
import numpy as np
import scipy
from scipy import stats
import matplotlib.pyplot as plt

generate 100 samples for mean and std
where loc = mean std = scale
sample = np.random.normal(loc=50, scale=10, size=100)

x values 0 to 99
values = [value for value in range(0, 100)]

plot histogram and kernel on 1 subplot
fig, ax1 = plt.subplots()

plot histogram obtain bin centers
(n, bins, patches) = ax1.hist(sample, bins=10, density=True)

array of kernels
kernels = []

bandwidth is the std dev of Gaussian kernels
bandwidth = 10

45
copyright © 2020 www.onlineprogramminglessons.com For student use only

for each force
i = 1
for bin_i in bins:

 # obtain kernel on data point
 kernel = scipy.stats.norm(bin_i, bandwidth).pdf(values)

 # add to the kernel list
 kernels.append(kernel)

 # plot each kernal
 ax1.plot(values, kernel, lw=1, color="r",label="kernel" + str(i))
 i+=1

sum up kernels along rows
density = np.sum(kernels, axis=0)

second axes for cdf
ax2 = ax1.twinx()

plot kde
plt.title("calculating the KDE by summing Gaussian Kernels")
ax1.set_xlabel('value')
ax1.set_ylabel("sample")
ax2.set_ylabel('probability density')
ax2.plot(values, density, lw=2, c='b',label="density")

display legend's
ax2.legend(loc=1)
ax1.legend(loc=2)
plt.show()

46
copyright © 2020 www.onlineprogramminglessons.com For student use only

When you run this program you will get something like this:

3D Gaussian Plot

Using the Gaussian kernel formula we can plot3d using a color map of many

colors.

3d Gaussian plot
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # color map
import matplotlib.pyplot as plt

47
copyright © 2020 www.onlineprogramminglessons.com For student use only

fwhm = 4
sigma = fwhm / np.sqrt(8 * np.log(2))

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
dx = 0.1
dy = 0.1
x = np.arange(-6, 6, dx)
y = np.arange(-6, 6, dy)
x2d, y2d = np.meshgrid(x, y)
kernel_2d = np.exp(-(x2d ** 2 + y2d ** 2) / (2 * sigma ** 2))
kernel_2d = kernel_2d / (2 * np.pi * sigma ** 2) # unit integral
ax.plot_surface(x2d, y2d, kernel_2d,cmap=cm.jet)
plt.show()

48
copyright © 2020 www.onlineprogramminglessons.com For student use only

Homework

Question 4

Make a histogram of some data, then plot the pdf, cdf and density using the KDE.

You can make some data like this:

data = [1.5]*7 + [2.5]*2 + [3.5]*8 + [4.5]*3 + [5.5]*1 + [6.5]*8

From the data get the mead and standard deviation.

data_mean = np.mean(data)

data_std = np.std(data)

Using the mean and std deviation you can calculate the pdf and cdf from the

scipy.stats.norm module functions pdf and cdf.

pdf = scipy.stats.norm.pdf(xs,data_mean,data_std)

cdf = scipy.stats.norm.cdf(xs,data_mean,data_std)

From the data sample you can calculate density

density = scipy.stats.kde.gaussian_kde(data)

Next use linspace to evenly divide the data for the x axis

xs = np.linspace(0,8,100)

You can now plot the pdf, cdf and density using a legend.

Finally calculate the KDE by plotting the Gaussian Kernels.

Use
 fig, ax1 = plt.subplots()

and
 ax2 = ax1.twinx()

To make a second axis for the cdf.

49
copyright © 2020 www.onlineprogramminglessons.com For student use only

You may put every thing in 1 plot or 2 plots

You should get something like this:

50
copyright © 2020 www.onlineprogramminglessons.com For student use only

END

