
1  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Lesson 28  Reinforcement Learning                    Last Update: June 2, 2021 

 

Conventions used in these lessons: 

bold  - headings, keywords, code 

italics -  code syntax 

underline  - important words 

 

Machine Learning 

Machine learning refers to a class of algorithms that promises to improve 

automatically based on experience 

We can broadly divide machine learning into three categories depending upon the 

feedback available for the algorithm to learn over time: 

 Supervised Learning: The objective of supervised learning is to learn a function 

that can map the input to output, exploiting from a labeled set of training data. 

 

 Unsupervised Learning: In contrast, unsupervised learning is about learning 

undetected patterns in the data, through exploration without any pre-existing 

labels. 

 

 Reinforcement Learning: Finally, the goal of reinforcement learning is to 

maximize the cumulative reward by taking actions in an environment, 

balancing between exploration and exploitation. 

Neural networks consist of many simple processing nodes that are interconnected and 

loosely based on how a human brain works. We typically arrange these nodes in 

layers and assign weights to the connections between them. The objective is to learn 

these weights through several iterations of feed-forward and backward propagation of 

training data through the network. 

We typically construct these networks to solve sophisticated problems and categorize 

them as deep learning. When we apply deep learning in the context of reinforcement 
learning, we often term that as deep reinforcement learning. 

https://www.baeldung.com/cs/machine-learning-intro


2  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Reinforcement Learning 

Reinforcement learning is about an autonomous agent taking suitable actions to 

maximize rewards in a particular environment. Over time, the agent learns from its 

experiences and tries to adopt the best possible behavior. 

Reinforcement learning is an autonomous, self-teaching system that essentially 
learns by trial and error. It performs actions with the aim of maximizing rewards, 
it is learning by doing in order to achieve the best outcomes. This is similar to how 
we learn things like riding a bicycle where in the beginning we fall off lots of times 
and make many erratic moves, but over time we use the feedback of what we 
learned and use this knowledge to fine-tune our actions and eventually learn how 
to ride a bicycle. The same is true when computers use reinforcement learning, 
they try different actions, learn from the feedback whether that action delivered 
a better result, and then reinforce the actions that worked. A reinforcement 
learning system  will rework and modifying its algorithms autonomously over 
many iterations until it makes decisions that deliver the best result. 

A good example of using reinforcement learning is a robot learning how to walk. 
The robot first tries a large step forward and falls. The outcome of a fall with that 
big step is a data point the reinforcement learning system responds to. Since the 
feedback was negative, a fall, the system adjusts the action to try a smaller step. 
The robot is able to move forward. This is an example of reinforcement learning in 
action. Another good example is a robot vacuum cleaner navigating a room for 
cleaning, that would bump into many walls and furniture obstacles before it 
learned all the paths. 

One of the most fascinating examples of reinforcement learning in action is  was 
Google’s Deep Mind tool applied to the classic Atari computer game Break Out. 
The goal (or reward) was to maximize the score and the actions were to move the 
bar at the bottom of the screen to bounce the playing ball back up to break the 
bricks at the top of the screen.  



3  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 

 

The algorithm makes lots of mistakes at the beginning but quickly improves to 
where it would beat even the best human players. 

Deep Learning 

Deep learning is essentially an autonomous, self-teaching system in which use 

existing data to train algorithms to find patterns and then use that to make 

predictions about new data. For example, you might train a deep learning 

algorithm to recognize cats on a photograph. You would do that by feeding it 

millions of images that either contains cats or not. The program will then establish 

patterns by classifying and clustering the image data (e.g. edges, shapes, colors, 

distances between the shapes, etc.). Those patterns will then inform a predictive 

model that is able to look at a new set of images and predict whether they 

contain cats or not, based on the model it has created using the training data. 

Deep learning algorithms use layers of artificial neural networks which mimic the 

network of neurons in our brain. This allows the algorithm to perform various 

cycles to narrow down patterns and improve the predictions with each cycle. 

A great example of deep learning in practice is Apple’s Face ID. When setting up 

your phone you train the algorithm by scanning your face. 

 

 

https://bernardmarr.com/default.asp?contentID=1742
https://www.bernardmarr.com/default.asp?contentID=1568


4  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 

 

Each time you log on using e.g. Face ID, the TrueDepth camera captures 

thousands of data points which create a depth map of your face and the phone’s 

inbuilt neural engine will perform the analysis to predict whether it is you or not. 

Deep Reinforcement Learning 

Deep learning and reinforcement learning are both systems that learn 
autonomously. The difference between them is that deep learning is learning 
from a training set and then applying that learning to a new data set, while 
reinforcement learning is dynamically learning by adjusting actions based in 
continuous feedback to maximize a reward. 

By combining deep learning with reinforcement aids the  reinforcement to 
remember and predict the patterns to a higher degree of accuracy.  

 

Methods to Solve Problems 

If we know the answer to a problem we can use classical machine learning 

techniques such as classifications or we can use Deep Neural Networks, 

Classical machine learning is much faster but less accurate. Deep Neural networks 

rake much longer to train but needs lots of training data but more accurate.  

If we have a problem with no known outcome then classical reinforcement is much 

faster but less accurate. Whereas deep reinforcement learning is  much slower but 

more accurate. Evert thing in life always has trades offs. 



5  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 

 

Reinforcement Learning Example 

We want to navigate a mouse in a maze from start to finish containing obstacles to 

avoid. The mouse may move up, down, left or right. 

 

S    

       O O  

A O O  

   G 

reinforcement terminology: 

The maze is known as the environment 

The mouse is known as the Agent 

The up, down left and right movements are known as Actions 

Each square travelled to is known as a State 

S = Start 

G = Goal 

O = Obstacle 

A = Agent 



6  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Reinforcement theory: 

Reinforcement learning is about an autonomous agent taking suitable actions to 
maximize rewards in a particular environment. Over time, the agent learns from 
its experiences and tries to adopt the best possible behavior.  

In the case of reinforcement learning, we limit human interaction to changing the 
environment states, and the system of rewards and penalties. This environment 
setup is known as the Markov Decision Process. (MDP) 

Environment for our maze example  

The Agent mouse moves to different states accordingly to the up, down left or 
right action taken in the maze environment. If the agent reached the goal it gets 
an a reward . if the agent hits an obstacle it gets punished if the agent moves to a 
free cell then a small reward or no reward may be made. 

Training Environment: 

 

 

 

 

 

 

 

 

 

 

 

 

Agent 

(mouse) 

Environment 

(maze) 

Reward 

reached goal: +1 

travel to next cell :  0 

 bump obstacle: -1 

 

Action 

up 

down 

left 

right 

 

State 

which cell 

you are in 

(0-15) 

 



7  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

The maze is the environment  that  the autonomous agent is travelling to the goal 

a piece of cheese, Each up, down left and right movement is an action to get to 

the next cell, When the goal is reached the mouse is reward, if the modes bump 

into obstacles then the mousse receives a penalty if the mode successful y gets to 

another cell when the modes does not gain or looses any points.  The mouse may 

make many trial and error journeys until it knows the path inside out by heart. 

 

Markov Decision Processes 

The Markov Decision Processes uses states, action, rewards and mechanism to 

move from once state to another depending on the action taken. 

A Markov Decision Process (MDP) model contains: 

• A set of possible world states S 

• A set of possible actions A 

• A real valued reward function R(s,a) 

• A description T of each action’s effects in each state. 

 

We assume in the Markov Property the effects of an action taken in a state 

depend only on that state, and not on the prior history. 

Representing Actions 

 

Deterministic Actions: 

• T : For each state and action we specify a new state. 

Stochastic Actions: 

•T: For each state and action we specify a probability distribution over next states. 

Represents the distribution P(s’ |s,a). 

Representing Solutions 

A policy π is a mapping from S to A 

 



8  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Following a Policy 

Following a policy π: 

1. Determine the current states 

2. Execute action π(s) 

3. Goto step 1. 

 

Assumes full observability: the new state resulting from executing an action will 

be known to the system 

Value Functions 

A value function : represents the expected objective value obtained following 

policy from each state in S . 

Value functions partially order the policies, 

•but at least one optimal policy exists, and 

•all optimal policies have the same value function, v* 

 

Bellman Equations 

Bellman equations relate the value function to itself via the problem dynamics. 

For the discounted objective function, 

 

In each case, there is one equation per state  



9  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Types of Environment 

Reinforcement learning primarily consists of two types of environments:  

 Deterministic: This refers to the case where both the state transition model 

and reward model are deterministic functions. Simply put, an agent can 

expect the same reward and next state if it repeats an action in a particular state. 

 

 Stochastic: Stochastic refers to something that has a random probability of 

occurrence. Within such an environment, if an agent takes action in a state 

repeatedly, they cannot be guaranteed to receive the same reward or the 

next state. 

Types of Reinforcement Learning 

There are generally two types of reinforcement learning: 

 Model-Based: In a model-based algorithm, the agent uses experience to 

construct an internal model of the transitions and immediate outcomes in 

the environment, and refers to it to choose appropriate action. The agent can 

externally receive the state transition and reward probability functions. 

 

 Model-Free: In contrast, in a model-free algorithm, the agent uses experience 

to learn the policy or value function directly without using a model of the 

environment. Here, the agent only knows about the possible states and actions 

in an environment and nothing about the state transition and reward probability 

functions. 

Value Functions and Policy 

The reward is immediate feedback that an agent receives from the environment for an 

action that it takes in a given state. Moreover, the agent receives a series of rewards in 

discrete time steps in its interactions with the environment. 

The objective of reinforcement learning is to maximize this cumulative reward, which 

we also know as value. The strategy that an agent follows is known as policy, and 
the policy that maximizes the value is known as an optimal policy. 

 



10  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Reinforcement learning is a branch of machine learning dedicated to training 

agents to operate in an environment, in order to maximize their utility in the pursuit 

of some goals. 

Its underlying idea, states Russel, is that intelligence is an emergent property of the 

interaction between an agent and its environment. This property guides the agent’s 

actions by orienting its choices in the conduct of some tasks.  

We can say, analogously, that intelligence is the capacity of the agent to select the 

appropriate strategy in relation to its goals. Strategy, a teleologically-oriented 

subset of all possible behaviors, is here connected to the idea of “policy”. 

A policy is, therefore, a strategy that an agent uses in pursuit of goals. The policy 

dictates the actions that the agent takes as a function of the agent’s state and the 

environment. 

Formally, the notion of value in reinforcement learning is presented as a value 
function: 

Here, the function takes into account the discounted future rewards starting in a state 

under a given policy. We also know this as the state-value function of this policy. The 

equation on the right side is what we call a Bellman equation, which is associated with 

optimality conditions in dynamic programming. 

3.5. Q-value and Q-learning 

Q-value is a measure of the long-term return for an agent in a state under a policy, but 

it also takes into account the action an agent takes in that state. The basic idea is to 
capture the fact that the same action in different states can bare different rewards:  

Here the function creates a map of the state and action pairs to the rewards. We also 

know this as the action-value function for a policy. 

Q-value is a measure we use in Q-learning, which is one of the main approaches we 

use toward model-free reinforcement learning. Q-learning emphasizes how useful a 
given action is in gaining some future reward in a state under a policy. 

http://aima.cs.berkeley.edu/
https://en.wikipedia.org/wiki/Bellman_equation


11  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

4. Implementing Reinforcement Learning 

Now that we’ve covered enough basics, we should be able to attempt to implement 

reinforcement learning. We’ll be implementing the q-learning algorithm for this 
tutorial. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maze class 

QAgent 

QTable 

Grid 

Action State, reward 

Agent 



12  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

1. Test Environment 

 

START 

 

   

 

 

  WALL  

 

 

  WALL  

 

 

  GOAL 

 

 
 

The rules of this game are: 

 The grid consists of 16 tiles set up 4×4 

 There is a starting tile (S) and a goal tile (G) 

 Some tiles are walls 

 Movement of the agent is largely uncontrollable 

 The agent is rewarded for finding a walk able path from the starting tile to the goal tile 

We’ll be using this environment to test the reinforcement learning algorithm we’re going to 

develop in the subsequent sections. 

Maze class 

The maze class store the 2d grid maze, and the agent coordinates. We display  the 

maze in a heat map. A step function is used to update the agent position based on the 

actions received, The agent current position is the current state. For operation 

convenience. the state is stored as row and column coordinates by state number. Here 

is the maze code: 

 

 

 

 



13  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

""" 
Qtable_maze.py 
Reinforcement learning 
Finding a goal in A Maze 
""" 
import numpy as np 
import random 
import matplotlib.pyplot as plt 
import seaborn as sns 
import time 
 
# index constants 
ROW = 0 
COL = 1 
 
# maze constants 
OPEN = 0 
WALL = 1 
OCCUPIED = 2 
START = 3 
GOAL = 4 
 
# actions 
UP = 0 
DOWN = 1 
LEFT = 2 
RIGHT = 3 
 
""" 
maze class 
stores maze grid and agent coordinates 
""" 
class Maze: 
     
    # initialize maze 
    def __init__(self,grid,start_row,start_col,goal_row, goal_col): 
         
        self.grid = grid 
        self.rows = len(grid) 
        self.cols = len(grid[0]) 
        self.start_row=start_row 
        self.start_col=start_col 
        self.goal_row=goal_row 
        self.goal_col=goal_col 



14  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

        self.agent_row = 0 
        self.agent_col = 0 
         
    # reset maze 
    def reset(self): 
         
        self.agent_row = 0 
        self.agent_col = 0 
        return (0,0)  # return start state  
 
    # return next state, rewards, done for input action 
    def step(self,action):  
         
        # inialize 
        done = False 
        r = 0 
         
        # save agent coordinance 
        prev_agent_row,prev_agent_col = self.agent_row, self.agent_col 
         
        # move agent 
        if (action == UP): 
            self.agent_row = max(self.agent_row-1,0) 
        if (action == DOWN): 
            self.agent_row = min(self.agent_row +1,self.rows-1) 
        if (action == LEFT): 
            self.agent_col = max(self.agent_col -1,0) 
        if (action == RIGHT): 
            self.agent_col = min(self.agent_col +1,self.cols-1)   
         
        # check if agent done 
        if (self.isDone( self.agent_row, self.agent_col)): 
            done = True 
             
            # goal found 
            if ((self.agent_row == self.goal_row) and (self.agent_col == self.goal_col)): 
                print('Target reached') 
                r = 1 
       
            # hit a wall or start 
            else: 
                print('hit a wall') 
                self.agent_row,self.agent_col = prev_agent_row, prev_agent_col 
                r = -1 



15  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

                      
        # return next state, reward, done flag and next state as a number 
        next_state = (self.agent_row,self.agent_col) 
        return(next_state,r,done) 
 
    # return true if wall, start or goal found 
    def isDone(self,row,col): 
        done = False 
        if(self.grid[row][col] == START or self.grid[row][col] == WALL or self.grid[row][col] == GOAL ):  

           done = True 
        return done 
     
    # render maze as a heatmap 
    def render(self): 
      
        cells = np.copy(self.grid) 
        r,c = self.agent_row,self.agent_col 
        cells[r][c] = OCCUPIED 
        sns.heatmap(cells) 
        plt.show() 

Q-learning Process 

Here is the Q-learning process 

 

 

The q-values are stored and updated in a q-table, which has dimensions matching 
the number of actions and states in the environment. This table is initialized with 
zeros at the beginning of the process. 



16  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

As evident from the diagram above, the q-learning process begins with choosing 
an action by consulting the q-table. On performing the chosen action, we receive 
a reward from the environment and update the q-table with the new q-value. We 
repeat this for several iterations to get a reasonable q-table. 

4.4. Choosing an Action 

We saw earlier that when the process starts, the q-table is all zeros. Hence the 
action an agent chooses cannot be based on the q-table, it has to be random. 
However, as the q-table starts to get updated, the agent makes the selection of 
the action based on the maximum q-value for a state. 

This may potentially lock the agent in repeating some of the initial decisions that 
were not optimal. Essentially, the agent moves from exploration to exploitation of 
the environment too soon. Therefore, it is necessary to introduce an action 
selection policy called the e-greedy. 

Here we sample a random number, and if it happens to be less than , the action 
is chosen randomly. This allows the agent random exploration, which can be 
very useful, especially in the initial iterations. Of course, we slowly decay the 
impact of this parameter to lean on the side of exploitation as learning matures. 

4.5. Updating the Q-value 

The calculation of q-value follows a Bellman equation. Basically, we keep adding a 
temporal difference to the current q-value for a state and action pair.    

 

o basically, we keep adding a temporal difference to the current q-value for a state and action pair. 
There are two important parameters here which are important to choose wisely: 

important parameters:  

 Learning rate: This is a parameter we can use to control the pace at which 
our algorithm can learn. We set it between o and 1 with an effective value 
of 0, meaning no learning at all. 
 



17  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 Discount factor: We saw earlier that a future reward has less importance 
for actions in the present. We model this using a discount factor, again set 
between 0 and 1. 

4.6. Setting-up the Q-learning Algorithm 

Actions UP, DOWN, LEFT, RIGHT 

States 0 to 15 (each square cell is a state) 

Qtable 

Each row is state where each column is a Action 

The Qtable is a 2 dimensional array accessed by row and column rather than state 

number. Using row and column indexes is much easier to implement since the 

agent is moving in x and y coordinates. The x and y agent coordinates  represent 

the states 0 to 15.  

State row column UP DOWN LEFT RIGHT 

0 0 0     
1 0 1     

2 0 2     
3 0 3     

4 1 0     
5 1 1     

6 1 2     

7 1 3     
8 2 0     

9 2 1     
10 2 2     

11 2 3     

12 3 0     
13 3 1     

14 3 2     
15 3 3     

 



18  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

QAgent CLASS 

QAgent class holds the Qtable and all the bellman parameters. The maze class 

supplies the state to the Qtable, The QAgent supplies the actions to the maze 

class calculates the next state for the QAgent class.  Here is the  QAgent class. 

QAgent parameters 
gamma=0.9 
alpha=0.1 
epsilon=0.1 
num_episodes=1000 
 

 

 Learning rate: This is a parameter we can use to control the pace at which our algorithm 

can learn. We set it between 0 and 1 with an effective value of 0, meaning no learning at 

all. 

 Discount factor: We saw earlier that a future reward has less importance for actions in the 

present. We model this using a discount factor, again set between 0 and 1. 

QAgent code 

""" 
QAgent class 
stores QTable and bellman equation parameters 
contains train and test methods 
""" 
 
class QAgent: 
     
    # initialize 
    def __init__(self,gamma=0.9,alpha=0.1,epsilon=0.1,num_episodes=500,maze=None): 
         
        # qtable 
        self.q_table = [[[0,0,0,0] for c in range(maze.cols)] for r in range(maze.rows)] 
        self.actions = [UP,DOWN,LEFT,RIGHT] 
        self.maze = maze 
        self.alpha = alpha 
        self.gamma = gamma 
        self.epsilon = epsilon 
        self.num_episodes = num_episodes 
        self.action_list=['UP','DOWN','LEFT','RIGHT'] 



19  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

     
    # main learning algorithm.  
    # loops for 'number of episodes' 
    # agent tries to make many movements as possible 
    # either randomly or based on the Q values 
    def train(self): 
 
        # for each episode 
        for episode in range(self.num_episodes): 
             
            #self.maze.render() 
                
            # start 
            done = False 
            state,state_number = self.maze.reset() 
           
            # for many movements as possible 
            while not done: 
                
                # 10% choose an action randomly where Q values are 0 
                if (np.random.uniform()<self.epsilon)  
                      or (sum(self.q_table[state[ROW]][state[COL]]) == 0): 
                    action = np.random.choice(self.actions) 
                # use max Q value 
                else: 
                   
                    # get actions for this state 
                    actions = self.q_table[state[ROW]][state[COL]] 
                     
                    # action = max Q value (argmax = lst.index(max(lst))) 
                    action = actions.index(max(actions)) 
                                  
                # print action  
                print(self.action_list[action],action) 
                 
                # get next state 
                next_state,reward,done,state_number = self.maze.step(action) 
                 
                print( next_state,reward,done,state_number) 
                 
                # get current Q value 
                current_Q = self.q_table[state[ROW]][state[COL]][action] 
                 
                # get next state max Q value 



20  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

                next_Q = max(self.q_table[next_state[ROW]][next_state[COL]]) 
                 
                # update qtable with bellman's equations and its future rewards  
                self.q_table[state[ROW]][state[COL]][action]  
                            += self.alpha * (reward + self.gamma * next_Q - current_Q) 
                 
                # update state 
                state = next_state 
                 
    
    # test predictions 
    def test(self): 
         
        state, state_number = self.maze.reset() 
        self.maze.render() 
        time.sleep(1) 
        done = False 
         
        # loop to goal found 
        while not done: 
             
            print(state) 
             
            # get next state 
            state = (self.maze.agent_row,self.maze.agent_col) 
           
            # get next best possible move 
            actions = self.q_table[state[ROW]][state[COL]] 
            action = actions.index(max(actions)) 
             
            print(self.action_list[action],action) 
            state,reward,done,state_nunber = self.maze.step(action) 
             
            # display maze 
            self.maze.render() 
            time.sleep(1) 
             
        # display maze 
        print(state) 
        self.maze.render() 
        time.sleep(1) 

 

 



21  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Running the program: 

Here is the code to run the program: 
 
####### 
# Run # 
####### 
     
# maze grid 
grid = [[3,0,0,0],[0,0,1,0],[0,0,1,0],[1,0,0,4]] 
print(grid) 
 
# make maze 
maze = Maze(grid,0,0,3,3) 
 
# QAgent parameters 
gamma=0.9 
alpha=0.1 
epsilon=0.1 
num_episodes=1000 
 
# make QAgent 
q = QAgent(gamma,alpha,epsilon,num_episodes,maze) 
 
# train 
print("training") 
q.train() 
 
# print q table 
print(q.q_table) 
 
# test 
print("testing") 
q.test() 
print("done") 
 

 
to do: 
 
Type in or copy paste the above code and run it 
 
 
 



22  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

You should get something like this. 
Training 
 
DOWN 1 
(1, 1) 0 False 5 
DOWN 1 
(2, 1) 0 False 9 
DOWN 1 
(3, 1) 0 False 13 
RIGHT 3 
(3, 2) 0 False 14 
RIGHT 3 
Target reached 
(3, 3) 1 True 15 
 

[[[0.4050321248408491, 0.31774591770007055, 0.3254037304544567, 

0.5904899999999977], [0.48706275491288104, 0.6560999999999979, 

0.46951005532682855, 0.07260564993864563], [0.0, 0.0, 0.29634285134312316, 

0.0], [0.0, 0.0, 0.0, 0.0]], [[0.034327486518508685, 0.00805924436478477, 

0.05446749993875941, 0.6431604905943425], [0.44981478808352726, 

0.7289999999999983, 0.3886574298716119, 0.5684926405608114], [0, 0, 0, 0], 

[0.0, 0.0, 0.0, 0.0]], [[0.37107067748621947, 0.0, 0.0, 0.0], [0.4464662577844367, 

0.8099999999999987, 0.14550627451519554, 0.5031096461043003], [0, 0, 0, 0], 

[0.0, 0.1, 0.0, 0.0]], [[0, 0, 0, 0], [0.44101601504639876, 0.5266730305480968, 

0.3794655349291217, 0.899999999999999], [0.4216785634828184, 

0.6766716000541159, 0.5399264356454585, 0.9999999999999996], [0, 0, 0, 0]]] 

Testing 

 

 



23  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

(0, 0) 
DOWN 1 
(1, 0) 
RIGHT 3 
(1, 1) 
DOWN 1 
(2, 1) 
 
 

 
 
DOWN 1 
(3, 1) 
RIGHT 3 
(3, 2) 
RIGHT 3 
Target reached 
(3, 3) 
 

 

 

 



24  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

DEEP LEARNING REINFORCEMENT HOMEWORK 1 

Change the algorithm so when the agent bombs into the wall will shoes another 

action rather than restarting from state 0. Also keeps track of visited cells so it 

does not choose the cell again, also when the agent can travel to the goal without 

bumping into a wall exit training, so that the training does not rely on the number 

of episodes. When the training exits print out the number of episodes. 

 

REINFORCEMENT  LEARNING HOMEWORK 2 

Apply Reinforcement learning for the stock prediction program of previous 

lessons. You may need two QTables, one for buying and cashing out and another 

one for selling and cashing out. 

The actions would be holding buy/sell  and cash out.  There are manypossibiites 

for states 

(1) a moving n* n grid, where each cell in the grid is a state, you may want a grid 

to represent a day of trading. 

(2) moving window of prices, where each difference of price is mapped into a 

state number. Where -1 is a price going down, 0 piece not changing and 1 price 

inceasing. 3^8 = 6561 states. 

(3) the price between the minimum and maximum can also represent a state. 

This would be a vertical displacement of states. 

TheBuying is when the prices are changing direction. The environment is buying 

and selling and cashing in stocks. The system is rewarded when it is making 

money.  

 

Call your py file deep_reinforcement_homework2.py 

 

 



25  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 

 

 

 

 

 

 

 

 

 

 

 

You may get something like this: 

Training: 

 

 

Trading Platform QAgent 

QTable 

 

Buy Place trade 

(Buy or Sell) 

close trade 

States  prices) 

Close 

Sell 



26  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 

Running 

 

 

PART 2 

REPLACING THE QTABLE WITH A NEURAL NETWORK  

We can replace the QTable with a neural network. The advantage is more 

accuracy and less memory usage. The disadvantage is slower training  operation, 

but once we are trained the response time is faster. 

 

Difference between Reinforcement Learning and Deep Reinforcement learning 

Q learning is good for small applications but not for large applications  millions of 

states may be needed. Q learning can’t be used in unknown states because it 

can’t infer the Q value of new states from the previous ones. Therefore we 

approximate the Q values using some machine learning model. We replace the 

QTable with a Neural networks.  The network receives the state as an input and 

outputs the Q values for all possible actions. The largest value  output of the 

neural network is our next action.  



27  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 

Our Neural Network will have 16 inputs each one representing one of  the 16 

states, a hidden layer of 20 nodes and 4 output nodes representing the QTable 

values for each UP, DOWN, LEFT and RIGHT  action. 

 

 

 

 

 

 

 

 

Our Neural  Network  layers may look like this: 

16 

 Input Layer 

representing 

states 

20 

Hidden Layer 

representing 

QTable 

values 

4 

Output 

Layer 

representing  

Actions 



28  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 

We will have two classes a Maze class to represent our grid environment that 

stores the agent and state. And a  DBQAgent class the stores the neural  network 

that predicts the best action for the current state. 

DBQ = Deep Based Q 

 

 

 

 

 

 

 

 

 

 

 

Maze class 

DBQAgent 

Neural Network 

replaces 

QTable 

4 x4 Grid 

Action Agent 

state = row and 

column  coordinates 

State 



29  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

We are using the Keras neural  network that uses the Tensor Flow backend. We 

use the sequential model so we can stack many layers together. 

        self.model = Sequential() 
 

We first add the input layer where the number of inputs is specified from maze 
observation space of 16 states. 
 
        self.model.add(InputLayer(batch_input_shape=(1,self.maze.observation_space()))) 
 

Next we add the hidden layer of 20 nodes using relu activation. An activation is 
the level a neuron fires that becomes the neuron output.  An relu activation just 
allows positive values, and negative values are set to 0; 
 
        self.model.add(Dense(20, activation='relu')) 
 

Finally we add the output layer using we use linear activation. Linear activation 
has no activation level at all and just outputs the actual value from the neural 
network. 
 
        self.model.add(Dense(len(self.actions), activation='linear')) 
 

The model compile function sets up the model with losses, optimizer  and metrics  
 

        self.model.compile(loss='mse', optimizer='adam', metrics=['mae']) 
 

For the  model we are using:  
 
Loss = mse loss  
Optimizer= adam optimizer 
Metrics = mae metrics 
 
Loss is the model objective function, for loss we are using mse.  
Mse computes the mean squared error between actual  and predictions. 
 
Metrics is what is to be  evaluated by the model during training and testing 
We are using mae  which calculates the Mean Absolute Error: 

 



30  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

The optimizer is used  to the model in response to the output of the loss function. 
During training the weights of the model are adjusted to try to minimize that loss 
function, and make our predictions as correct and optimized as possible. The loss 
function guides  the optimizer when it’s moving in the right or wrong direction to 
adjust the weights of the model. 

We are using the Adam optimizer. The Adam optimizer is a stochastic gradient 
descent method that is based on adaptive estimation of first-order and second-
order moments. 

The Adam optimizer is computationally efficient, has little memory requirement, 
invariant to diagonal rescaling of gradients, and is well suited for problems that 
are large in terms of data/parameters. 

 
DBQgent paramaters 
 

The DBQagent receives the following paamaters: 

discount_factor = 0.95 
eps = 0.5 
eps_decay_factor = 0.999 
num_episodes=500 
maze=Maze 
 

The discount factor allows a future reward to have  less importance for actions in 
the present. The discount factor is set between 0 and 1. 

The eps allows random actions at the beginning  and as the system evolves the 

eps value is decreased by the eps_decay factor to allow maximum Q values to be  

used. Eps has a starting value of .5 and eps_decay_factor is set at .999. 

Learning rate is used  to control the pace at which our algorithm can learn. We set 

it between 0 and 1 where a value of 0, meaning no learning at all. 

Our DBQagent  is similar to the QTAgent  the only difference is the neural network 

has replaced the QTable 



31  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Selecting states 

Each state is represents by a identity matrix this is known  as 1 hot decoder. 

 

State One hot encoding UP DOWN LEFT RIGHT 

0 1000000000000000         

1 0100000000000000         

2 0010000000000000         

3 0001000000000000         

4 0000100000000000         

5 0000010000000000         

6 0000001000000000         

7 0000000100000000         

8 0000000010000000         

9 0000000001000000         

10 0000000000100000         

11 0000000000010000         

12 0000000000001000         

13 0000000000000100         

14 0000000000000010         

15 0000000000000001         

 
 

 
The state bits are selected with slicing:  
 

bits = np.identity(self.maze.observation_space())[state:state + 1])) 
 

The self.maze.observation_space() is 16 and the state is the state number. If the 
state is 6 then [state:state + 1]  then the bits selected would be   
 
0000010000000000 
 

Each state would produce 4 Q values from the neural network model. 

.544432 .65443 .54432 .77665 

 

 

 



32  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

We can select the index of the Qvalue having the  max value using np.argmax 

      action = np.argmax( 

                   self.model.predict(np.identity(self.maze.observation_space())[state:state + 1])) 

Updating the Qvalues 

Neural networks work on  mathematical calculations where internal values are 

stored as weight in a matrix. The inputs of the neural network are multiplied and 

summed with the internal weights to calculate an output. The output are sent to a 

activation function that fires the neuron. The internal weights are used to train 

the neural network to give accurate outputs accordingly to the inputs.  

 

xi                                                                             yi 

 

inputs          weights                           summation                              sum                   activation           output 

The output of the neural network is compared to an actual value.  An error is 

calculated from the actual and predicted values. 

error = actual – predicted 

The error value  are used to adjust the internal weights of the neural network as 

to the minimize output error. 

 

 

 

 

 

 

In our situation our predicted output is one of the actions and  the actual value is 

a valid path to reach the goal and if found. 

Internal weights Summation  

 

 

Calculate Error 

actual-predicted 

Activation 

 (wi * xi )   wi zi f(zi) 

inputs 

outputs 



33  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

When the goal is found we increase the Q action value for that state. 

Neural networks work by iteratively updating the weights and biases of the model 
to reduce the error in predictions that it is making. It is necessary for us to be able 
to calculate the model error at any point in time. The loss function enables us to 
do tune the model. We are using the mean-squared-error loss function. 

We use the bellman equation from part1 reinforcement  learning to calculate the 

next Q value  

Next value = reward + discount_factor * max a’  Q’(s’ , a’)) 

The bellman equation adds the reward to the learning curve times the max  
QTValue. 

The mean-squared-error loss function measures the square value of the 
difference between the prediction and the target: 

           Loss = [predicted value – actual value]2 

Using the bellman equation and state and action values 

loss = [(reward + discount_factor * max a’  Q’(s’ , a’)) - Q(s,a)] 2 

The output of the  loss function is to feed back the backward loss value through 
the network and update the weights. This is called  back propagation. Usually 
stochastic gradient descent is used for back propagation. We are using  Adam 
(derived from Adaptive Moment Estimation) a  back propagation  which is  more 
efficient with lesser memory requirements  

Training 

W e first  loop for number of episodes 

        for i in range(self.num_episodes): 

 

             



34  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

we initialize the environment that return the state 0 

            state = self.maze.reset() 

 

We then decrease the eps. The eps is to select random actions at the start of 

training. 

            self.eps *= self.eps_decay_factor 

We loop until a goal is found or a  wall is hit             

done = False 

              while not done: 

                 

If a random number is less than the eps then we chose a random action or it 

chooses the max action from the neural network Qvalue.. 

                if np.random.random() < self.eps: 

                    action = np.random.randint(0, len(self.actions)) 

                else: 

                    action = np.argmax( 

                        self.model.predict(np.identity(self.maze.observation_space())[state:state + 1]))  

                print(state, self.action_list[action]) 

                 

We get the next state from  for Agent calculated movement from the present 

state and action from the QTable for the present state. 

                reward, done,new_state = self.maze.step(action)      

  we get the predicted  from the neural network for the present state 

                predict = self.model.predict( 

                    np.identity(self.maze.observation_space())[new_state:new_state + 1]) 



35  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

We now calculate the new Q target value using bellman equation and the max Q 

value of the predicted Qvalue for the present state. 

                target = reward + self.discount_factor * np.max(predict) 

 Again we obtain the Q values for this state from the model 

                target_vector = self.model.predict( 

                        np.identity(self.maze.observation_space())[state:state + 1])[0] 

   We update the model target Qvalues with the calculated target 

                target_vector[action] = target 

                 

   We now train the neural network with the fit method. 

                self.model.fit( 

                    np.identity(self.maze.observation_space())[state:state + 1],  

                    target_vector.reshape(-1,len(self.actions)), epochs=1, verbose=0) 

                 

      The new state now is the present state 

                state = new_state    

 

Here is the training flow chart 

 

 

 

 

 

 

For number of 

episodes 



36  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Done = false 

while not done: 

Calculate action randomly or from q table  

                State = new state 

                 

  

step  

Update neural network 



37  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Testing 

We first reset the environment to state 0  

done = False 

    state = self.maze.reset() 

we then get the prediction for current state  

            action = np.argmax( 

                self.model.predict(np.identity(self.maze.observation_space())[state:state + 1])) 

We get next state from the agent calling the step function 

   new_state = reward, done= self.maze.step(action) 

when the new state is found we are done 

Here is the complete program: 

""" 
DBQ_maze.py 
 
deep reinforcement learning Q neural network maze 
""" 
 
import numpy as np 
from keras.models import Sequential 
from keras.layers import InputLayer 
from keras.layers import Dense 
import matplotlib.pyplot as plt 
import seaborn as sns 
import time 
 
 
# grid contents 
ROW = 0 
COL = 1 
OPEN = 0 
WALL = 1 
OCCUPIED = 2 
START = 3 
GOAL = 4 



38  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

# actions 
UP = 0 
DOWN = 1 
LEFT = 2 
RIGHT = 3 
 
# maze contains grid and agent 
class Maze: 
     
    # initialize maze 
    def __init__(self,grid,start_row,start_col,goal_row, goal_col): 
         
        self.grid = grid 
        self.rows = len(grid) 
        self.cols = len(grid[0]) 
        self.start_row=start_row 
        self.start_col=start_col 
        self.goal_row=goal_row 
        self.goal_col=goal_col 
        self.agent_row = 0 
        self.agent_col = 0 
         
    # reset environment 
    def reset(self): 
         
        self.agent_row = 0 
        self.agent_col = 0 
        state_number= self.agent_row*self.rows + self.agent_col 
        return state_number 
      
    # return number of states 
    def observation_space(self): 
        return self.rows * self.cols; 
     
    # get next state 
    def step(self,action):  
         
        # initialize 
        done = False 
        r = 0 
        prev_agent_row,prev_agent_col = self.agent_row, self.agent_col 
         
         
 



39  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

        # get next move 
        if (action == UP): 
            self.agent_row = max(self.agent_row-1,0) 
        if (action == DOWN): 
            self.agent_row = min(self.agent_row +1,self.rows-1) 
        if (action == LEFT): 
            self.agent_col = max(self.agent_col -1,0) 
        if (action == RIGHT): 
            self.agent_col = min(self.agent_col +1,self.cols-1)   
         
        # wall hit, or goal found 
        if (self.isDone( self.agent_row, self.agent_col)): 
            done = True 
            # goal found 
            if ((self.agent_row == self.goal_row) and (self.agent_col == self.goal_col)): 
                print('Target reached') 
                r = 1 
       
            # wall hit 
            else: 
                print('hit a wall') 
                self.agent_row,self.agent_col = prev_agent_row, prev_agent_col 
 
                 
        # store next state 
        next_state= self.agent_row*self.rows + self.agent_col 
         
        # return agent state, reward, done, and number state 
        return(r,done,next_state) 
 
 
    # return true if start, wall or goal found 
    def isDone(self,row,col): 
        done = False 
        if(self.grid[row][col] == START or self.grid[row][col] == WALL  
                         or self.grid[row][col] == GOAL ):  
           done = True 
        return done 
     
 
 
 
 
 



40  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

    # render maze as a heatmap 
    def render(self): 
      
        cells = np.copy(self.grid) 
        r,c = self.agent_row,self.agent_col 
        cells[r][c] = OCCUPIED 
        sns.heatmap(cells) 
        plt.show() 
      
 
# QAgent containing neural network 
class DBQAgent: 
     
    # initialize environment 
    def __init__(self,discount_factor = 0.95,eps = 0.5,eps_decay_factor = 
0.999,num_episodes=500,maze=None): 
         
        # store values 
        self.actions = [UP,DOWN,LEFT,RIGHT] 
        self.maze = maze 
        self.discount_factor =discount_factor 
        self.eps = eps 
        self.eps_decay_factor = eps_decay_factor 
        self.num_episodes = num_episodes 
        self.action_list=['UP','DOWN','LEFT','RIGHT'] 
         
        # initialize keras neural network 
        self.model = Sequential() 
        self.model.add(InputLayer(batch_input_shape=(1,self.maze.observation_space()))) 
        self.model.add(Dense(20, activation='relu')) 
        self.model.add(Dense(len(self.actions), activation='linear')) 
        self.model.compile(loss='mse', optimizer='adam', metrics=['mae']) 
     
    # train neural network 
    # for each action a new state is produced 
    def train(self): 
 
        action = 0 
        for i in range(self.num_episodes): 
             
            # initialize 
            state = self.maze.reset() 
            self.eps *= self.eps_decay_factor 
            done = False 



41  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

            while not done: 
                 
                # use random   
                if np.random.random() < self.eps: 
                    action = np.random.randint(0, len(self.actions)) 
                     
                # use max Qvalue from neural network for this state 
                else: 
                    action = np.argmax( 
                        self.model.predict(np.identity(self.maze.observation_space())[state:state + 1]))  
                print(state, self.action_list[action]) 
                 
                # get next state from Agent movement 
                reward, done,new_state = self.maze.step(action) 
                 
                # make prediction 
                predict = self.model.predict( 
                    np.identity(self.maze.observation_space())[new_state:new_state + 1]) 
                 
                # calculate actual target for reward 
                target = reward + self.discount_factor * np.max(predict) 
                 
                # make prediction for this state 
                target_vector = self.model.predict( 
                        np.identity(self.maze.observation_space())[state:state + 1])[0] 
                 
                # update target with actual target 
                target_vector[action] = target 
                 
                # train with updated target 
                self.model.fit( 
                    np.identity(self.maze.observation_space())[state:state + 1],  
                    target_vector.reshape(-1,len(self.actions)), epochs=1, verbose=0) 
                 
                # state is new state 
                state = new_state    
                 
    # test predictions 
    def test(self): 
         
        done = False 
        state = self.maze.reset() 
        self.maze.render() 
        print(state) 



42  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

        while not done: 
             
            # get next prediction 
            action = np.argmax( 
                self.model.predict(np.identity(self.maze.observation_space())[state:state + 1])) 
             
            # get next state from prediction 
            reward, done, new_state= self.maze.step(action) 
            state = new_state 
            print(state,q.action_list[action]) 
            self.maze.render() 
            time.sleep(1) 
 
# start 
 
# make grid    
# 0 - path, 1 = wall, 2 = occupied, 3 = start and 4 = goal  
grid = [[3,0,0,0],[0,0,1,0],[0,0,1,0],[1,0,0,4]] 
print(grid) 
 
# make maze 
maze = Maze(grid,0,0,3,3) 
 
# make agent 
discount_factor = 0.95 
eps = 0.5 
eps_decay_factor = 0.999 
num_episodes=500 
q = DBQAgent(discount_factor,eps,eps_decay_factor,num_episodes,maze) 
 
# train environment 
print("training;") 
q.train() 
print("Q Values") 
for state in range(maze.observation_space()): 
    print(state,q.model.predict(np.identity(maze.observation_space())[state:state + 1])[0]) 
 
# test environment 
print("testing") 
q.test() 
print("done") 

 

 



43  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

Todo 

Type in or copy and paste in the above program and run it, 

You should get something like this: 

OUTPUT: 

[[3, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 0, 4]] 
training; 
0 DOWN 
4 RIGHT 
5 RIGHT 
hit a wall 
0 DOWN 
4 RIGHT 
5 LEFT 
4 RIGHT 
5 UP 
1 DOWN 
5 UP 
1 DOWN 
5 UP 
1 DOWN 
5 LEFT 
4 RIGHT 
5 DOWN 
9 UP 
5 LEFT 
4 DOWN 
8 DOWN 
hit a wall 
 
------------ 
 
 
0 RIGHT 
1 RIGHT 
2 RIGHT 
3 DOWN 
7 DOWN 
11 DOWN 
Target reached 
 
Q Values 
0 [2.3720932 1.8992106 2.2173681 2.4427826] 
1 [2.4345908 2.0929148 1.9616205 2.581113 ] 



44  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

2 [2.3791873 2.4087768 2.426102  2.7110744] 
3 [2.7222464 2.7957635 2.6974301 2.5380318] 
4 [1.7537462 1.479912  1.6729028 1.6943152] 
5 [2.3550935 1.9232206 2.1312804 1.976614 ] 
6 [1.6290405 1.8833666 1.9506173 1.9110621] 
7 [2.5776744 2.8820634 2.5313945 2.7156956] 
8 [1.6553805 1.5330678 1.514137  1.510173 ] 
9 [2.063649  1.5916361 1.7150327 1.8191462] 
10 [2.5243807 2.0043151 2.2995152 2.1293592] 
11 [2.6825967 3.0155954 2.9744763 2.3577335] 
12 [1.6130059 1.7181463 1.8973836 1.5587605] 
13 [1.8714818 1.5990793 1.6129892 1.9221941] 
14 [1.5759425 1.491981  1.6160327 1.899595 ] 
15 [1.6895798 2.1073017 2.1452239 1.6371424] 
 
testing 
 

 
   

   

 

   

 



45  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

   

 

 

DEEP LEARNING REINFORCEMENT HOMEWORK 3 

Apply Deep Reinforcement learning for the stock prediction program of previous 

lessons. You may need 2 neural networks, above for buying and cashing out and 

another one for selling and cashing out. 

The actions would be holding buy/sell  and cash out.  

The states would be the market dynamics. The prices are increase deceasing or 

flat. Buying is when the prices are changing direction. The environment is buying 

and selling and cashing in stocks.The system is rewarded when it is making money.  

Call your py file deep_reinforcement_homework3.py 

 

 

 

 

 

 

 

 

 

 

 

Trading Platform DBQAgent 

Neural Network 

 

Buy Place trade 

(Buy or Sell) 

close trade 

States  (prices) 

Close 

Sell 



46  
copyright © 2020 www.onlineprogramminglessons.com For student use only 

You should get something like this 

 

 

 

 

 

 

END 

 


