
1
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson 7 Plotting with Seaborn Last update Feb 14, 2021

Seaborn offers much more plotting capabilities then pyplot. Seaborn actually uses

pyplot as a base, but provides much more enhancing plotting capabilities.

To use pyplot and seaborn you import them as follows:

import matplotlib.pyplot as plt
import seaborn as sns

You need to have seaborn version 11.0 or greater installed

To install on Jupiter notebook or on Spyder:

conda install -c anaconda seaborn==0.11.0

To install on a regular python:

 pip install seaborn==0.11.0

Types of Plots available with Seaborn:

relation plots

Relation plots makes use of two other axes functions for visualizing statistical
Relationships which are:

 scatterplots
 lineplots

lineplots

A line plot is used to plot lines between 2 variables. As an example we will use a

data frame filled with the amount of money spent per day for groceries as our

data.

import pandas as pd

data=pd.DataFrame({'Day':[1,2,3,4,5,6,7],'Grocery':[30,80,45,23,51,46,76]})

print(data)

2
copyright © 2020 www.onlineprogramminglessons.com For student use only

 Day Grocery

0 1 30

1 2 80

2 3 45

3 4 23

4 5 51

5 6 46

6 7 76

We can use the pyplot plt.figure function to set our plot size to 6 by 5 inches

plt.figure(figsize=(6,5))

We then plot the data with the seaborn lineplot function

sns.lineplot(x="Day", y="Grocery", data=data)

plt.show()

3
copyright © 2020 www.onlineprogramminglessons.com For student use only

Plotting Univariate Distributions:

Univariate means "one variable" (one type of data like temperature). If you have

two sets of data, such as population sales vs area, then it is called "Bivariate

Data"

To plot univariate distributions you use the displot() function as follows:

We can plot the normal distribution curve of 100 points centered at 5 with

deviation of 2 as follows using the numpy random.normal function. We have set

kde equal to True so we can also plot the kernel density estimation (kde). The

kernel density estimation is used create a smooth curve around the normal

distribution of data..

import numpy as np

data = np.random.normal(loc=5,size=100,scale=2)

sns.displot(data,kde=True);

plt.show()

We have plotted a graph using displot for normal distribution curve of 100

points centered at 5 with deviation of 2.

4
copyright © 2020 www.onlineprogramminglessons.com For student use only

Plotting histogram

A histogram represents the distribution of data by forming bins along the range of

the data and then bars are drawn to show the number of observations (frequency)

that fall within in each bin.

We can use the seaborn histplot function to print a histogram.

sns.histplot(data)

plt.show()

5
copyright © 2020 www.onlineprogramminglessons.com For student use only

We can also use the displot function to plot a histogram by removing the kernel

density estimation (kde) curve by setting kde=False (not including kde). We have

added an additional rug plot instead, which draws a small vertical tick for each

observation at the bottom of the plot.

data = np.random.normal(loc=5,size=100,scale=2)

sns.displot(data, kde=False, rug=True);

plt.show()

Plotting Kernel density estimation KDE

The kernel density estimate KDE is used to plot the shape of a distribution. The
KDE plot encodes the density of observations on one axis with height along the
other axis. We use the seaborn distplot function with kind="kde" to plot the
kde.

6
copyright © 2020 www.onlineprogramminglessons.com For student use only

plotting Kernel density estimation KDE
data = np.random.normal(loc=5,size=100,scale=2)
sns.displot(data, kind="kde", rug=True);
plt.show()

Drawing a KDE

In drawing a KDE each observation is first replaced with a normal (Gaussian)

curve centered at that value.

drawing kde
data = np.random.normal(0, 1, size=30)
bandwidth = 1.06 * data.std() * data.size ** (-1 / 5.)
support = np.linspace(-4, 4, 200)

make kernels
import scipy
kernels = []

7
copyright © 2020 www.onlineprogramminglessons.com For student use only

for x in data:
 kernel = scipy.stats.norm(x, bandwidth).pdf(support)
 kernels.append(kernel)

plot kernels
for kernel in kernels:
 plt.plot(support, kernel, color="r")

sns.rugplot(data, color=".2", linewidth=3);
plt.show()

Next, these curves are summed to compute the value of the density at each point

in the support grid using the numpy sum function. The resulting curve is then

normalized so that the area under it is equal to 1 by dividing the density by the

area under the curve. The area under the curve is calculated using the scipy

integrate.trapz function to Integrate along the x axis using the composite

trapezoidal rule.

8
copyright © 2020 www.onlineprogramminglessons.com For student use only

plot density from kde sum
plt.figure(figsize=(6,5))

density = np.sum(kernels, axis=0)
density /= scipy.integrate.trapz(density, support)
plt.plot(support, density);

plt.show()

We can also plot the kde using the seaborn kdeplot function. We set shade to

True so that he area under the curve is shaded.

plot kde using seaborn kdeplot

sns.kdeplot(data, shade=True);

plt.show()

9
copyright © 2020 www.onlineprogramminglessons.com For student use only

Notice: the seaborn kdeplot function results in the same curve.

Fitting parametric distributions

A displot is used to fit a parametric distribution to a dataset and visually evaluate

how closely it corresponds to the observed data. A parametric distribution is used

in statistics when an assumption is made of the way the underlying data is

distributed. We use the numpy random.gamma function to obtain random

gamma data distribution.

10
copyright © 2020 www.onlineprogramminglessons.com For student use only

The Gamma distribution is often used to model the times to failure of electronic
components, and arises naturally in processes for which the waiting times
between Poisson distributed events are relevant

data = np.random.gamma(6, size=200)

sns.displot(data,kde=True)

plt.show()

Plotting bivariate distributions using Scatter plot

Bi variate data uses two variables like population and area. The seaborn

jointplot function is used for plotting bivariate distributions.

The seaborn jointplot function, creates a multi-panel figure that shows both the

bivariate (or joint) relationship between two variables along with the univariate

(or marginal) distribution of each on separate axes. Correlation is a measure used

to represent how strongly two random variables are related known . The value of

correlation takes place between -1 and +1.

11
copyright © 2020 www.onlineprogramminglessons.com For student use only

Covariance is nothing but a measure of correlation. Correlation is when the
change in one item may result in the change in another item. Covariance is when
two items vary together. Positive covariance: Indicates that two variables tend to
move in the same direction. Negative covariance: Reveals that two variables tend
to move in inverse directions.

Standard deviation SD of a dataset is a measure of the magnitude of deviations
between the values of the observations contained in the dataset. Where variance
is the square of standard deviation.

The multivariate normal, multi-normal or Gaussian distribution is a generalization

of the one-dimensional normal distribution to higher dimensions. Such a

distribution is specified by its mean and covariance matrix. These parameters are

analogous to the mean (average or “center”) and variance (standard deviation, or

“width,” squared) of the one-dimensional normal distribution.

Where the multivariate normal distribution is a multidimensional generalization

of the one-dimensional normal distribution . It represents the distribution of a

multivariate random variable that is made up of multiple random variables that

can be correlated with each other. Multivarate data has x and y values.

12
copyright © 2020 www.onlineprogramminglessons.com For student use only

Example of Multivariate data:

[[0.92632 2.38255891]
 [0.92301184 1.04130204]
 [-1.22132762 -0.27817411]
 [1.30463088 1.70426224]
 [-0.33744608 1.48893676]
 [-0.82018973 -0.89850038]
 [-0.93802065 1.45596415]
 [-0.8825863 1.66154621]
 [0.58593356 2.51111507]]

We use the numpy random.multivariate_normal function to draw random

samples from a multivariate normal distribution. It receives a mean and

covariance matrix and data size.

 mean = [0, 1]
cov = [(1, .5), (.5, 1)]

 data = np.random.multivariate_normal(mean, cov, 200)

The mean is a vector mean of each of the x and y points mean = [x,y]

mean x mean y 0 1

The covariance matrix is a square matrix that contains the variances and

covariance’s associated with x and y. The diagonal elements of the covariance

matrix contain the variances of the variables and the off-diagonal elements

contain the covariance’s between all possible pairs of variables.

 x y x y

x variance covariance x 1 .5

y covariance variance y .5 1

The covariance matrix is symmetric because the covariance between X and Y is

the same as the covariance between Y and X.

13
copyright © 2020 www.onlineprogramminglessons.com For student use only

The covariance matrix must be positive semi definite. A n xn matrix M is said to

be positive-definite if the zT M z scalar is strictly positive for every non-zero

column vector z of n real numbers. Where zT denotes the transpose of z.

We use the sns.jointplot function for plotting where the scatter plot is the default.

plotting bivariate distributions

mean = [0, 1]

cov = [(1, .5), (.5, 1)]

data = np.random.multivariate_normal(mean, cov, 200)

df = pd.DataFrame(data, columns=["x", "y"])

sns.jointplot(x="x", y="y", data=df);

plt.show()

Todo:

Change the mean and covariance matrixes and see what happens.

https://en.wikipedia.org/wiki/Vector_(mathematics)

14
copyright © 2020 www.onlineprogramminglessons.com For student use only

Hexbin plots

A "hexbin" plot is the bivariate analogue of a histogram. It shows the counts of
observations that fall within hexagonal bins. This plot works best with relatively
large datasets. Again we use the numpy random.multivariate_normal function

to generate multivariate data sample.

hexbin plot
mean = [0, 1]
cov = [(1, .5), (.5, 1)]
x, y = np.random.multivariate_normal(mean, cov, 1000).T
with sns.axes_style("white"):
 sns.jointplot(x=x, y=y, kind="hex", color="k");
plt.show()

15
copyright © 2020 www.onlineprogramminglessons.com For student use only

Using Kernel density estimation

It is also possible to use the kernel density estimation procedure described above
to visualize a bivariate distribution. This kind of plot is shown with a contour plot
using jointplot and kind = “kde”.

kde contour plot using jointplot
mean, cov = [0, 1], [(1, .5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x", "y"])
sns.jointplot(x="x", y="y", data=df, kind="kde",shade=True);
plt.show()

16
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can also draw a two-dimensional kernel density plot with the kdeplot
function. This allows you to draw this kind of plot onto a specific (and possibly
already existing) matplotlib axes, whereas the jointplot function manages its own
figure. We also added horizontal and vertical rug plots.

plotting using kde plot
mean, cov = [0, 1], [(1, .5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x", "y"])
sns.kdeplot(x=df.x, y=df.y, shade=True)
sns.rugplot(df.x, color="g")
sns.rugplot(y=df.y);
plt.show()

17
copyright © 2020 www.onlineprogramminglessons.com For student use only

The jointplot function uses a JointGrid to manage the figure. For more flexibility,

you may want to draw your figure by using a JointGrid directly. The jointplot

function returns a JointGrid object after plotting, which you can use to add more

layers or to tweak other aspects of the visualization:

using jointGrid
mean, cov = [0, 1], [(1, .5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x", "y"])
g = sns.jointplot(x="x", y="y", data=df, kind="kde", color="m", shade=True)
g.plot_joint(plt.scatter, c="w", s=30, linewidth=1, marker="+")
g.ax_joint.collections[0].set_alpha(0)
g.set_axis_labels("X", "Y");
plt.show()

18
copyright © 2020 www.onlineprogramminglessons.com For student use only

Plotting amounts paid for groceries for the week

We make 2 data frames, one for week1 and the other for week 2 for the amount

of groceries paid for each day of the week.

x=pd.DataFrame({'Day':[1,2,3,4,5,6,7],'Grocery':[30,80,45,23,51,46,76]})

y=pd.DataFrame({'Day':[8,9,10,11,12,13,14],'Grocery':[65,45,34,23,78,34,56]})

We first plot a contour map by setting kind to “kde” with a white background.

with sns.axes_style("white"):
 p=sns.jointplot(x=x['Grocery'], y=y['Grocery'], kind="kde", color="b",shade=True);
 p.fig.suptitle("Grocery Contour Plot")
plt.show()

We then plot a scatter plot with a white background.

with sns.axes_style("white"):
 p= sns.jointplot(x=x['Grocery'], y=y['Grocery'], color="b");
 p.fig.suptitle("Grocery Scatter Plot")
plt.show()

We have plot the titles with the suptitle function.

19
copyright © 2020 www.onlineprogramminglessons.com For student use only

Pair Plot

Pair Plots are used to visualize relationships between each variable in your data.

A pair plot produces a matrix of relationships between each variable in your data

for an instant visualization of your data. A Pair Plot will take each numerical

column of a data frame and put them on both the x and y axes and plot as a

scatter plot where they meet. In cases where the same column variables meet, a

histogram is drawn that shows the distribution of the variables. An optional

regression line may be drawn on the scatter plot.

We will use the above Grocery data for our data. We will also add a third column

for the percent of money spent each day.

data=pd.DataFrame(
 {'Day':['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday'],
 'Grocery':[30,80,45,23,51,46,76],
 'Percent':[.2,.4,.5,.3,.2,.3,.6]})
print(data)

20
copyright © 2020 www.onlineprogramminglessons.com For student use only

 Day Grocery Percent

0 Monday 30 0.2

1 Tuesday 80 0.4

2 Wednesday 45 0.5

3 Thursday 23 0.3

4 Friday 51 0.2

5 Saturday 46 0.3

6 Sunday 76 0.6

It is quite easy to make a pair plot. When we have string column data we must tell
seaborn to include the columns using the string data using the vars parameter.
The vars parameter is used to specify which columns you want to use in your pair
plot. If you do not a specify a vars parameter the pair plot will plot all columns
that only having numeric data.

plot pair plot
g=sns.pairplot(data,vars=['Day','Grocery','Percent'])

We can specify to have the columns with numeric labels to have the labels
rotated vertically rather than horizontally, using the following rotation code.

rotate labels vertically rather than horizontally
import matplotlib.ticker as mticker
g.fig.draw(g.fig.canvas.get_renderer())
for ax in g.axes.flat:
 ticks_loc = ax.get_xticks()
 ax.xaxis.set_major_locator(mticker.FixedLocator(ticks_loc))

ax.set_xticklabels(ax.get_xticklabels(), rotation=90)

g.fig.suptitle("Weekly Groceries")
plt.show()

Our pair plot as follows:

21
copyright © 2020 www.onlineprogramminglessons.com For student use only

We can also plot the regression line using the kind parameter. You cannot plot a
regression line for non numeric column data. In this situation we do not need to
specify the columns to plot or rotate the x axis labels.

#regression line pair plot
sns.pairplot(data,kind="reg")
plt.show()

22
copyright © 2020 www.onlineprogramminglessons.com For student use only

Seaborn Homework Question 1

Make a data frame for your monthly expenses for the month. Use labels for the
weeks rather than numbers: week1, week2, week 3 and week4. You may have
columns for rent, food, entrainment, utilities etc. If you pay some things monthly
then divide the monthly total by 4. Plot a distribution plot with a KDE of total
weekly expenses. You would also need to make a “Total” column in your data
frame. Print out the data frame. Choose two different expense columns and plot
a joint plot. Next make a pair plot using the individual weekly expenses. Use labels
for the weeks rather than numbers. Week1, week2, week 3 and week4, rotate
the labels vertically. Put titles on your plots. Put everything in a python py file
called seaborn_homework.py. You should get something like this:

 Week Grocery Rent Utilities Entertainment Total

0 week1 100 300 50 20 470

1 week2 120 30 40 30 220

2 week3 130 300 30 20 480

3 week4 90 300 40 40 470

Distribution Plot:

23
copyright © 2020 www.onlineprogramminglessons.com For student use only

JointPlot:

Scatter Plot:

24
copyright © 2020 www.onlineprogramminglessons.com For student use only

Pair Plot:

END

