
1
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

LESSON 6 Plotting with Pandas Last Update Mar 3, 2020

To plot with pandas you need to import the matplot library

 import matplotlib.pyplot as plt

pandas uses the matplotlib to do all its plotting

To plot with pandas you use the panda plot function on your data frame. The

pandas plot function actually uses the matplot plt.plot function for plotting.

The pandas plot function just makes it much easier to plot by automatically by

making the x and y labels and legends for you.

Plotting a DataFrame

It is easy to plot a data frame on pandas, just use the data frame name and call

the plot function. Everything is done automatically for you.

For our plotting examples we will use the highest, normal and lowest temperature

groups for a lake temperature for the year 2019 for the months January to

December.

Lake Temperatures for year 2019

Month Highest Normal Lowest
Jan 43 35 32

Feb 36 33 32

Mar 36 32 32
Apr 41 33 32

May 50 40 32
June 66 55 47

July 76 68 60

Aug 78 73 66
Sept 77 72 67

Oct 69 64 59
Nov 60 54 48

Dec 48 43 37

2
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

We have made a csv file called temperatures.csv

We can now read in the csv file and make a plot. We will use the month column

names as an index column, this allows the month column names to be the x-axis.

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read_csv("temperatures.csv",index_col="Month")

print(df)

Our data frame is:

Month,Highest,Normal,Lowest

Jan, 43, 35, 32

Feb, 36, 33, 32

Mar, 36, 32, 32

Apr, 41, 33, 32

May, 50, 40, 32

June, 66, 55, 47

July, 76, 68, 60

Aug, 78, 73, 66

Sept, 77, 72, 67

Oct, 69, 64, 59

Nov, 60, 54, 48

Dec, 48, 43, 37

 Highest Normal Lowest

Month

Jan 43 35 32

Feb 36 33 32

Mar 36 32 32

Apr 41 33 32

May 50 40 32

June 66 55 47

July 76 68 60

Aug 78 73 66

Sept 77 72 67

Oct 69 64 59

Nov 60 54 48

Dec 48 43 37

3
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

df.plot()

plt.show()

Our plot is:

Customizing pandas plot

We need to add more month ticks on the x axis, label the y axis, supply a title and

make the plot wider.

To customize the plot we need to get the Axes object from the plot and set the

size to a new width and height in inches using the figsize parameter. An Axes

object contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc.,

and sets the coordinate system.

ax=df.plot(figsize=(10,5))

To add more x axis ticks we make a range of 12 ticks and the call the set_xticks

functions from Axes object.

positions = range(12)

ax.set_xticks(positions)

4
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

We set the x labels to the index column of month names.

ax.set_xticklabels(df.index.tolist())

Finally we set the xlabes, y labels and title using the Axes object

ax.set_xlabel('Months 2019')

ax.set_ylabel('Temperature')

ax.set_title("Lake Temperatures")

plt.show()

bar plot

The bar plot plots the temperatures for each month as a bar. Since we have 3 sets

of temperatures, each temperature set is plotted right beside each other. To plot

a bar chart we set kind to ‘bar’ or use plot.bar() function.

df.plot(kind="bar")

df.plot.bar()

plt.show()

5
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Horizontal bar chart

A horizontal bar chart plots all bars horizontally rather than vertically. In this case

we set kind to “barh” or use plot.bar() function.

df.plot(kind="barh")

#df.plot.barh()

plt.show();

6
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Stacked bar chart

A stacked bar chart superimposes bars on each other, so we have only one bar for

each month. To distinguish the values for each temperature group, different

colors are used, stacked on each other.

df.plot.bar(stacked=True);

plt.show()

Stacked horizontal bar chart

The stacked horizontal bar chart is identical the stacked bar chart but plotted

horizontally rather than vertically.

df.plot.barh(stacked=True)

plt.show()

7
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Histogram

A histogram is different from a bar chart, it is displaying values vs. the frequency.

Frequency is how many temperature entry’s there are for a specified certain

degree. We may have 2 temperature of 50 degrees.

Since we have 3 different groups of temperatures we will make 3 different sub

plots: Highest, Normal and Lowest. To make subplots we use the matplotlib

subplots function. You must state how many rows and columns you want and

the subplots will return a Figure and Axes object. The Axes object contains the

methods for plotting, as well as most customization options, while the Figure

object stores all of the figure-level attributes and allow the plot to output as an

image. Every Axes object has a parent Figure object.

You can set the title of a subplot using the Figure object and suptitle function

 fig.suptitle('Sub Plots of Temperature Data', fontsize=16)

8
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

The subplot function, returns 3 Axes object that we use with each subplot to

specify the title and x axis label. We also give an axes object to each subplot as to

specify column and size as parameters.

fig, axes = plt.subplots(nrows=1, ncols=3)
fig.suptitle('Sub Plots of Temperature Data', fontsize=16)

df['Highest'].plot.hist(ax=axes[0], color='DarkGreen',figsize=(10,2))
axes[0].set_title('Highest')
axes[0].set_xlabel('Temperature')

df['Normal'].plot.hist(ax=axes[1],color='Orange',figsize=(10,2))
axes[1].set_title('Normal')
axes[1].set_xlabel('Temperature')

df['Lowest'].plot.hist(ax=axes[2], color='Green',figsize=(10,2))
axes[2].set_title('Lowest')
axes[2].set_xlabel('Temperature')
plt.show()

9
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Stacked histogram

The stacked histogram will stack each histogram on each other, this can be used

for direct comparisons. Every plot tells a story. The bins parameter specifies the

width of the bins. If bins is too small then the bars are too narrow, if too large the

bars are too wide. 12 seems to be a good number.

df.plot.hist(stacked=True, bins=12)
plt.show()

Area plot stacked

The area plot is very successful displaying the areas of each temperature group

stacked upon each other.

df.plot.area()

 plt.show()

10
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Area plot not stacked

In the not stacked area plot, each temperature group is superimposed on each

other. This plot shows the dominance of the normal temperature group.

df.plot.area(stacked=False)

plt.show()

11
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Scatter Plot

Scatter plots require numbers for x and y values. We can use the scatter plot to

compare Highest temperatures to the Normal temperatures

df.plot.scatter(x='Normal', y='Highest');

plt.show()

We can do the same with the lowest temperature to normal temperature

df.plot.scatter(x='Normal', y='Lowest');

plt.show()

12
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Plotting regression line on a scatter plot

We can also plot a regression line between these points. You cannot plot a

regression directly with pandas but you can calculate the regression line slope and

b intercept using the numpy polyfit function and make two independent columns

in our data frame. One column for regression y points and corresponding x value.

To use numpy module library you need to import it first

import numpy as np

x = df['Normal']
y = df['Highest']
m, b = np.polyfit(x, y, 1)
df['reg_highest'] = sorted(m * x + b)
df['x'] = sorted(x)

We then plot the regression line along with the scatter plot.

ax = df.plot(x='x',y='reg_highest')
df.plot.scatter(x='Normal', y='Highest',ax=ax);
plt.show()

13
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

We can do the same with lowest temperature to normal

x = df['Normal']
y = df['Lowest']
m, b = np.polyfit(x, y, 1)
df['reg_lowest'] = sorted(m * x + b)
df['x'] = sorted(x)
ax = df.plot(x='x',y='reg_lowest')
df.plot.scatter(x='Normal', y='Lowest',ax=ax);
plt.show()

14
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

We print out our data frame with the new regression line columns added.

To do:

Plot a regression line through a Normal scatter plot. You should get something

like this:

 Highest Normal Lowest reg_highest x reg_lowest

Month

Jan 43 35 32 38.557375 32 29.323547

Feb 36 33 32 39.554217 33 30.204819

Mar 36 32 32 39.554217 33 30.204819

Apr 41 33 32 41.547900 35 31.967365

May 50 40 32 46.532109 40 36.373728

June 66 55 47 49.522634 43 39.017546

July 76 68 60 60.487893 54 48.711545

Aug 78 73 66 61.484735 55 49.592818

Sept 77 72 67 70.456311 64 57.524272

Oct 69 64 59 74.443678 68 61.049362

Nov 60 54 48 78.431045 72 64.574453

Dec 48 43 37 79.427886 73 65.455726

15
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

Multiple scatter plot

Here we are plotting scatter plots together. We can use different color points or

different size points to distinguish temperature group.

ax = df.plot.scatter(x='Normal', y='Highest', color='Blue', label='Highest');
df.plot.scatter(x='Normal', y='Normal', color='Orange', label='Normal', ax=ax);
df.plot.scatter(x='Normal', y='Lowest', color='Green', label='Lowest', ax=ax);
ax.set_xlabel('Temperature')
ax.set_ylabel('Temperature')
plt.show()

PLOTTING WITH PANDAS HOMEWORK

Question 1

Plot 3 regression line for each of the temperature groups: highest, normal and

lowest. You should get something like this:

16
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

PIE Chart

A pie chart shows percentages shaped as a pie, where each slice of the pie is a

percentage.

For our temperature example we will group together the following temperature

ranges:

>=70

60-70

50-60

40-50
<40

We will just use the Normal Temperature group for our pie chart.

17
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

We will use filters to get the count of temperatures per range

t70 = len(df[df['Normal']>=70])
t60 = (df['Normal']>=60) & (df['Normal']<70)
t60 = len((df[t60]))
t50 = (df['Normal']>=50) & (df['Normal']<60)
t50 = len(df[t50])
t40 = (df['Normal']>=40) & (df['Normal']<50)
t40 = len(df[t40])
t30 = len(df[df['Normal']<40])

we then put in a list where ty are the counts of each category

ty = [t70,t60,t50,t40,t30]

we then make a list of labels for display

labels = ['>=70','60-70','50-60','40-50','<40']

we then make a data frame from the temperature lengths and labels. Our labels

become our index and then set columns name to ‘temps’

df2 = pd.DataFrame(ty,index=labels)
df2.columns=['temps']
print(df2)

From here we can plot the pie chart from the temperature length series. We use

autopct parameter formatted to display the percentages on the pie chart.

df2['temps'].plot.pie(y=ty,autopct='%.2f%%')

plt.show()

 temps

>=70 2

60-70 2

50-60 2

40-50 2

<40 4

18
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

PLOTTING WITH PANDAS HOMEWORK

Question 2

Make a data frame with 3 to 4 columns represent some data that interests you.

You can load the dataframe from a csv file, a dictionary or from lists.

An example would be stock prices high low and close for the month or year,

unemployment rate or the prices of homes etc.

Make 4 subplots. Put a bar chart into one, a scatter plot with a regression line (s)

into another, a histogram in the third one and a pie chart of the percents of

some column in the fourth one. Note: a 2 row by 2 column plot returns a 2

dimensional axes array.

Call your homework python file plotpandas_homework.py

You should get something like this:

19
Copyright © 2020 OnlineProgrammingLessons.com contact: students@cstutoring.com

END

