C Mini Lessons last update: Mar 3, 2021

From http://www.onlineprogramminglessons.com

These C mini lessons will teach you all the C Programming statements you need to
know, so you can write 90% of any C Program.

Lesson 1 Input, Output and Variables
Lesson 2 Functions

Lesson 3 Structures

Lesson4 Operators

Lesson 5 Programming Statements
Lesson 6 Arrays

Lesson 7 Pointers and Allocating Memory
Lesson 8 Passing Arrays and Structures to Functions
Lesson 9 Function Pointers

Lesson 10 File Access

Lesson 11 Recursion

Lesson 12 Projects

Conventions used in these lessons:

bold - headings, keywords, code

italics - code syntax

underline - important words

copyright © 2020 www.onlineprogramminglessons.com For student use only
1

http://www.onlineprogramminglessons.com/

Let’s get started!

You first need to download CodeBlocks C Compiler. This is needed to edit,
compile and run C programs. Alternately you can use your own C compiler or one
of the online C compilers.

Download CodeBlocks from this link.

http://www.codeblocks.org/downloads

Download and install the codeblocks-17.12mingw-setup.exe file that includes the
C Compiler

Once you installed and run CodeBlocks you will get this screen that asks you to
select the C Compiler to use. We selected the GNU GCC Compiler and then
pressed the “Set as Default” button.

Compilers auto-detection O >

Mote: After auto-detection, at least one compiler's master path is still empty and therefore invalid.
Inspect the list below and change the compiler's master path later in the compiler options,
Select you favourite default compiler here:

Compiler Status L Set as default
GMNL GCC Compiler Detected

Current default compiler: GMU GCC Compiler

The following screen then appears.

copyright © 2020 www.onlineprogramminglessons.com For student use only
2

http://www.codeblocks.org/downloads

B Start here - CodexBlocks 17.12 — m] x
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help
2= IR IR [Qmjer 4o B> vl L | 5]
: g
A Kl I 1E) SN ‘ e L il 0] | | \ \
Management x r B
4 Projects | Symbols | Fies b =
Q) Workspace
‘ ‘The open source, cross-platform IDE
Release 17.12 rev 11256 (20171228 10:4&:41) gec 5.0 icods - 32 bit
—_— %
ﬁ Create a new project & Open an existing project 3 Tip of the Day
w‘_\ Visit the Code: Blocks forums Report a bug or request a new feature
' ~
Logs & others x
4| J| CodezBlocks X | () Searchresuts x| /) Ceec x| §3Buidlog X | % Buid messages | J| CopCheckfvera++ X b
SpellChecker: Thesaurus fles 'C:\Program Files (x86)\CodeBlocks share fcodeblocks \SpelChecker th_en_CA.id' not found! ~
v
st default @

Lesson 1 Input, Output and Variables
You first need to make a Project to store all your C lesson files.

From the start menu select Create a new project or from the file menu select,
Open New Project.

Next Select Console application and then press the “Go” button.

Mew from template %
Projects Category: | <Al categories> o
Build targets
Fles (7]) [0'0] Al [concel
Custom g ARDUTND

ARM Project AVR Project Arduino Code::Blocks
Project plugin

8B = & =
Consale D application Direct% Dynamic Link
application project Library

B 5 9

Empty project FLTK project Fortran DLL Fortran

User templates

application
[GLFW GLUT View as
L L
% G Gl (®) Large icons
Fortran library GLFW project GLUT project GTK+ project OList
v

TIP: Try right-dicking an item

1. Select a wizard type first on the left
2, Select 3 spedific wizard from the main window (filter by categories if needed)
3. Press Go

copyright © 2020 www.onlineprogramminglessons.com For student use only
3

This Console screen appears next.

Conzole application =

Welcome to the new console application wizard!
m Co nso Ie This wizard will guide you to create a new console application.

When you 're ready to proceed, please dick Mext"...

ack MNext = Cancel

Press Next button

Console application >

Please select the language you want to use.
& Console

Please make a selection

C++

copyright © 2020 www.onlineprogramminglessons.com For student use only
4

Select C and then press Next button
Using File Explorer make a Folder to hold your C lesson files called C, then enter
CLessons as the project name.

Console application =

Please select the folder where you want the new project
E CU nso Ie to be created as well as its title.

Project title:
|CLessnns |

Folder to create project in:
|C|: Vessons\c |

Project filename:
|CLessons.d:-|:- |

Resulting filename:
|C: Vessons\c\Clessons\Clessons. chbp |

The next screen tells you what C Complier the CodeBlocks is using.

Console application =
C I Please select the compiler to use and which configurations
3 0 “ 50 e you want enabled in your project.
Compiler:
GMNU GCC Compiler HEeS
Create "Debug” configuration:
"Debug” options
Output dir.: |hin'|,Dehug‘|, |

Objects output dir.: |0hj'n,Debug\, |

Create "Releasze” configuration:

"Release” options

Output dir.: |bin'|,ReIease'|, |

Objects output dir.: |0bj'|ReIease'|, |

You can just select Finish.

copyright © 2020 www.onlineprogramminglessons.com For student use only
5

You should get something like this after expanding “Sources” folder and clicking
on main.c in the Management window.

W main.c [CLessons] - Code:Blocks 16.01 — [} =
File Edit View Search Project Build Debug Fortran wexSmith Tools Tools+ Plugins DoxyBlocks Settings Help
IFEd % | @ & |: @ > G @ B |pebu v i b 4 gD %D S G
i <global> ~
, Ve > Ladkda i | | | | |
Management X maine X
4 | Projects | Symbols Files P 1
O_Workspace 2
E|.d Clessons 3
BE} Sources 4 int main()
- s (
3 printf("Hello world!\n"):
7 return O;
8
g
< >
Logs & others x
4 j Code:Blocks 1.<‘3 Search results * j Coce | By Buildlog < ?Build 4
Windows (CR+LF) WINDOWS-1252 Line 1, Column 1 Insert Read/Write default

If you are using another C compiler then you need to type in the following code:
#include <stdio.h>

int main()

{
printf("Hello world!\n");

return 0;

Next you need to build the program before you can run it. From the Build menu
select Build.

copyright © 2020 www.onlineprogramminglessons.com For student use only
6

u main.c [CLessons] - Codes:Blocks 16.01
File

Edit Wiew Search Project Build Debug Fortran

wxSmith Tools

Tools+ Plugins

FeE@ <« %k

Ctrl-F3

DoxyBlocks

a

Settings

x
Help

E|<g|oba|> Compile current file Ctrl-Shift-F9
= = Run Ctrl-F10
F e
B’| | % Build and run F9 --@lmmmlaalsc
Management * || 43 Rebuild Ctrl-F11
ﬂijecIslSvn'bds IHES F Clean
Worlk
0 orespace Build workspace
B--! Clessons .
: Rebuild workspace
- Sources
j n Clean workspace
B Abart ld!\n"]:
Errors L4
Select target L4
Export bakefile
£ >
Logs & others x
4| J) CodenBlocks X | (4 Searchresuts > | J Cecc | €y Buildlog > | ¥ Build »
—————————————— Build: Debug in ClLessona (compiler: GNUO GCC
Compiler)-----—-——-———-—"-———-
Target is up to date.
Nothing to be done (all items are up-to-date) .
Windows (CR+LF) WINDOWS-1252 Line 9, Column 1 Insert Read/Write default

If you have no errors, then you can run your program.

Select Run from the Build

menu

copyright © 2020 www.onlineprogramminglessons.com For student use only

7

B8 main.c [Clessons] - Coden:Blocks 16.01 — O =
File Edit Miew Search Project Build Debug Fortran weSmith Tools Tools+ Plugins DoxyBlocks Settings Help

™ “ | ¥ W3 Buid Cerl-F9 | i YEGZ %D gD G

¢ 2global> Compile current file Ctrl-Shift-F9 ’

. ¥ Run Ctrl-F10

: ~ | | 4 Build and run o |

Management X | & Rebuild Ctl-F11 |

4 | Projects @ Symbols Files » Clean [

Work:
?..JD::EPECE“S E\u:d-zorksiace
B Sources ebuild workspace
. Clean workspace
main.c
a E1d!\n"):
Errors 4
Select target r

€ >
Logs & others)
4| /) Coden:Blocks X |\, Search results | fceee | £ Buildlog > & Build »
—————————————— Build: Debug in CLeassonsa (compiler: CGHNU GCC
Compiler) —————————————
Target is up to date.
Nothing to be dome (all items are up-to—date).

Windows (CR+LF) WINDOWS-1252 Line 8, Column 1 Inzert Read/Write default

You should get something like this:

B E\lessons\c\Clessons\bin\Debug\Clessons.exe - a x

Hello world!

Pr . returs e xecution time : ¢
Pr

copyright © 2020 www.onlineprogramminglessons.com For student use only
8

A C program contains programming statements that tells the computer what to
do. These programing statements are grouped together in a function enclosed by
curly brackets, so each programming statement can execute one by one
sequentially.

In a C program the main function is the first function to run. Here is the main
function:

#include <stdio.h>

int main()

{
printf("Hello world!\n");

return 0;

}

main is the function name and printf("Hello world!\n"); is a programming
statement printing Hello world! on the screen

Our first C program prints our “Hello World!” on the screen. If your compiler did
not generate the sample program above for you then you will have to type it in
your self, into your C compiler then build and run it.

A C program starts with the folowing include statement

#include <stdio.h>
The #include statement is called a preprocessor it tells the C compiler to use
function definitions from the stdio.h file. These functions allow a program to

print messages on the screen or get values from the key board.

The other include statement #include <stdlib.h> is used for other things we will
discuss later and not necessary to use now.

The next programing statement is the main functon definition header.

int main()

copyright © 2020 www.onlineprogramminglessons.com For student use only
9

Inside the main function definition header we have the programming statements
enclosed in curly brackets { } The open { curly bracket means to start the
programming statements. The closing } curly bracket means to end the
programming statements. Our first programing statement prints “Hello World”
string message on the console screen.

{
printf("Hello world!\n");

printf is used to print out the message Hello world!\n to the screen. The Hello
world'\n message is enclosed in double quotes "Hello world!\n". Anything
enclosed in double quotes is known as a string value. The ‘\n’ at the end of the
string means to start a new line on the output screen. The printf statement will
print the string message "Hello world!\n" that are specified within the round
brackets ().

The main function return’s a value using the return statement. The return is a
keyword that is used to specify what value is to be returned. The main function
usually returns a 0 meaning every thing is okay.

return 0;

}

Here is the main function again with the preprocessor include statement.
#include <stdio.h>

int main()

{
printf("Hello world!\n");

return 0;

}

The include statement is not part of the main function but is usually at the top of
every C program.

copyright © 2020 www.onlineprogramminglessons.com For student use only
10

Terminology

Before we proceed it is important to understand the terminology: data type,
variables, functions, programming statements and objects.

data type States what type of data value a variable is to represent and
store.
Variable Stores a string or numeric value represented by a name. All

variables have a specified data type stating what type of
data is to be stored.

programming Is an instruction containing commands to perform a desired

statement action, like printing a value on the screen, get a value from
the key board or calculate a certain value.

Function Contains programming statements that are executed
sequentially telling the computer what to do.

Preprocessor Instructions to the compiler to include additional files to be
compiled.

variables

Programing is all about storing values and doing operations on them like addition
and subtraction. Values my be whole numbers like 5, decimal number like 10.5 or
a text message like "Hello World". Text messages are enclosed in double quotes
are also known as strings. A program use variables represented by a identifier
name to store values. The value is actually stored in the computer memory when
the program runs.

To use a variable you need to declare it first. A variable specifies a data type and a
name and an optional initialized value. Data types specify what kind of data the
variable is going to store. We use int data type for whole numbers, float or
double data types for decimal numbers. Double variables have more precision
then float numbers (more accurate). char data types to represent a single letter
or a group of letters to represent a string message. In the following example we
declare the following variable age that has an int data type to store whole
numbers.

copyright © 2020 www.onlineprogramminglessons.com For student use only
11

int age=0;

1

data type variable name initialized value

The variable name is age and is initialized to the value of 0, it is also good practice
to initialize variables when you declare them to give then a default value. All
variable declarations end in a semi colon ;. All variable names should represent
the value it is storing. For example age would represent somebody’s age.

Text string messages are stored in char data type variables. A char data type
represent a single letter character. To represent a string text message you need
many letters, you need to specify how many letters you need. To represent a text
message for a whole line we use 80 letters. The following variable represents
name that holds 80 letters. We add 1 more letter for a termination letter. The
length of the text message is specified in square [] brackets as follows.

char name[81] ="";

data type variable name number of letters initialized value

Our initialize value is an empty string represents by 2 quotes side by sides with no
a space between them. We also use the character length of 81 rather than 80
because we need 1 extra character for the end of string character ‘\0’ also known
as NULL character;

Now we know about variables we can use them in our program. The age variable
will represent a persons age and the name variable will represent a persons
name. We will get these values from the keyboard. Alternatively you can initialize
theses variables directly, like this:

int age = 24;
char name[] = "Tom";

copyright © 2020 www.onlineprogramminglessons.com For student use only
12

We can also specify the length as [] which indicates the length is automatically
specified by the length of the initialized string. We will now ask the user to type in
their name and then greet them. Type in the following statements in the C editor
before and after the "Hello World" printf statement.

char name[81];

printf("Hello world!\n");
printf("Please type in your name: ");
scanf("%s",name);

printf("Nice to meet you %s\n",name);

You should have something like this:

8 Main.c [CLessons] - CodeBlocks 16.01 o >
File Edit View Search Project Build Debug Forian waSmith Tools Tools~ Plugine DoxyBlocks Settings Help
HIEN~ = N N L B[S e G Debug | %E G %D gl Gl (]
| <global> ~ [man : int
i v = = £ ob bm - i [|G, R
e [ainc x
| Projects | symbols | Fles b -
&) Workspace 2

g Clessons 3

B3 Sources 4 nt m

| J cppCheck | Ak

Windows (CR+LF) WINDOWS-1252 Line 6, Calumn 13 Insert Read/Write default

The complete program looks like this:

#include <stdio.h>
int main()
{
char name[81];
printf("Welcome to my program\n");
printf("Please type in your name: ");
scanf("%s",name);
printf("Nice to meet you %s\n",name);
return 0;

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
13

Now build and run your program, and enter the name “Tom”. You will get
something like this:

B EMlessons\c\Clessons\bin\DebughClessons.exe — O x

Hello world!
Plea e in wour name: Tom
MNice to meet I

xecution time : 4.783 s

We will first ask the user to type in their name using the printf statement.
printf("Please type in your name: ");

We then obtain the user name from the keyboard. We first declare a char string
variable called name that will be used to store the persons name and then use
scanf("%s",name); statement to read a char string from the keyboard. The value
entered from the keyboard is placed in the char string variable name. Variables
are used to store values and must be declared before using them.

char name[81];

Variables in C are written at the top of the function, although some compilers
allow you to place them as you use them. Char string variables are used to store
string message. The maximum length of the string message must first be
specified, which is 80 in this case. The maximum length is enclosed in square
brackets []. The data type of the char string variable is char. Char stands for a
character, our string message can hold up to 80 characters. The number 81

copyright © 2020 www.onlineprogramminglessons.com For student use only
14

represents the maximum number of characters that can fit in one line of screen,
plus 1 extra character for the end of string character.

The scanf statement is used to obtain values from the keyboard. The scanf
statement must know what kind of data it is supposed to read from the keyboard.
A format specifier is used to specify what kind of data is to be read. Format
specifiers start with the percent character ‘%’

%c is used for char data like ‘a’

%s is used for char string data like “hello”

%d is used for int whole numbers like 5

%f is used for float decimal numbers like 10.5
%lIf is used for double decimal numbers like 10.5

The %s format specifier is enclosed in double quotes followed by a comma and
the char string variable name all enclosed in round brackets (). The round
brackets introduce the format specifier, comma and the variable name.

scanf("%s",name);

When the scanf statement is executed, the string value that is read from the
keyboard is stored in the variable name.

printf is then used to print out the string message “Nice to meet you" and the
name of the user that was stored in the variable name.

printf("Nice to meet you %s\n",name);

Again, we use the format specifier ‘%s’ to tell the print statement what data type
to print out, (string data). Notice the format specifier is specified after the “Nice
to meet you” message, so that we can print the name of the person right after the
message. The ‘\n’ new line is after the format specifier to start a new line. The
name of the person is printed at the position where the format specifier is
located.

Nice to meet you Tom

copyright © 2020 www.onlineprogramminglessons.com For student use only
15

We now continue our program ask the user how old they are. Type in the
following statements at the end of your program.

printf("How old are you? ");
scanf("%d",&age);

printf("You are %d years old\n",age);

Put the variable age after the variable name at the top of your program right after
the char name[81] variable.

int age =0;

Make sure you save your file before proceeding. You should have something like
this:

B8 *Main.c [CLessons] - Code:iBlocks 16.01 - [} X
File Edit View Search Project Build Debug Fortran wxSmith Tools Tgols+ Plugins DoxyBlocks Settings Help
GeBA«3 Y |QBEP> 4 o B Vi 42611 46! |)
‘| <global> v v
RN TR DEIEE] | aalsCif 44
M; t X
zzazisl *Mainc X
4| Projects | Symbols Files b 1 Einclt
OWurkspace 2 tinclt
B-" Clessons 3
=+ Sources 4 int main()
Main.c L (=
6 char name[20];
T int age = 0;
8
g printf("Hello world!\n");
10
11 printf("Please type in your name: ");
12
13 scanf ("$s3", name) ;
14 printf("Hice to meet you %s\n",name):
15
16 printf("How old are you? ");
17
18 scanf ("&d", Lage) ;
1% printf("You are %d years old\n",age):
20
21 return 0;
23 =
< >
Logs & others X
4| J) CodeBlocks X () Searchresulls X JSicer % €y Buildlog % ?Build messages X | /| CppCheck | JjCb
-------------- Build: Debug in Clessons (compiler: GNU GCC Compiler)-------------—- A
mingw3l-geoc.exe -Wall -g -c E:\lessons\c\CLessons\Main.c -o obj\DebugiMain.o
mingw3Z-g++.exe -o bin\Debug\CLessons.exe obj\Debug\Main.o
Output file is bin\Debug\CLessons.exe with size 23.22 KB v
E\lessons\c\Clessens\Main.c Windows (CR+LF) WINDOWS-1252 Line 1, Celumn 1 Insert Modified Read/Write default =

copyright © 2020 www.onlineprogramminglessons.com For student use only
16

The complete program now looks like this:

#include <stdio.h>
int main()

{
char name[81];
int age = 0;

printf("Hello world!\n");
printf("Please type in your name:");
scanf("%s",name);

printf("Nice to meet you %s\n",name);
printf("How old are you? ");
scanf("%d",&age);

printf("You are %d years old\n",age);

return O;

}

Build and run the program and enter Tom for name and 24 for age, you should
get something like this.

B Elessonshc\ Clessonsbin\Debugh Clessons.exe - ad X

" name: Tom

xecution time : 12.453 s

copyright © 2020 www.onlineprogramminglessons.com For student use only
17

Recapping:

In our program we declare an int variable called age and initializes it with the
default value 0.

int age = 0;
We then ask the user to enter there age using printf statement
printf("How old are you? ");

We use scanf to enter the age from the keyboard and assign the value to the
variable age.

scanf("%d",&age);

We use the %d format because we want to read in an int value. The variable age
has a ‘& in from of it. It is used to specify the location in computer memory
where the value obtained from the keyboard is to be placed. This location is
known as a memory address. Without the ‘& the value of the age variable is
obtained rather than the location. With the ‘&’ preceding the variable age then
the address of the variable age is obtained. The scanf function needs to know the
address of the variable, so it can place the value from the keyboard into it.

Using the printf statement we print out the message "You are", the value stored
in the variable age and the message "years old" is printed to the computer
screen.

printf("You are %d years old\n",age);

The %d format specifier is used to print out the value of the variable age. The
value of the age is printed after the "You are " message and the "years old"
message. Note the age does not have a & because we want to obtain the value
from it.

copyright © 2020 www.onlineprogramminglessons.com For student use only
18

Reading single characters from the keyboard
Reading a single character from the keyboard can be a challenge because the
enter key stays in the input stream and is never removed. This causes preceding
values not to be read properly.
Example
char ch;
scanf("%c",&ch);
There are many ways to solve this dilemma.
Solution 1:
Read the enter key without storing it using %*c
scanf("%c%*c",&ch);
Solution 2:
Read the enter key with additional scanf or the getchar() function
scanf("%c",&ch);
or
ch = getchar();

solution 3:

Remove the enter key before hand when reading another variable by placing a
space in front of a format specifier.

scanf(" %s",name);
solution 4:
You can clear the input stream with fflush

fflush(stdin)

copyright © 2020 www.onlineprogramminglessons.com For student use only
19

reading a whole line from the key board including spaces

The scanf %s format specifier only reads individual words in a line. To read a
whole line you need to use the square bracket specifier that states what string
characters you want to read. To read a whole line you need to read all lines up to
the newline \n character. This format %[*\n] specifier will read a whole line from
the keyboard. The ~\n means do not read \n, so when a new line ‘\n’ is
encountered scanf stops scanning.

scanf("%[*\n]",line);
There are other C functions that just read string lines like gets and fgets.

gets(line); # read a line of unlimited characters
fgets(stdin,81,line) # read a line up to 81 characters

fgets is the preferred choice since it specifies the maximum character to be read.
stdin is the keyboard input stream, where as stdout is the console screen output
stream.

CONSTANTS

Constants let you associate a value with a label or a name. It is not good to put
hard codes values in a program because nobody knows what they mean.
Constants allows you to have labels as an identifier in your program to represent
a value. Once the label identifier is set it cannot be changed. Constants allow
values to have a meaning represented by a label identifier. Constants represents
a value that has no memory location. Constant value once set cannot be changed.

A good constant example is the value 81 that we used to represent the maximum
characters in a screen line.

#define MAX_CHARS 81
We would use a constant like this:

char name[MAX_CHARS];

copyright © 2020 www.onlineprogramminglessons.com For student use only
20

When the compiler sees the constant label MAX_CHARS is substitutes the value
81, it is a direct substitution. Constants represents a value that has no memory
location.

char name[81];

There are 2 ways to make constants in C.
Using the #define preprocessor.

#define MAX_CHARS 81
Using the const keyword.

const int MAX_CHARS = 81;

When using the const keyword MAX _CHARS is known as a name identifier
because it represents a value that has a read only memory location, meaning it
cannot be changed when the program is running. Constant labels and name
identifier usually start with a capital letter or all capital letters to indicate this
label name is a constant. The const keyword is the preferred way, but many old C
compilers cannot recognize or handle it properly. So, we will still use the #define
preprocessor. At the top of your program just below the #include statements
typein

#define MAX_CHARS 81

Note important: DO NOT PUT A SEMICOCOLN AFTER THE NUMBER 81 OR ELSE
YOUR PROGRAM WILL HAVE MANY ERRORS

Once you have your constant defined then you need to put the constant in the
same place where the number 81 is:

Before:
char name[81];
After
char name[MAX_CHARS];

copyright © 2020 www.onlineprogramminglessons.com For student use only
21

You should now have something like this:

8 Main.c [CL CodesBlacks 16.01 - m} x
Ele Edit Vi rch Project Build Debug Fortran wiSmith Tools Taols+ Plugins DoxyBlocks Settings Help
feEd ey o | S &G > & @ @ o LA RN | =
| <global> v v
‘ v = % Lebda il | O E| \ |&al I
Management x
4 Projects | Symbols | Fies b .
© Workspace
=¥y Clessons
=82 Sources
-] Main.c
] char name [MAEX_CHARS];
] int age = 0;
10
11 princf ("Hello world!\n");
12
13 princf ("Please type in your name: ");
14
15 scanf ("%s",name) ;
16 princf("Nice to meet you $5\n",name);
17
18 princf("How old are you? ");
12
20 scanf ("sd", sage)
21 printf("You are %¥d years old\n" age);
23 return O;
24
s v
< >
Logs & others x
4| /) CoderBlocks 3| ‘i Searchresults 3| JfjCcee 3| €y Buildlog < | ¥ Buldmessages | /| Cppcheck | JlC ¥
0 error(s), 0 warning(s) (0 minuts(s), 1 sscond(s)))
v
Windows (CR-LF) WINDOWS-1252 Line 4, Column 21 Insert Read/Write default =

The complete program is now:
#include <stdio.h>
#define MAX_CHARS 81

int main()

{

char name[MAX_CHARS];

int age = 0;

printf("Hello world!\n");
printf("Please type in your name:");
scanf("%s",name);

printf("Nice to meet you %s\n",name);
printf("How old are you? ");
scanf("%d",&age);

printf("You are %d years old\n",age);
return O;

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
22

Compile and run your program and make sure it still works.

This is a lot to digest. You should need to know all theses basics concepts, to
understand programming. All programming is based on variables, values,
addresses, programming statements and functions. If you do not understand
theses concepts, just keep on doing Lessonl repeatedly until it makes some
sense.

If you have got this far then you will be a great C programmer soon.

Most people find Programing difficult to learn. The secret of learning program is
to figure out what you need to do and then choose the right programming
statement to use. If you want to print messages and values to the screen you use
a printf statement. If you want to get values from the keyboard, you use a scanf
statement.

You should concentrate on getting your programs running rather than understand
how they work. Once you get your programs running and you execute them
understanding will be come much easier. Understanding will now be much easier,
because you can now make an “association connection” to the program
statement that is running that produces the desired input or output action.

C Data Types

Data types state what kind of data a variable is suppose to represent. C has many
data types that can be used to represent various kinds of data as follows:

Data Type | Size Min value Max Value Example
Char 8 -128 127 char x = 100;
Short 16 -32768 32767 short x = 1000;
Int 32 -2731 2731-1 int x = 10000;
Long 32 -2°31 2731-1 long x = 10000;
float 32 -1.4E-45 3.4E38 float f = 10.5;
Double 64 -4.9E-324 4.9E-324 double d = 10.57654;

The above data types are signed data type representing both positive and
negative numbers. The double data type is much more accurate than the float
data type, it can represent many more decimal digits. (E means exponential)

copyright © 2020 www.onlineprogramminglessons.com For student use only

23

C also has unsigned data types unsigned char, unsigned short, unsigned int and
unsigned long.

Data Type Size Min value Max Value Example
unsigned char 8 0 256 char x = 100;
unsigned short 16 0 65535 ushort x = 1000;
unsigned int 32 0 2732-1 uint x = 10000;
unsigned long 32 0 2732-1 ulong x = 10000;

Lesson 1 Homework

Make a C program file called homework1.c that asks someone what their
profession title is and annual salary is. Make a char[81] title and a float salary.
Then print out a message like this: “l am a Manager and | make $100,000 dollars
per year!”. When the program starts print out a welcome message.

copyright © 2020 www.onlineprogramminglessons.com For student use only
24

LESSON 2 FUNCTIONS

Functions allow you to group many programming statements together so that you
can reuse them repeatedly in your C Program. The most common function is the
main function that starts a C program, which we used previously in Lesson 1. A
program may have many functions. Each function has a dedicated purpose, some
action to perform. Functions usually are defined at the top of the program in
order as they are used. The main function is the last one because it will call all the
proceeding functions. When a function is called in a programming statement it
means it is executed. C also has many built in functions that you can use, that
make C programming easier to do that you will learn later through these lessons.
It is now time to add functions to our previous Lesson 1 program. We will make a
welcome, enterName, enterAge and printPerson functions. Before proceeding,
you may want to save your previous main.c file as Lessonl.c for future reference.
Close file main.c and in the Management Window right click on main.c and
rename Lessonl.c

™8 [Clessons] - Code:Blocks 16.01 — O X

File Edit View 5Search Project Build Debug Fertran wxSmith Tecls Tools+ Plugins DoxyBlocks Settings Help

B 3| % QRS O Debug v|i b B2 GI %I g0 Gl)

: @ = J s x|

Management X

4 | Projects | Symbaols Files W

OWorkspace

-8 Clessons

5B Sources
: main -

Open main.c
Open with »
Rename file...
Remave file from project
Format this file (AStyle)
Reparse this file
Build file &
Clean file 3 | () Search results | J Cece | €Y Buildlog #* Build messages X | flcr
Options »
Properties...

Welcome default =)

copyright © 2020 www.onlineprogramminglessons.com For student use only
25

Rename file ot

Flease enter the new name:

| Lesson L.o| |

Now make a new C source file called Lesson2.c. From the File Menu select New
then File.

u [Clessons] - Code:Blocks 16.01 — O *
File Edit View Search Project Build Debug Fertran wxSmith Tecls Toels+ Plugins DoxyBlecks Settings Help

Empty file Ctrl-Shift-N z| BUEGINI LI G Y I B [E] .|
= Open.. Curl-0 Class...

Project... |:||E3ED|EKEK|SC|

Open with hex editor

Open default workspace

Build target...
Recent projects 4
. File...
Recent files 4
Custom...
i 3
(PR From template...
B savefile -5 Nassi Shneiderman diagram
] Sauve file as..,
g Sawve all files Ctrl-Shift-5
Save project

Save project as...
Save project as template..,
Save all projects

Save workspace

Save workspace as... others *

Save everything Alt-Shift-5 E Code::Elocks X[(_}, Search results Xl M Cecc X[£ Build log Xl & Build messages x| fcr
Clase file Crl-4y
Close all files Crl-Shift-4
Close project

< B

Close all projects

Close workspace

(op Print... Ctrl-P
Export 4

default

B

copyright © 2020 www.onlineprogramminglessons.com For student use only
26

Select C Source File template

Mew from template >
Projects Category: | <Al categories= W o
Build targets
- " .
h &8 ¢ F Conce
Custom

User templates C/C++ header Empty fle Fortran zource

View as

@ Large icons

(i List

TIP: Try right-dicking an item

1, Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go

Press GO button

C/C++ source b
Welcome to the new CjC++ source file wizard!
g
a ‘-‘f‘-‘++ FI[AE This wizard will guide you to create a new CjC++ source file.
When you 're ready to proceed, please dick Text™...

copyright © 2020 www.onlineprogramminglessons.com For student use only
27

Press Next button
Select C

C/C++ source et

Please select the language for the file.

Please make a selection

C++

Press Next

CfC++ source e

Please enter the file's location and name and
TR
a {_—f{.—++ FILE whether to add it to the active project.

Filename with full path:

I

Add file to active project
In build target{s):

v |

v | Release

All MNaone

< Back Einish Cancel

copyright © 2020 www.onlineprogramminglessons.com For student use only
28

Check Debug and Release Checkbox’s, then select file browse button [...]
And enter file name Lesson2.c

W Select filename >
™ <« lessons » ¢ » Clessons » v | O Search Clessons yel

Organize « Mew folder == - 9
EABrokers = MName
EARocbots bin
Edward ohj
ewf |.é Lessonl.c

frexebooks
IRVINET1G
Isle
jessie
lessons

C

Clessons v >

File names: | Lessonl.cl -

Save as type: | C files (*.*.C) o

» Hide Folders Cancel

Press Save Button, you should get the following screen

C/C++ source >

Please enter the file's location and name and

AT TR

a ‘l‘++ FILE whether to add it to the active project.

Filename with full path:
E:Yessons\c\CLlessons\Lesson2.c |m

Add file to active project
In build target(s):

fAloebug |
v Release
all None
< Back Finish Cancel

Before pressing “Finish” button make sure The Debug and Release check boxes
are checked. You now need to remove the Main.c file or Lessonl.c file from the
project. A project can only have one c file with a main function.

copyright © 2020 www.onlineprogramminglessons.com For student use only
29

W Lesson2.c - Code:Blocks 16.01 — O x
File Edit View Search Project Build Debug Fertran wxSmith Teols Tools+ Plugins DoxyBlocks Settings Help

TeBEA ¥ H | Q &/i @ » & © B [Debug v|i > 26Dl g6 | B)

: R X N =] | | | | z

Management b4 L nZc X

4 | Projects | Symbals Files W 1

O Workspace

E|.d ClLessons

=-F* Seurces
Lessor Open Lessonl.c

Open with »
Rename file...
Remove file from project
Format this file (AStyle)
Reparse this file B
Build file 2]
Clean file [(._<‘5 Search results x j Coce Q Build log > i_" Build messages x j chr
Options ¥
Properties...

Elessons Windows (CR+LF) WINDOWS-1252 Line 1, Celumn 1 Insert Read/Write default =]

In your Lesson2.c file type in the following code.
#include <stdio.h>
#define MAX_CHARS 81

void welcome();

void enterName(char name[MAX_CHARS]);

int enterAge();

void printPerson(char name[MAX_CHARS], int age);

void welcome()

{
printf("Hello World\n");

copyright © 2020 www.onlineprogramminglessons.com For student use only
30

void enterName(char name[MAX_CHARS])
{

printf("Please type in your name: ");

scanf("%s",name);

}

int enterAge()
{

int age;

printf("How old are you? ");
scanf("%d",&age);
return age;

}

void printPerson(char name[80], int age)
{
printf("Nice to meet you %s\n",name);
printf("%s You are %d age years old\n", name, age);

}

int main()

{
char name[MAX_CHARS];
int age;

welcome();
enterName(name);

age = enterAge();
printDetails(name, age);
return 0;

You should now build and run the program. Enter Tom for name and 24 for age,
you should get this:

copyright © 2020 www.onlineprogramminglessons.com For student use only
31

B Eblessons\c\Clessons\bin\Debug\Clessons.exe — O x

T name:

xecution time : 7.548 s

Functions make your program more organized and manageable to use. Functions
have many different purposes. Function can receive values, return values, receive
and return values or receive or return no value.

return_datatype function_name (parameter_list)
parameter list = data_type parameter_name [,data_type parameter_name]

Functions return values using the return statement and receive and/or output
values through the parameter list. The return data type specifies what kind of
data is returned or received. In Lesson 1 we were introduced to the int, float,
double and char data types. Think that a function is like a factory that receives
raw materials, manufacturers a product then ships it out when completed.

receive and/or output
argument values

Return a value

Receive parameters

A

Function code

copyright © 2020 www.onlineprogramminglessons.com For student use only
32

Before you can use a function, you need to declare it. A function declaration is
just the function definition header ending in a semicolon. A function declaration is
also known as a function prototype. Here are the function prototypes for our
lesson2 program.

void welcome();

void enterName(char name[char name[MAX_CHARS]);
int enterAge();

void printPerson(char name[MAX_CHARS, int age);

After the function prototype declarations the function definitions are written.
The welcome function just prints “Hello World” and receives no values or returns
no value. The void data type specifies no value is returned or received.

void welcome()

{
printf("Hello World\n");

}

The enterName function output’s the name through the parameter list. This is
known as a function outputting a value. The address of the name variable is
passed to the enterName function. The enterName function obtains the value
from the keyboard and the fills the name variable with the value.

void enterName(char name[MAX_CHARS])
{

printf("Please type in your name: ");
scanf("%s",name);

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
33

The enterAge function obtains the age value from the keyboard and returns a
value using the return statement.

int enterAge()
{

int age;

printf("How old are you? ");
scanf("%d",&age);
return age;

}

The printPerson function receives a name and age value to print out, but return’s
no value. The printPerson function receives the name and age values through the
parameter list.

void printPerson(char name[MAX_CHARS], int age)
{
printf("Nice to meet you %s\n",name);
printf("%s You are %d age years old\n", name, age);

}

The name and age inside the round brackets of the printPerson function
definition statement are known as parameters and contain values to be used by
the function. The parameters just pass values from the calling function and are
not the same variables that are in the calling function. Although the parameter
names and values may be same as in the calling function variable names, but they
are different memory locations. The main purpose of the parameters is to receive
values for the functions. The name parameter is an input/output parameter so it
can receive a value and outputs a value. It can do this is because it contains the
address of the variable that belongs to the calling function. In this case the calling
function in the main function contains the name variable.

copyright © 2020 www.onlineprogramminglessons.com For student use only
34

The main function call’s the preceding functions to run them and store the values
in variables and passes the stored variable values to the functions. Calling a
function means to execute the function. The values that are passed to the called
function from the calling function is known as arguments. The argument values
are received by the function parameters. The function parameters store received
values , the parameters can be used just like a variable in a function.

Variables inside a function are known as local variables and are known to that
function only. Name and age are local variables in the main function but are also
arguments sent to the printPerson function.

int main()
{
char name[char name[MAX_CHARS];
int age;
welcome();
enterName(name);
age = enterAge();
printDetails(name, age);
return 0;

Function prototypes are usually put into a header file. You should do the same.
First make a C Header file called Lesson2.h

From the File menu select New then File

copyright © 2020 www.onlineprogramminglessons.com For student use only
35

u *Lessonl.c [Clessons] - Code:Blocks 16.01
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help

Empty file Ctrl-Shift-N Zl B UEGIUI LGN I B E .|
[l Open... Ctrl-0 Class...
Open with hex editor Project... mooD|® 2|8 C ||
Open default workspace Build target...
Recent projects 4 File.
Recent files 4 e £s\n", name) ;
Custom... vears old\n", name, age):
i 3
[y g From template...
B savefile Ctrl-5 Massi Shneiderman diagram
= -
2 Savefile as... a- =F
g Save all files Ctrl-5hift-5 43 char name[MAX CHARS]:
Save project :: int age/
Save project as... 16 welcome () ;
Save project as template... a7 getName (name) ;
Save all projects 48 age = getdge():
. :3 printDetails (name, age):
Save workspace as... 51 return O:
@ save everything Alt-Shift-5 | 52 ¥
53 o
& Close file Ctrl-W
Close all files Ctrl-Shift-W
. others.
Close project
Close all projects Code::Blocks X] (_, Search results X] j Cooc X] £ Build log XI ? Build messages X] j CppCheck X j chr
Close workspace
D e Build: Debug in ClLessons (compiler: GNU GCC Compiler)---------------
(gj [G [w3Z-gooc.exe -Wall -g -c E:hwlessons\c\CLessonshLessonZ.c -o obj\DebugilLessonZ.o
Export » Iw32-g++.exe -o bin\DebughCLessons.exe obj\DebugiLessonZ.o
R but file is binDebug\CLessons.exe with size 2Z8.50 EB
Properties... es55 terminated with status 0 (0 minute(s), 0 second(s))
R ror{s), 0 warning(s) (0 minuteis}), 0 second(s))
@ quit Ctrl-0
Create a new file Windows (CR+LF) WINDOWS-1252 Line 48, Column 20 Insert Medified Read/Write default S

Select the C/C++ Header file type.

Mew from template =
Projects Category: | <All categories> ~ | | Go |
Build targets
Fies M ¢ ¢ F
Custaom c c

e dl==ts =8 C/C++source Empty fle Fortran source

User templates

View as

@ Large icons

(OList

TIP: Try right-clicking an item

1. Select a wizard type first on the left
2. Select a spedific wizard from the main window (filter by categories if needed)
3. Press Go

copyright © 2020 www.onlineprogramminglessons.com For student use only
36

Press Go

C/C++ header >

Welcome to the new CfC++ header file wizard!
m]lf]l"“" FILE This wizard will guide you to create a new C/C++ header file.

When you 're ready to proceed, please dick ™ext”...

Press Next

C/C++ header X

Please enter the file's location and name and
m]lfll++ FILE whether to add it to the active project.
Filename with full path:

Header guard word:

Add file to active project
In build target{s):

loebug]
v | Release
All Mone

copyright © 2020 www.onlineprogramminglessons.com For student use only
37

Make sure the Debug and Release check boxes are checked before proceeding.
Select the filename browse button ... then type in Lesson2.h

W Select filename x
A <« lessons » cpp » Cpplessons » v | O Search Cpplessons F-l
Organize = New folder SEEER 0
Cpplessor Mame Date modified Type
bin bin 2018-01-0411:27 .. Filefolder
obj obj 2018-01-0411:27.. File folder
csharp
java
python
OEM

OneDriveTer
Perflogs
Program Files

Program File: ¥ < >

File name: | Lessonl.h|

Save as type: | C/C++ header files (*.h;* hpp;*.hiee ™ hh) ks

~ Hide Folders Cancel

Press Next

H Select filename =

™ <« lessons » ¢ » Clessons » v Search Clessons o

Organize Mew folder == o
EABrokers =
EARcbots
Edward
ewf

Mame Date modified

bin 1/20/20
obj 1/20

frexebooks
IRVINETE
Isle
jessie
lessons

C

Clessons v < >

File name: | Lesson2.h|

Save as type: | C/C++ header files (*.h;*.hpp:;™.hieg™.hh)

» Hide Folders Cancel

Make sure Debug and Release are checked then Press Finish

copyright © 2020 www.onlineprogramminglessons.com For student use only
38

C/C++ header

Please enter the file's location and name and
m]I]l++ FILE whether to add it to the active project.

Filename with full path:
|E: Vessonsc\Clessons\Lesson2.h |EE

Header guard word:
|LESSON2_H_INCLUDED |

Add file to active project
In build target(s):

Qloebug |

v Release

All MNane

<ano =

You should now have something like this

W *Lessond.h - CodenBlocks 16.01 =
File Edit View Search Project Build Debug Fortran wxSmith TJools Tools+ Plugins DoxyBlocks Settings Help
B8 e 2| % | & B[» G < 9 Debug i B GZ YD gD 6 |]
S = - Lo a1 | O | |QalsCH__ ~ax
M; t *
=z Lesson2.c | *LessonZh 3
4 | Projects | Symbaols Files W 1
(O Workspace 2
Clessons 3
-8 Sources 4
[Lessonl.c 5
= Headers &
T
< >
Logs & others o
4| JjcodenBlocks x| ' Search results | ficecee x| £y Buildlog x| % Buid messages x| Acppcheck x| Acr
—————————————— Build: Debug in ClLessons ({compiler: GNU GCC Compiler)-——-—-—-—-——-—————-—-— ~
mingw3Z-gcc.exe -Wall -g -c E:‘\lessons‘c\CLessons‘LessonZ.c -o obj‘Debug'lLessonZ.o
mingw3Z-gtt.exe —o bin\Debug\CLessons.exe obj\DebugiLessonZ.o
Output file is bin\Debug'.CLessons_exe with size 28 _50 EB
Process terminated with status 0 (0 minuts(s), 0 second(s))
@ srroris}, 0 warning(sz} (0 minutsis}), 0 sscond(s}}
W
Eflessonsic\ClessonsiLesson: Windows (CR+LF) WINDOWS-1252 Line 1, Column 1 Insert Modified Read/Write default

copyright © 2020 www.onlineprogramminglessons.com For student use only
39

#ifndef LESSON2_H_INCLUDED
#define LESSON2_H_INCLUDED

Are known as guards and allow the .h file only to be read once. Without the
guards, the .h file may be read many times and resulting in duplicate function
declaration error messages.

The guard ends with
#endif

Put the #include<stdio.h> preprocessor, and constant #define MAX_CHARS 81
preprocessor and function prototypes from Lesson2.c into the Lesson2.h header
file between the start and end guards.

Your Lesson2.h should look like this after typing in the #define preprocessor
constant and the function prototypes.

¥8 Lesson2.h [Clessons] - CodesBlocks 16.01 — O =

File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugine DoxyBlocks Settings Help
feBa@ ¢y % | QB @ > % © B [pebuo ML R S | &

o e > Loekba i | | | | | I N ¢

Management b

LessonZh >
4 | Projects | Symbols Files P 1 £1ifndet
O Workspace 2 #define
BH Clessons 3
BB Sources 4 #include <stdio.h>
e Lessond.c 5
E!B Headers & #define MAX CHARS 80
b Lesson2.h 7
8 volid welcome () ;
=] void getName (char name [MAX CHARS]):
10 int gethge ()
11 volid printDetails (char*® name, int age):
12
13
14 #endif
15
< >
Logs & others x

4| J| Code::Blocks ¢ '}, Search results | fceee) Gybuildlog X G‘ Build messages | Acppcheck x| Achr

—————————————— Build: Debug in ClLessons (compiler: GNU GCC Compiler)--—————-—————-————

mingw3Z-gocc.exe -Wall -g -c E:\lessons\c\CLessons‘LessonZ.c -o obj\Debug\LessonZ.o
mingw3Z-g++.exe —o bin\Debug\CLessons.exe cobj\DebugilessonZ.o

Sutput file is bin\Debug\CLessons.exe with size 28.30 KB

Process terminated with status 0 (0 minute(s), 0 second(s))

@ error(s}, @ warning(is} (0 minute(s), 0 second(s}}

Windows (CR+LF) WINDOWS-1252 Line 15, Column 1 Insert Read/Write default

]

copyright © 2020 www.onlineprogramminglessons.com For student use only
40

You now need to remove the include statements, the constant #define
statement and function prototypes on the top of the Lesson2.c file since they are
no longer needed. You need also to add an include statement on the top of the
Lesson2.c file.

#include "Lesson2.h"

You need to do this so that the Lesson2.c file knows about the functions it will be
using. The includes file statement allows the complier to read the Lesson2.h file
before compiling the rest of the Lesson2.c file. We use double quotes to specify
the directory where our program resides. The triangle brackets <> specify to look
for the include file in the compiler directory. You should have something like this

w *Lessonl.c [Clessons] - CodesBlocks 16.01 — m|
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help
FeBa ¥ % | Q&3 > § © 6| v BE 6D L6 | B
; <global ~
: R LRI | [aals Cil 4
M t X
Tz lesson2h X | *Lessondc X
4 | Projects | Symbols Files P 1
OWUVkSFECE 2 #include "LessonZ.h"
-y Clessons 3
2B Sources 4
L Lessonl.c 5] void welcome ()
- Headers € {
L Lessan2h 7 printf("Hello Worldin®):
9
10
11 void getName (char name[MAX CHARS])
12 {
ILE3 printf("Please type in your name: ");
14
15 scanf ("%s",name) ;
16]
17
L4
Logs & others
4| J| Code:Blocks % ,_<‘5 Searchresults X | /) Cocc X £ Build log i?“BuiId messages X | JiCppCheck X | fiCP
—————————————— Build: Debug in ClLessons (compiler: CGNU GCC Compiler)---------------
mingw3Z-goo.exe -Wall -g -c E:hlessonshchCLessons‘\LessonZ.c -o okj\Debug'LessonZ.o
mingw3Z-gt+.exe -o bin\Debug\CLessons.exe obj‘\Debug\LessonZ.o
Output file is bin‘\Debug\CLessons.exe with size 28.30 EB
Process terminated with status 0 (0 minute(s), 0 second(s))
0 srror(s), 0 warning(s) (0 minuts(s), 0 sscond(s))
E:\lessons\c\Clessons\Lesson: Windows (CR+LF) WINDOWS-1252 Line4, Column 1 Insert Medified Read/Write default ES)

copyright © 2020 www.onlineprogramminglessons.com For student use only
41

COMMENTS

All programs need to be commented so that the user knows what the program is
about. Just by reading the comments in a program somebody will know exactly
what the program is supposed to do. We have two types of comments in C.
Header comments that are at the start of a program or a function. They start with
/* and end with a */ and can span multiple lines like this.

/*
Program to read a name and age from a user and
print the details to the screen

*/

Other comments are for one line only and explain what the current or proceeding
program statement it is to do. The one-line comment starts with a // like this:

// function to read a name from the key board are return the value
Not all C compilers will recognize the one-line comments.

We now comment our program. Please add all these comments to your program.

/*

Lesson2.c

Program to read a name and age from a user and print
the details on the screen

*/
#include "Lesson2.h"

/* function to print welcome message */
void welcome()

{
printf("Hello World\n");

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
42

/* function to obtain a name from the keyboard */
void enterName(char name[MAX_CHARS])
{
printf("Please type in your name: ");
scanf("%s",name);

}

/* function to obtain an age from keyboard */
int enterAge()
{

int age;

printf("How old are you? ");
scanf("%d",&age);
return age;

}

/* function to print name and age on screen */
void printPerson(char name[MAX_CHARS], int age)
{
printf("Nice to meet you %s\n",name);
printf("%s You are %d age years old\n", name, age);

}

int main()

{
char name[MAX_CHARS];
int age;

welcome(); // welcome user

enterName(name); // obtain a name

age = enterAge(); // obtain an age
printPerson(name, age); // print out name and age

return 0;

copyright © 2020 www.onlineprogramminglessons.com For student use only
43

Lesson2 Homework

Make a C program file called homework2.c that has a function to print a welcome
message that describes what the program does. Has another a function called
enterTitle() that asks someone what their profession title is, like doctor, lawyer
etc. Has another function called enterSalary() that asks someone what their
annual salary and returns a salary. Finally make a printProfession() function that
prints out their title and salary..Print’s out a message like this: “I am a Manager
and | make $100,000 dollars per year!”. Call all the functions from the main
function.

copyright © 2020 www.onlineprogramminglessons.com For student use only
44

LESSON 3 STRUCTURES

Structures allow you to group different data type variables together under one
common name. Structures start with the keyword struct followed by a name
identifier, a curly bracket { the variable declarations and then closing curly bracket
} ending with a semicolon. (Do not forget the semicolon.)

structure_name

{

declare_variables

},.

We can use our name and age variables from previous lesson to make a Person
structure. Our Person structure would look like this:

struct Person

{

char name[MAX_CHARS];

int age;

}; // do not forget the semicolon

Our Person structure actually becomes a new data type. We start our structure
name with a capital letter to indicate it is a user data type.

Using a structure in your program

The structure is usually defined in the header .h file, but also can also be defined
in the source .c file. In our case we define our structure in the header .h file so
that other cfiles can use it.

Make a new header file called Lesson3.h and copy all the code from Lesson2.h
into it. Also make a new C source file Lesson3.c and copy all the code from
Lesson2.c into it. Make sure Debug and Release are checked before you press the
Finish button or else they will not be compiled into the project. Remove Lesson2.h
and Lesson2.c from the management window.

copyright © 2020 www.onlineprogramminglessons.com For student use only
45

Put our Person structure definition in the Lesson3.h file just below the
#define MAX_CHARS 81 preprocessor statement. You also need to redefine the
printPerson function to accept a Person structure rather than the name and age
parameters

void printPerson(struct Person p);

You should then have something like this.

#ifndef LESSON3_H_INCLUDED
#define LESSON3_H_INCLUDED

#include <stdio.h>
#define MAX_CHARS 80

typedef struct person_type

{
char name[MAX_CHARS];

int age;
}Person;

void welcome();

void getName(char name[MAX_CHARS]);
int getAge();

void printPerson(Person p);

#endif // LESSON3_H_INCLUDED

We now declare a Person structure in our Lesson3.c source file. Using a structure
is a 3-step process, define a structure, declare a structure and then use the
structure. You declare a structure just like a normal variable.

struct Person p;

Don’t forget the struct keyword.

copyright © 2020 www.onlineprogramminglessons.com For student use only
46

You can also initialize a structure when you declare them to a default value or
some known values. To initialize to a default value we use {0} ending with a semi
colon. All values in the structure would receive a the value 0.

struct Person p = {0}; // do not forget the semicolon

For older C compilers you may need to initialize each variable defined in the
structure to default values separately.

struct Person p = {"",0};

To initialize the structure with known values we list the values enclosed in { }
brackets.

struct Person p = {"Tom",24};
The structure variable p now has the values name "Tom" and age 24. It is
important to distinguish between defining a structure and declare a structure.
When you define a structure you list the variables that the structure will hold.
When you declare a structure variable you are reserving memory for the structure
to store values when the program runs. If you initialize the structure with values
when you declare it, then the structure variable will already have these values

when the program runs.

In Lesson3.c main function remove the name and age variables and replace them
with the Person structure p.

struct Person p;
To access values in a structure variable you use the access dot . operator.
structure_variable_name . variable_name
To access name:

p.name

copyright © 2020 www.onlineprogramminglessons.com For student use only
47

We would then call the getName function and pass the persons name from the
person to it like this:

enterName(p.name)

To access age:

p.age

We would call the getAge function and assign the age to the person structure
like this:

p.age = enterAge();

To pass a structure to a function you just pass the structure variable name
to the function like this:

printPerson(p);

In our printPerson we will now have a struct Person parameter that will access
the name and age values using the access dot . operator as follows:

void printPerson(struct Person p)

{

printf("Nice to meet you %s\n",p.name);
printf("%s You are %d age years old\n", p.name, p.age);

}

Update Lesson3.c main function to use our Person structure. You should have
something like this:

/*

Lesson3.c

Program to read a name and age from a user using a structure
and print the details on the screen

*/

copyright © 2020 www.onlineprogramminglessons.com For student use only
48

#include "Lesson3.h"

/* function to print welcome message */
void welcome()
{
printf("l like C programming\n");
}

/* function to obtain a name from the keyboard */
void enterName(char name[MAX_CHARS])
{
printf("Please type in your name: ");
scanf("%s",name);

}

/* function to obtain an age from keyboard */
int enterAge()
{
int age;
printf("How old are you? ");
scanf("%d",&age);
return age;

/* function to print name and age on screen */
void printPerson(Person p)
{
printf("Nice to meet you %s\n",p.name);
printf("%s You are %d age years old\n", p.name,.p.age);

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
49

int main()

{

/* welcome user */
welcome();

/* obtain a name */
enterName(s.p.name);

/* obtain an age */
p.age = getAge();

/* print out name and age */
printPerson(p);

return 0;

Build and run the program, type Tom for name and 24 for age. You will get the
following output.

Hello World

Please type in your name: Tom
How old are you? 24

Nice to meet you Tom

Tom You are 24 years old

Do not proceed until you got your program working.

Using typedef

Typing struct all the time is a lot of work to do, to make programming life easy,
typedef allows you to use your structure without the struct keyword. Typedef
actually means type definition, that allows you to define your own data types
from C data types. The syntax is:

typedef data_type user_data_type_identifier;

copyright © 2020 www.onlineprogramminglessons.com For student use only
50

Our structure definition would now look like this:

typedef struct person_type
{

char name[MAX_CHARS];
int age;

}Person;

The structure still has a name but a different name person_type. We use lower
case and an underscore for the structure name since it is the C convention. The
type definition name is Person because this is the data type name we want to use
in our program. In the Lesson3.h change the Person structure definition to use a
typedef, then remove all the struct key words in the Lesson3.h and Lesson3.c files.

Build and run your program and see it is still working. Do not proceed until you
got your program working.

HomeWork 3 Part 1

Convert your homework2 program to use a structure called Profession. The
Profession structure would have a variable to store the profession title like doctor
or manager and a variable to store their salary. Your Profession structure would
look like this:

struct Profession

{

char title[MAX_CHARS];
salary age;

b
You may use typedef instead if you wish.

Make an enterDetails function that receives a pointer to a profession structure.
The enterDetails function would ask for the profession type and profession salary
and store in the profession structure passed to it. Make an enterDetails function
that receives a profession structure that will be used to print out the profession
type and salary. Include the welcome function from homework 2. Call your c
program homework3.c

copyright © 2020 www.onlineprogramminglessons.com For student use only
51

Structure inside a Structure

A Structure may include another structure. We can make a Student structure that
contains the following Person structure for its name and age.

struct Person

{
char name[MAX_CHARS];

int age;

b

A Student structure will have an additional variable called studentNumber that
will represent a char string student id number.

Our Student structure would look like this:
struct Student

{

Person p;
char studentNum[MAX_CHARS];

b

Notice our Student structure has a Person structure inside it, that will be used to
store the students name and age.

We would declare a Student structure variable like this:

Student s;
We still use the access dot operator to access the student and person structure.
We would access the idnum id the Student structure like this:

s.studentNum

copyright © 2020 www.onlineprogramminglessons.com For student use only
52

We would access the Person structure in the student structure like this:

s.p.age
s.p.name

You can also initialize a structure inside a structure when you declare them to a
default value or some known values. To initialize to a default value we use {0}
ending with a semi colon. All values in the structure would receive a the value 0.

struct Student s = {0};

For older C compilers you may need to initialize each variable defined in the
structure to default values separately.

struct Student s = {{"",0},""};

To initialize the structure in a structure with known values we list the values
enclosed in { } brackets for each structure,

struct Student s = {{"Tom",24},"S1234"};

The structure s now has the values name "Tom" and age 24 for the Person
structure and "S1234" for the rest of the Student structure. It is important to
distinguish between defining a stricture and declare a structure. When you define
a structure you list the variables that the structure will hold. When you declare a
structure variable you are allocating memory for the structure when the program
runs. If you initialize the structure with values when you declare it then the
structure variable will store the values.

The printStudent function would receive a Student structure print out details of
a Student.

void printStudent(struct Student s)
{

printPerson(s.p);
printf("Your Student number is %s\n",s.id);

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
53

Notice we call the printPerson function inside the printStudent function. The
printPerson function receives a person structure from the student structure.
to-do

Update the Lesson3.h header file to use a Student structure. You would also need
to make a printStudent function prototype that receives a Student structure. You
will also need an additional enterStudentNum function prototype to enter the
student id number.

In the Lesson3.c code file make a enterStudentNum function to enter and
return a student’s id number. Make a printStudent function to accept a student
structure to print the person details and student id number. Inside the
printStudent function call the printPerson function to print out the person details
and then print out the student id number. You should have something like this:

#ifndef LESSON3_H_INCLUDED
#define LESSON3_H_INCLUDED

#include <stdio.h>
#define MAX_CHARS 81

struct person_type{

char name[MAX_CHARS];
int age;

}Person;

struct student_type{
Person p;

char idnum[MAX_CHARS];
}Student;

void welcome();

void enterName(char name[MAX_CHARS]);

int enterAge();

void enterStudentNum(char studentNum[MAX_CHARS]);
void printPerson(Person p);

void printStudent(Student s);

#endif // LESSON3_H_INCLUDED

copyright © 2020 www.onlineprogramminglessons.com For student use only
54

Inside the main function add a Student structure variable called s. Call functions
enterName, enterAge , enterStudentNum to populate the student structure. Then
call function printStudent() to print out the student details.

You should have something like this:

/*

Lesson3.c

Program to read a name, age and student number from a user using a structure
and to print the details on the screen

*/

#include "Lesson3.h"

/* function to print welcome message */
void welcome()

{
printf("l like C Programming\n");

}

/* function to obtain a name from the keyboard */
void enterName(char name[MAX_CHARS])
{
printf("Please type in your name: ");
scanf("%s",name);

}

/* function to obtain an age from keyboard */
int enterAge()
{
int age;
printf("How old are you? ");
scanf("%d",&age);
return age;

}

// get student number
void enterStudentNum(char studentNum[MAX_CHARS])
{
printf("Please type in your student number: ");
scanf("%s",studentNum);

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
55

/* function to print name and age on screen */
void printPerson(Person p)

{

printf("Nice to meet you %s\n",p.name);
printf("%s You are %d age years old\n", p.name,.p.age);

}

/* function to print name and age on screen */
void printStudent(Student s)
{

printf("Nice to meet you %s\n",s.p.name);
printf("%s You are %d age years old\n", s.p.name, s.p.age);
printf("Your student ID number is %s\n", s.idnum);

}

int main()

{

/* make a student */
Student s;

/* welcome user */
welcome();

/* obtain a name */
getName(s.p.name);

/* obtain an age */
s.p.age = getAge();

/* obtain student idnum */
getStudentNum(s.studentNum);

/* print out name and age */
printStudent(s);

return 0;

Compile your program and correct any errors. Run you program with student id
number with S1234. You should get something like this.

copyright © 2020 www.onlineprogramminglessons.com For student use only
56

B EMlessons\c\CLessons\bin'\Debugh Clessons.exe - O X

ur name: Tom

tudent ID number: 51234

If you got this far then you should congratulate your self.

Homework 3 Part 2

Make a JobDescription structure to store the details of a Profession. An example
would be a RealEstateAgent description would be “I sell houses”. Put the
previous homework Profession structure inside your JobDescription structure.
You should have something like this.

struct JobDescription {
Profession p;

char description[MAX_CHARS];
b

You may use typedef instead if you wish.

The enterJobDescription function would ask for the job description to get a job
description from the key board. Make an printlobDescription function that
receives a JobDescription structure that will be used to print out the profession
type and salary and job description. Use the enterTitle, enterSalary,
printProfession and welcome functions from the previous homework. Put all the
updated code in the same homework3.c program file.

copyright © 2020 www.onlineprogramminglessons.com For student use only
57

Lesson 4 Operators

Operators

Operators do operations on variables like addition + , subtraction — and
comparisons > etc. We now present all the C operators with examples. Make a
new C file called Lesson4.c. In your Lesson4.c in the main function type out the
examples and use printf statements to print out the results. You can type in the
operation right inside the printf statement just like this

printf("%d\n",(3+2));
or
printf("%d\n",(3>2));
Alternatively, you can use variables instead.
intx=3;
inty=2;
printf("%d + %d = %d \n", x, y, x+y);

unary operators

The - unary operators change the sign of a number, where as the + unary operator
does not, it just confirms the present sign of the number.

intx=5

Operator Description Example Result
+ confirm positive number +5 5

- Negate positive number -5 -5

+ confirm negative number +-5 -5

- Negate negative number --5 5

copyright © 2020 www.onlineprogramminglessons.com For student use only
58

printf("-5 =%d\n", -5);
printf("+5 = %d\n", +5);
printf("+-5 =%d\n", +-5);
printf("--5 = %d\n", --5);
Arithmetic Operators

Arithmetic operators are used to do operations on numbers like addition and
subtraction.

intx=5;

Inty=2;

printf("%d + %d = %d \n",x,y, x+y); // would printout 5+2=7

printf("%d %% %d = %d \n",x ,y, x+y); // would printout 5% 2=7

Operator Description Example Result

+ Add two operands 5+2 7

- Subtract right operand from the left 5-2 -3

* Multiply two operands 5%*2 6

/ Divide left operand by the right one 5/2 2

% Modulus - remainder of the division of left 5% 2 3
operand by the right

Comparison Operators (conditions)

Comparison operators are used to compare values. It either evaluatestoa 1
meaning true or 0 meaning false according to the condition. A Comparison
operator and values are known as a condition.

X=5;
y=3;
printf("%d > %d = %d \n",x,y,x>y); // would printout 5>2 =1 (true)

copyright © 2020 www.onlineprogramminglessons.com For student use only
59

Operator Description Example Result

> Greater than - true if left operand is greater | 5>3 true (1)
than the right

< Less than - true if left operand is less than 3<5 true (1)
the right

== Equal to - true if both operands are equal 5== true (1)

1= Not equal to - true if operands are not equal | 5!=5 true (1)

>= Greater than or equal to - true if left 5>=3 true (1)
operand is greater than or equal to the right

<= Less than or equal to - true if left operandis | 5<=3 true (1)
less than or equal to the right

Logical Operators

Logical operators are the and, or, not boolean operators, where the result of the
operation is true and/or false. Where:

1 = true
0 = false

x=1;
y=0;

printf("%d && %d = %d \n",x,y,x&&y);// // would print out 1 && 1 = 1 (true)
printf("%d | | %d = %d \n",x,y,x| |y);// // would print out 1 && 1 =1 (true)
printf(1%d = %d \n",y,ly);// // would print out 10 = 1 (true)

Operator Description Example Result
&& true if both the operands are true 1&&1 1
| | true if either of the operands is true 1]|0 1
! true if operand is false 10 1
(complements the operand)

copyright © 2020 www.onlineprogramminglessons.com For student use only

60

Compound conditions

Logical operators are combined with conditional operators to form compound
conditions that are more powerful.

Condition logical operator condition

(5> 3) && (3<5)
Xx=5;
y=3;

printf(“%d> %d && %d < %d=%d\n", x,y,x >y && x<y);

5>3&&3<5=1

result = 1 meaning true

todo
make another compound condition using the | | comparison operator
Binary Numbers

All numbers in a computer are stored as binary numbers. Binary numbers (base 2)
just has 2 digits 0 and 1 whereas decimal numbers have 10 digits 0 to 9. We also
have hexadecimal (base 16) numbers 0 to F that represent decimal numbers 0 to
15. We use the letters A to F to represent decimal numbers 10 to 15.

Here are the binary and hexadecimal numbers for decimal numbers 0 to 15.

Decimal Binary Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3

copyright © 2020 www.onlineprogramminglessons.com For student use only
61

4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Bitwise Operators

Bitwise operators act on operands as if they were binary digits. It operates bit by
bit. Binary numbers are base 2 and contain only 0 and 1’s. Every decimal number
has a binary equivalent. Every binary number has a decimal equivalent. For
example, decimal 2 is 0010 in binary and decimal 7 is binary 0111.

In the table below: 10 = (0000 1010 in binary) 4 = (0000 0100 in binary)

printf("%d | %d \n",x,y 10 | 4); // would printout 10 | 4=7
The difference between comparison operators and bit wise operators, the bit

wise operators change the value where as the comparison operators do not.
They just compare.

Operator Description Example Result

& Bitwise AND 10& 4 0 (0000 0000 in binary)
| Bitwise OR 10 | 4 7 (0000 1110 in binary)
A Bitwise XOR 1074 7 (0000 1110 in binary)

~ Bitwise complement | ~10 -11 (1111 0101 in binary)

copyright © 2020 www.onlineprogramminglessons.com For student use only
62

You may want to use variables values like 0 and 1 instead like this:
x=0
y=1

printf("%d & %d \n",x&y); // x&y=0

using 0 and 1’s rather than numbers make the bitwise operations easier to
understand:

and or Xor

0&0=0 0/]0=0 0720=0
0&1=0 0|]1=1 0~r1=1
1&0=0 1/0=1 170=1
1&1=1 111=1 171=0

The ~ operator reverse the bits. 0 becomes 1 and 1 becomes -

10 = 0000 1010
~ 1111 0101

Negative binary numbers have a 1 at the start known as the msb (most significant
bit)

1111 0101 is actually =-11

You can use 2’complement to convert a positive binary number to a negative
binary number or a negative binary number to a positive binary number.

0000 1011 1111 0101

Step 1 complement binary number 1111 0100 0000 1010

Step 2 add 1 1
1111 0101 (-11) 1111 1011 (11)

copyright © 2020 www.onlineprogramminglessons.com For student use only
63

Shift Operators

Shift operator allow you to multiply or divide a variable by multiple of
2. The << shift operator multiplies by powers of 2 by shifting bits left.
The >> shift operator divides by number of powers of 2 by shifting bits
right. We left and right shift the number 10 by powers of 2. Binary 10
is 00001010

2
3

X
Y

X=X <<y; /] 2<<3=8

printf(“x << 3 = %d\n,x); x<<y=8

X=x>>3;//8>>3=2

printf(“x << 3 = %d\n,x); X>>y=2

Operator Description Example Result

<< Shift bits left by 3 bits | 2<<3 8 (2*2*2)
(multiply by 273 = 8) (2 *8)

>> Shift bits right by 2 bits | 8 >>2 2 (8/2/2/2)
(divide by 272 = 4) 2

Increment/Decrement Operators ++ --

Increment operators ++ increment a variable value by 1 and decrement operators
-- decrement a value by 1.

They come in two versions , prefix increment/decrement value before or postfix
increment/decrement value after.

copyright © 2020 www.onlineprogramminglessons.com For student use only
64

Prefix Increment before y = ++x

x is incremented then value of y is assigned the value of x

x=5
Yy = ++X;
printf("y=x ++ y=%d x = %d\n",y,x);

y=++Xx y=6 Xx=6

postfix increment after y=x++

The value of y is assigned the value of x and then x is incremented

X y
X=5 5 ?
y = X++ 6
X=5
y = ++X;

printf("y=++x y=%d x = %d\n",y,x);

y=++x y=6 Xx=6

y does not increment but x increments

copyright © 2020 www.onlineprogramminglessons.com For student use only
65

prefix Decrement before y=--x

x is decremented then value of y is assigned the value of x

X y
Xx=5 5 ?
y = ++X 4
X=5
Yy =-X;

printf("y=--x y=%d x =%d\n",y,x);

y=--Xx y=4 x=4

both y and x decrement
postfix decrement after y=x--

The value of y is assigned the value of x and then x is decremented

X y
Xx=5 5
y = X-- 4
x=5
Yy=X-;

printf("y=x -- y=%d x = %d\n",y,x);

y=x-- y=5 x=4

y does not decrement but x decrements

copyright © 2020 www.onlineprogramminglessons.com For student use only
66

Increment decrement operators are usually used stand alone to increment or
decrement a variable value by 1.

X++
X__

Assignment Operators

Assignment operators are used to assign values to variables. x = 5 is a simple
assignment operator that assigns the value 5 on the right to the variable a on the
left. There are various compound operators in like x += 5 that adds to the variable
and later assigns the same. It is equivalent to x = x + 5.

X =5;
printf("x = %d\n",x);

X+=5;
printf("x +=5 = %d\n",x); // x+=5 =10

Operator | Compound Equivalent Operation
= x=5 x=5 Assign 5 to x
+= X+=5 X=X+5 Add 5 to x
-= X-=5 X=x-5 Subtract 5 from x
*= X *=5 x=x%*5 Multiply x by 5
/= X /=5 X=x/5 Divide x by 5
%= X %=5 X=X%5 MOD x by 5
<<= Xx<<=5 X=X<<5 Shift x left 5 bits
(multiply by 2 (32))
>>= x>>=5 X=x>>5 Shift x right 5 bits
(divide by 275 (32))
&= X &=5 Xx=x&5 AND x by 5
= Xx|=5 X=x]|5 ORx by 5
A= XxA=5 X=x"5 XOR x by 5

copyright © 2020 www.onlineprogramminglessons.com For student use only
67

Lesson4 Homework Part 1

1. Print out if a number is even, using just a print statement and a arithmetic
operator

2. Print out of a number is odd, using just a print statement and a arithmetic
operator

3. Swap 2 number using a temporary variable

4. Multiply a number by 8 using a shift operator

5.Divide a number by 8 using a shift operator

6.In a print statement, add 2 numbers together and check if they are less than
multiplying them together

7.In a print statement, add 2 numbers together and check if they are less than
multiplying them together and greater then multiplying them together.

8.In a print statement, add 2 numbers together and check if they are less than
multiplying them together or greater then multiplying them together

Put all your homework in a file called homework4.c

Character String Operations

In C operations on character strings are carried out by built in functions. To use
theses built in functions you must place

copyright © 2020 www.onlineprogramminglessons.com For student use only
68

#include <string.h>
On the top of your Lesson4.c file.

Character strings in C are also known as CStrings. You declare CStrings with char

data type and square [] brackets. The [] brackets means the char variable holds 1
one more character.

// declare and assign character string
char s1[] = "hello";

// print out string
printf("%s\n",s1); // hello

You do not need to specify the number of characters in the string if you initialize
with a string of letters. If you do, you always need to specify the number of
letters + 1, because you must allow 1 extra character to hold the end of string
terminator that is a “\O‘ or just a 0.

char s1[6] = "hello";

// get a character from string
char c =s1[0];

printf("%c\n", c) // h

// change a character in a string
s1[0] = j’;

// print out string
printf("%s\n",s1); // jello

copyright © 2020 www.onlineprogramminglessons.com For student use only
69

making empty strings

If you make a empty string, you must specify the number of characters you want.
You must reserve an extra character for the end of string character ‘\0’.

char s2[81] = {0};
char s2[81] =""; // alternate empty string

Once you got a character string you can always make it Empty by setting the first
character to the end of string character \O .

s2[0] ="\0"; // the more professional way
or
s2[0] = 0; // the lazy way

It is probably better to do the more professional way using the end of string
character '\O ' rather than 0, but they are both the same value of 0.

string functions
There are many string functions. Here are just a few of them:

// get length of a string
x = strlen(s1)
printf("The length of the string is %d\n",x); //5

// copy a string
strcpy(s2,”goodbye”);

printf("%s\n", “goodbye); // goodbye

// join two strings together
strcat(s2,s1);
printf("%s\n", s2); // goodbyehello

copyright © 2020 www.onlineprogramminglessons.com For student use only
70

// test if 2 strings are less greater or equal
//-1=less 0=-equal 1=greater
printf("%d\N ,strcmp(s1,s2)); // -1
printf("%d ,strcmp(s1,s1)); // O
printf("%d ,strcmp(s2,s1)); // 1

// get pointer to start of a sub string
char* pchr = strstr(s2,"hello");
printf("%s",pchr); // hello

Lesson4 Homework Part 2

9. Make a string of your favourite word and replace the first letter with
another letter, hint use substring.

Example : change “hello” to “jello”

10. Make a string of your favourite word and replace the last letter with
another letter, hint use strlen

Example : change “jello” to “jelly”

11. Make a string of your favourite word and change the middle letter, hint
use substring.

Example : change “jellly” to “jexly”

12. Replace the last letter with the first letter in a word
Example : change “jely” to “yelj”

13. Compare if the two above strings are equal, greater or smaller to each
other.

14. Use strstr to point to substrings in to 2 different strings. Copy the
first one to an empty string ,then next concatenate a string of your choice
and finally concatenate the second string to the end.

Put all your homework in a file called homework4.c

copyright © 2020 www.onlineprogramminglessons.com For student use only
71

LESSON 5 PROGRAMMING STATEMENTS

Programming statements allow you to write complete C programs. We have
already looked at simple input, print and assignment statements. We now present
you with branch and loop programming statements. Continue with the C file
Lesson5.c and try out all these branch loop statements one by one. Once you see
the program execution you will understand how theses branch and loop
statements work. You may also want to add some extra statements of you own.

Branch Control Statements

Branch control statements allow certain program statements to execute and
other not.

if statement

The if branch control statements contain a condition using conditional operators
from the previous lesson to direct program flow.

If (condition)
Statement(s)

When the condition is evaluated to be true the statements belonging to the if
statement execute. An if statement is a one-way branch operation.

// if statement
X=05;
if (x ==5)
{
printf("x is 5\n");

printf("x is 5\n");

Xis5

copyright © 2020 www.onlineprogramminglessons.com For student use only
72

If — else statement

We now add an else statement. An if-else control construct is a two-way branch
operation.

If (condition) l
statements

else
statements

A\ 4 \ 4

// if — else statement

X=2; printf("x is not 5\n"); printf("x is 5\n");
if (x ==5)

printf("%s\n","x is 5");
else

printf("%s\n","x is not 5");

Xisnot5

Multi if-else statement
We can also have additional else if statements to make a multi-branch.

// multi if else
x =10;
if (x==15)
printf("x is 5\n");
else if (x < 5)
printf("x less than 5\n");
else if (x > 5)
printf("x greater than 5\n");

x greater than 5

copyright © 2020 www.onlineprogramminglessons.com For student use only
73

A multi branch if-else can also end with an else statement.

// multi if-else else
X =5;
if (x <5)

printf("x less than 5\n");
else if (x > 5)

printf("x greater than 5\n");
else

printf("x is 5\n");

Xis 5

switch statement

A switch statement is considered an organized if-else statement. It is a little
limited since if can only handle numeric equals. When the case values matched
the switch value the statements in the case execute. The break keyword exits the
switch statement. The default statement is executed of there is no match.

// switch statement

X=2;
switch(x)
{
case 1:
printf("%s\n","x is 1");
break;
case 2:
printf("%s\n","x is 2");
break;
case 3:
printf("%s\n","x is 3");
break;
default:
printf("%s %d\n","x is ", x);
break; xis 2
}

copyright © 2020 www.onlineprogramminglessons.com For student use only
74

nested if-else statement
if statements can also be nested to make complicated conditions simpler.

// nested if statement
x=5;

if (x >=0)
{
if (x > 5)
printf("%s\n","x greater than 5");
else

printf("%s\n","x less than equal 5"); x less than equal 5

Loop Control Statements
Loop control statements allow program statements to repeat themselves.
while loop

The while loop allows you to repeat programming statements repeatedly until
some condition is satisfied.

The while loop requires an initialized counter, a condition, program statements
and then increment or decrement a counter.

Initialize counter

while condition:
statement(s)
increment/decrement counter

When the condition is false the loop execution exits. While loops are used when
you do not know how many items you have.

copyright © 2020 www.onlineprogramminglessons.com For student use only
75

Here is a while loop that prints out the number 0 to 4

// while loop

x=0;

while (x < 5)

{

printf("%d\n",x);
X++;

}

A WNEFE O

printf("\n"); // new line
Todo
Change the above while loop to printout 1to 5
Make a while loop that prints out the numbers 1 to 5 backwards.
do loop

The do loop also known as a do-while loop allows you to repeat programming
statements repeatedly until some condition is satisfied. The condition is at the
end of the loop, so the programing statements execute at least once.

The do loop requires an initialized counter, program statements, increment or
decrement a counter and finally a condition.

Initialize counter

dof
statement(s)
increment/decrement counter
} while condition;

When the condition is false the loop execution exits. do loops are used when you
do not know how many items you have.

copyright © 2020 www.onlineprogramminglessons.com For student use only
76

Here is a do loop you can try out that prints out the number 0 to 4.

// do loop

x=0; 0

do 1

(2
printf("%d\n",x); 431
X++;

} while (x < 5);

printf("\n"); // new line
Todo
Change the above do while loop to printout 1to 5
Make a do while loop that prints out the numbers 1 to 5 backwards.
for loop
Another loop is the for loop. It is much more automatic then the while loop but
more difficult to use. All loops must have a counter mechanism. The for loop
needs a start count value, condition, increment/decrement counter. When the
condition is false the loop exits. For loops are used when you know how many

items you have.

for (start_count_value,condition, increment/decrement_counter):
Statement(s)

Here we have a for loop to print out values 0 to 4, to try out.

0
// for loop 1
inti; 2
for (i=0;i<5;i++) 3
(4

copyright © 2020 www.onlineprogramminglessons.com For student use only
77

printf("%d\n",i);
}

To do:

Change the above for loop to printout1to 5

Make a for loop that prints out the numbers 1 to 5 backwards.

Nested for loops

Nested for loops are used to print out 2 dimensional grids by row and column.

// nested for loop
intr;
intc;
for (r=0;r<5;r++)
{
printf("%d:");
for (c=0; c < 5; c++)

{

printf("%d",c);
}
printf("\n");

u b WON R

112345
112345
112345
112345
112345

Loops can also be used to print out characters in a string variable

// print out characters in a string
char* s ="Hello";
inti;
for (i=0;i<strlen(s);i++)
{
printf("%c\n",s[i]);

}
printf("\n");

o — — o T

copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 5 HOMEWORK TO DO:

Exam Grader
Ask someone to enter an exam mark between 0 and 100. If they enter 90 or
above printout an “A”, 80 or above print out a “B”, 70 or above print out a “C”,

60 or above print out a “D” and “F” if below 60. Hint: use if else statements.

You can visualize a grade chart like this:

Mark Range Exam Grade
90 to 100 A
80 to 89 B
70to 79 C
60 to 69 D
0to 59 F

Mini Calculator

Make a mini calculator that takes two numbers and a operation like -, +, * and /.
Prompt to enter two number’s and a operation like this:

Enter first number: 3

Enter second number: 4

Enter (+, -. *. /) operation: +

Then print out the answer like this:
3+44=7

copyright © 2020 www.onlineprogramminglessons.com For student use only
79

Hint: use a switch statement.

Use a while or do while loop so that they can repeatedly enter many calculations.
Terminate the program when they enter a letter like ‘X’ for the first number.

Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

Ask the user how many rows they want.
Hint: use 2 nested for loops, start with a square of stars
Enhanced Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

*
¥ ¥ %
¥ % % % %
% %k % % % % %

%k %k %k ok k %k k *k k

Ask the user how many rows they want.

Hint: use 2 nested for loops, start with a square of stars

copyright © 2020 www.onlineprogramminglessons.com For student use only

80

Reverse a String

Reverse a String using a while loop or a for loop in place. Print the string before
and after reversal also using a loop.

Test if a number is prime

Make a function called isPrime(x) that tests if a number is print. In a loop divide
the number between 2 to number-1 (or 2 to square root of number+1. For square
root use:

x = (int)Math.sqrt(n);

If the number can be divided by any of the divisors then the number is not prime,
else it is prime. Print out the first 100 prime numbers.

The first 10 prime numbers are: 2, 3,5, 7,11, 13,17, 19, 23, and 29

Print out all factors of a number

Make a function call factors(x) that will print out all the factors of a number. The
factors of a number is all the divisors divided by the number evenly.
Example:

The Factors of 50 are:
1

2

5

10

25

50

Print out all prime factors of a number

copyright © 2020 www.onlineprogramminglessons.com For student use only
81

Make a function call prime_factors(x) that will print out all the prime factors of a
number. The prime factors of a number is all the prime number divisors divided
by the number evenly.

Example: 12=2x2x3
Following are the steps to find all prime factors.

0) Enter a numbern
1) While n is divisible by 2, print 2 and integer divide n by 2
2) Inaforloop fromi=3to square root of n+1 increment by 2
in a while loop while n is divisible by i
printi
integer divide n by integer i

3) print nifitis greater than 2.
For square root use:

X = Math.sqrt(n);

Make a Guessing game

Ask the user of your game to guess a number between 1 and 100. If they guess
too high tell them “Too High”. If they guess too low tell them they guess “Too
Low”. If they guess correct tell them “Congratulations you are Correct!”. Play 10
games as a round. Keep track in an array how many tries each game took. At the
end of 10 games in a table print out the tries for each game in the round. At the
end of the table print out total score of all the game tries. For each round keep
track of the lowest total score and inform the user if they beat the current lowest
score or not. At the end of each round ask the user if they want to play another
round of 10 games. You will need to first generate a random number to guess.
You can use this code to generate a random number:

copyright © 2020 www.onlineprogramminglessons.com For student use only
82

// seed random number generator
srand((unsigned int)time(0));

// generate a random number
int number = rand() % MAX_NUMBER + 1;
Where MAX_NUMBER is a constant placed at the top of your program.

const int MAX_NUMBER = 10;
Also make another constant MAX_GAMES for the number of games to play.

const int MAX_GAMES = 10;

You will need to include the following at the top of your program, for the compiler
to recognize the srand(), rand() and time() functions.

#include <stdlib.h>
#include <time.h>

You should have functions to print a welcome message explaining how to play the
game, generate a random number, get a guess from the keyboard, check if a
guess is correct and print out the game scores. The main function should just call
your functions in a loop. Call your c file Homework5.c or GuessingGame.c

Guessing Game using a Structure

Make a Guess Game structure that will keep track of the guess number and tries
per game. The main function would update the structure per round. After all
games have been played print out the average game. Call your cfile
Homework5b.c or GuessingGame2.c

copyright © 2020 www.onlineprogramminglessons.com For student use only
83

LESSON 6 ARRAYS

For this lesson make a new C source file called Lesson6.c and in the main
function type in the following programming statements for the following Arrays

ARRAYS

Arrays are sequential values accessed under a common name. Arrays store many
sequential values together. We have one dimensional arrays and multi
dimensional arrays. One dimensional arrays are considered a single row of values
having multiple columns. You can visualize a one-dimensional array as follows.

Valuel Value2 Value3 Valued Value5

We declare and initialize 1 dimensional int array of size 5 as follows.
The size of the array is enclosed inside the square brackets.

int a[5] ={1,2,3,4,5};

1 2 3 4 5

When initializing all the values of an array the size is optional and can be written
as follows:

int a[] ={1,2,3,4,5};

In this situation the size of the array is determined by the number of listed
initialized values.

You can also declare a one-dimensional array of a specified size without
initializing the values. Here we declare an array of size 5.

int a2[5];

T

Number
of elements

copyright © 2020 www.onlineprogramminglessons.com For student use only
84

You can initialize all array values to a single value like this:
int a2[5] = {0};
In this situation you must specify the size of the array you need also to assign

array values separately as follows. Arrays locations are assigned by an index. All
indexes start at O.

a2[0]=1;

a2[1] =2;

a2[2] =3;

a2[3] =4;

a2[4] =5;
0 1 2 3 4
1 2 3 4 5

The indexes are at the top and the array values are at the bottom

Arrays locations are also retrieved by an index
int x = a[0];
printf("%d\n", x);

todo:

Print out all the elements in the above 1 dimensional array using a for loop

Two-dimensional arrays

Two-dimensional arrays have grid of rows and columns. A two-dimensional array
having 3 rows by 4 columns is visualized as follows:

copyright © 2020 www.onlineprogramminglessons.com For student use only
85

Row 1 | column 1 column 2 column 3 column 4
Row 2 | column 1 column 2 column 3 column 4
Row 3 | column 1 column 2 column 3 column 4

Here we declare and initialize a two-dimensional int array. We specify the number
of rows and columns inside square brackets..

int b[3][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};

/N

Number Number

of rows of columns
1 2 3 4
5 6 7 8
9 10 11 12

We assign values to the two-dimensional array by row and column index. The row
index specified first and the column index specified second. The row and column

index’s both start at O;

array name [row index | [column index | = value;

b[2][3] = 11;

which which
row column

We retrieve values from the two-dimensional array also by row index and column
index. The row index is first and the column index is second.
The row and column index’s start at O;

x = b[2][3];
printf("%d\n", b2[2][3]); // 11

copyright © 2020 www.onlineprogramminglessons.com For student use only
86

The row index and column index of a two-dimensional array can be visualized as
follows. The row index is first and the column index second. The row and column

index’s start at O;

[0][0]

[0][1]

[0][2]

[0][3]

[1][0]

[1][1]

[1][2]

[11[3]

[2][0]

[2][1]

[2][2]

[2][3]

We use nested for loops to print out the values of a 2 dimensional array.

// print out values in a two-dimensional array

intr;
intc; 1234
for (r=0;r < 3; r++) 5678
{ 9101112
for (c=0;c < 4; c++)
{
printf("%d\n", b[r][c]);
}
printf("\n");
}
To do

Use 2 nested for loops to assign new values to the two-dimensional
array using some kind of formula like

b[r][c])=r+6 *c;

Then print out the 2 dimensional array b;

copyright © 2020 www.onlineprogramminglessons.com For student use only
87

LESSON 6 HOMEWORK Part1

Question 1

Make an array of 10 numbers 1 to 10, print out the numbers in the array,
then add up all the numbers and print out the sum.

Question 2

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Ask the user of your program to enter a number in the array. Search for the
number in the array and report if it is found or not found.

Question 3

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Ask the user of your program to enter a number in the array. Search for the
number in the array and report the array index where the number was
found otherwise print -1 meaning no index found.

Question 4

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Reverse all the numbers in the array in-place using a loop. Hint: use swap
and 2 indexes i andj. Index i starts at the beginning of the array and index j
starts at the end of the array. The i’s increment and the j's decrement.
Print out the reversed array.

Question 5

Make a 2 dimensional array of 3 rows and 3 columns. Fill the 2 dimensional
array with numbers 1 to 9. Add up the sum of all rows, and print the sum
at the end of each row. Add up the sums of all columns, and print the sums
at the end of each column. Your output should look like this.

copyright © 2020 www.onlineprogramminglessons.com For student use only
88

111518

Question 6

Make an array to hold 10 numbers 1 to 10.

Generate 1000 random numbers between 1 and 10.

Keep track of the random numbers generated in your array.
Print out all the numbers and their counts from the array.
Print out the numbers with the smallest and largest count.
Print out the number of even and odd number counts.

You can make a random number like this:

int x =rand() % 10

and you will also need to seed the random number generator to get different
numbers when you run the program

srand((unsigned int)time(0))
You will need at the top of you cfile:

#include <stdlib.h>
#include <time.h>

So the C compiler recognizes the srand(), rand() and time() functions

Put all answers in a C file called Homework6.c

copyright © 2020 www.onlineprogramminglessons.com For student use only
89

Arrays of Structures
Arrays of Structures allow you to group many structures together under a
common name. We can make an array of person structures using the Person

structure as follows.

struct Person

{

char name[MAX_CHARS];

int age;

¥

struct Person persons|] = {
{"Tom",24},
{"Mary",20},
{"Sue",28}
b

using typedef

typedef struct person_type
{

char name[MAX_CHARS];
int age;

} Person;

Person persons[] = {
{"Tom",24},
{"Mary",20},
{"Sue",28}

b

copyright © 2020 www.onlineprogramminglessons.com For student use only
90

todo

Make an array to hold 3 Persons and initialize with 3 persons.
Ina loop print out the persons in the person array. Use the printPerson
function from previous lesson to print out the person details

void printPerson(struct Person p)

{

printf("Nice to meet you %s\n",p.name);
printf("%s You are %d age years old\n", p.name, p.age);

}

Or the one using typedef

void printPerson(Person p)

{

printf("Nice to meet you %s\n",p.name);
printf("%s You are %d age years old\n", p.name, p.age);

}

LESSON 6 HOMEWORK part 2

Question 7

Make an Array of Structures using your Profession structure from Lesson3. In a
loop print out the persons in the person array. Use your printProfession
function to print out the Profession details. Put all your main function in a file
called Homeworké6.c

Array of structures containing structures

We can also make an array of structures that contain other structure using the
Student structure from previous lesson.

copyright © 2020 www.onlineprogramminglessons.com For student use only
91

struct Student

{

Person p;

char idnum[MAX_CHARS];
b

You would initialize the array of structures like this:
A structure inside a structure so each structure needs curly brackets.

struct Student students[] = {
{{"Tom",24}, "S1234" },
{{"Mary",20}, "S5678" },
{"{Sue",28}, "S1111"}
b

Using typedef

typedef struct student_type
{

Person p;

char idnum[MAX_CHARS];
}Student;

You would initialize the array of structures like this:

Student students[] = {
{"Tom",24}, "s1234" },
{{"Mary",20}, "S5678" },
{"Sue",28}, "s1111" }

b

You could visualize the 1 dimensional array of person structures like this

Person Structure

Person Structure

Person Structure

copyright © 2020 www.onlineprogramminglessons.com For student use only

92

todo

Make an array to hold 3 Students and initialize with 3 students. In a loop print
out the persons in the person array. Use the following printStudent function

from previous lesson to print out the student details.

void printStudent(struct Student s)

sl

printPerson(s.p);

printf("Your Student id is %s\n",s.id);

}

Or using typedef

void printStudent(Student s)

{

printPerson(s.p);

printf("Your Student id is %s\n",s.id);

}

Most people use typedef.

You could visualize the 1 dimensional array of student structures like this

Student Structure

Student Structure

Student Structure

LESSON 6 HOMEWORK part 3

Question 8

Make an Array of Structures of Structures using your JobDescription Structure
from Lesson3. In a loop print out the job description in the job description array.
Use your printlobDescription function to print out the JobDescription details

Put all your main function in a file called Homework6.c

copyright © 2020 www.onlineprogramminglessons.com For student use only

93

2 Dimensional Array of Structures.
We can also make a 2 dimensional array of persons structures like this:

Person persons2d[2][3] ={

{
{"Tom",24 },
{"Mary",20},
{"Sue"},

}I

{
{"Tom",24},
{"Mary",20},
{"Sue",28}

}

b

We have 2 rows and 3 columns.
Notice: we also enclose the rows in curly brackets

You could visualize the 2 dimensional array of Person structures like this:

Person Structure Person Structure Person Structure
Person Structure Person Structure Person Structure
Person Structure Person Structure Person Structure

Todo

Print out the 2 dimensional array using nested for loops and use the printPerson
function.

copyright © 2020 www.onlineprogramminglessons.com For student use only
94

We can also make a 2 dimensional array of student structures like this:

Student students2d[2][3]={

{
{{"Tom",24}, "s1234" },
{{"Mary",20}, "S5678" },
{{"Sue",28}, "s1111" },

b

{
{"Tom",24}, "s1234" },
{{"Mary",20}, "S5678" },
{{"Sue",28}, "s1111" }

}

b

You could visualize the 2 dimensional array of student structures like this:

Student Structure Student Structure Student Structure
Student Structure Student Structure Student Structure
Student Structure Student Structure Student Structure

Todo

Print out the 2 dimensional array using nested for loops and use the printStudent
function.

copyright © 2020 www.onlineprogramminglessons.com For student use only
95

LESSON 6 HOMEWORK part 4
Question 9

Make an 2D Array of Structures using your Profession structure from Lesson3. In a
nested for loop print out the persons in the person array. Use your
printProfession function to print out the Profession details. Put all your main
function in a file called Homework6.c

Question 10

Make an 2D Array of Structures of Structures using your JobDescription Structure
from Lesson3. In a nested for loop print out the job description in the job
description array. Use your printJobDescription function to print out the
JobDescription details

Put all your main function in a file called Homework6.c

LESSON 7 POINTERS and ALLOCATING MEMORY

When a program runs variables are stored in a computer memory location. Each
variable is stored at a memory location. The memory location is known as an
address. It is possible to get the address of the memory location using a pointer
variable. Ordinary variables store values, pointer variables store addresses.

To declare a pointer variable we use a star* after the data type. A pointer is a
variable that stores a memory location.

int* ptr = NULL;

We have declared an int pointer variable to store the address of an int variable.
The pointer data type must match the data type of the variable that the pointer
points to. We also have initialized the pointer variable to a default 0 address.
called NULL. NULL is a constant representing a 0 address. A 0 address actually
represents no address. Alternately you may see this as well

int* ptr = 0;

copyright © 2020 www.onlineprogramminglessons.com For student use only
96

Using a 0 is considered poor programming practice, but you should always use
NULL instead.

Declaring a pointer variable is just like declaring a ordinary value variable.
intx=5;

To get the address of a variable we use a & in front of the variable name.

& means “address of”

Our pointer can now point to the variable age using the & address of operator.

ptr = &x;

The pointer ptr variable now points to the variable x.

ptr

Once you have the address of the variable you can get the value that the pointer
points to. You use a star * to get the value from the pointer. * means “value of”

int x = *ptr;

We can print out the value obtained from the pointer.

printf("%d\n",x); >

Which would be the same as reading directly from the pointer *ptr.

copyright © 2020 www.onlineprogramminglessons.com For student use only
97

printf("%d\n",*ptr); >

You can also assign a new value to the age variable using the pointer

10 X

A 4

*ptr = 10; ptr | o

Printing out the values that the pointer points to we now get a 10.

printf("%d\n",*ptr); 10

We can also print out the address that the pointer contains (the contents of the
pointer). We printing out the address that the pointer contains using %p
formatter:

printf("%p\n",ptr); 0x0005E000

%p is a format specifier used to print out a address.
We can also print out the address of the variable age using the address of
operator & and the %p formatter.

printf("%p\n",&Xx); 0x0005E000

Note: Both addresses are the same.

todo

Try making some variables and pointer variables, assign values to the variable
and assign the address of the variables to the pointer variable. Print out the
values of the variables using the pointers.

copyright © 2020 www.onlineprogramminglessons.com For student use only
98

Incrementing and decrementing a pointer

When you increment or decrement a pointer you are incrementing its contents
by the memory size that the pointer points to. The pointer contents does not just
increment by 1 but rather than the memory size of the variable it points to. The
contents of a pointer is the memory address of some variable that the pointer
points to.

Example:
X is at memory location 5000, Memory location 5000 contains the value 5.

X
intx=5; 5000 | s

ptr at memory location 6000 points to x at memory location 5000.
ptr X
int* ptr = &x; 6000 5000 5

\ 4

post increment pointer ptr++

pointer contents is now 5004, because the memory size of a intis 4

because sizeof(int) = 4. The pointer now points to an unknown value.
ptr X

ptr++ 5004

?

\ 4

post decrement pointer ptr--
pointer contents is back to 5000, because the memory size of a intis 4
because sizeof(int) = 4. The pointer now points back to x.

ptr X

ptr--; 5004 5

Incrementing and decrementing the variable value that a pointer points to

Post increment the value that the pointer is pointing to:

copyright © 2020 www.onlineprogramminglessons.com For student use only
99

ptr X
(*ptr)--; 6000 5000 |—» 6

The value of x has now incremented to 6
Pre increment the value that the pointer is pointing to:

ptr X
(*ptr)--; 6000 | 5000

\ 4
(9]

The value of x has now decremented to 5. We are using post decrement.

Accessing values and Incrementing/decrementing pointers

Access the value of the pointer and post decrement the pointer

ptr X

inty = *(ptr--); 6000 | 5004 > ?
y

5

The value of x has now incremented to 6

y has the value 5

You may also use without the brackets.
inty = *ptr--;

because ++ has precedence over *. The pointer decrements first, then the value
is accessed.
Access the value of the pointer and pre-increment the pointer

ptr X

copyright © 2020 www.onlineprogramminglessons.com For student use only
100

inty = *(++ptr); 6000| 5000 —»| 5

The value of x has now decremented to 5
y has the value 5 again because we have pre-decremented the pointer
You may also use without the brackets.

inty = *++ptr;

because ++ has precedence over *, the pointer increments first then the value is
accessed.

todo

Try making some variables and pointer variables, assign values to the variable
and assign the address of the variables to the pointer variable. Print out the
values of the variables using the pointers. Then increment and decrement the
pointers and print out the values they point to. Next increment the values they
point to and print out their values. Lastly read the values from the pointers when
you increment them or decrement them. Use pre increment and post increment.

Try to increment a pointer and a value all at the same time or vice versa.
Try to decrement a pointer and a value all at the same time or vice versa.

Pointers to Character Strings

char* s1 = "hello";
char* s2 ="there";

Pointers to character strings are usually read only, because they are using code
memory not data memory. You cannot change their values, but you can still copy
them.

copyright © 2020 www.onlineprogramminglessons.com For student use only
101

To do:

Make 2 two pointer to character strings and initialize them with your favourite
words. Print(out the character strings using the %s formatter, don’t forget a new
line \n.

Printing out a character string using a loop and a pointer.
char* s = "tomorrow";
while (*s)

{

printf(“%c “,*s++;

} tomorrow

printf("\n");
loop to print out character string and increment a character before printing

In this situation we have to use reserved memory for the string not code memory.
You cannot change code memory. We first reserve memory for the character
string “tomorrow”.

char s3[] = "tomorrow";

Then we assign the character pointer s to the character string s3 start of memory.

s=s3;
while (*s)
{
printf("%c ", ++(*s++));
}
upnpsspx
printf("\n")

copyright © 2020 www.onlineprogramminglessons.com For student use only
102

Pointers to Pointers

A pointer points to another pointer.

You declare a pointer to pointer with two stars **.
int** pptr = NULL;

We use our pointer from previous section and assign to the address of the
variable x

A 4
x

x=5; ptr ®

We assign the address of a pointer to a pointer to pointer. A pointer to a pointer
points to another pointer.

pptr = &ptr; ®

A 4
®
h 4

pptr ptr X

To access a value from a pointer to pointer is a 2 star process

X = **pptr;
printf("%d\n",x); //5

To assign the a value to a pointer to pointer is also a 2 star process
**pptr = 10;
We then print out the value from the pointer to pointer again

x = **pptr;
printf("%d\n",x); //5

copyright © 2020 www.onlineprogramminglessons.com For student use only
103

Alternatively you access values using the pointer contained in the pointer to
pointer

// Read value from pointer
ptr = *pptr;

X = *ptr;

printf("%d\n",x);

// Assign value using pointer
*ptr = 10;

X = **pptr;

printf("%d\n",x);

Lesson7 Homework Part 1
Question 1

Make 2 int variables and assigned values to them.

Make 2 int pointers and assign the address of each variable to each pointer.
Use the pointers to swap the values. Print the values before and after the
swapping.

Question 2

Make 2 int pointer to pointers. Assigned to each pointer to pointer the address
of each pointer from question1.

Use the pointer to pointer to swap the values. Print the values before and after
the swapping.

Next use the pointer obtained from the pointer to pointer swap the values. Print
the values before and after the swapping.

copyright © 2020 www.onlineprogramminglessons.com For student use only
104

Question 3

Make 2 character strings one initialized to your favorite word and the other one
with reserved memory larger than the first character string. Copy from the first
one into the second one backwards using a pointer. Print out the both strings
after you copy them.

Allocating memory for Arrays

Alternatively you can allocate memory to a pointer using malloc. You need to put

#include <stdlib.h>

at the top of your program so that the complier knows what malloc is. You
allocate memory for a int data type as follows:

ptr = (int *) malloc (sizeof(int))

(int *) is known as type casting which states the memory to be allocated is to
represent an int address.

sizeof states the size of the data type to be allocated in bytes

sizeof(int) means the number of bytes for a int data type (usually 4 bytes)

Allocating Memory for a 1 Dimensional Array

We can also allocate memory for arrays when the program is running;
int* a = (int*) malloc(sizeof (int) * 5);

a is known as a pointer because it holds the address of the allocated memory for
the array. (points to the allocated memory)

sizeof is used to indicate the size of a array column and the 5 means to have 5
columns.

copyright © 2020 www.onlineprogramminglessons.com For student use only
105

Q
A\ 4

A has the address of the 1 dimensional array

You can access the allocated memory by index

a[l] =2;
x = a[1]; 2
printf("%d\n", x);

or by the pointer value of operator *

*(a+1) = 2;)
X = *(a+1)
printf("%d\n", x);

The value of * operator is also known as dereferencing. Dereference means to get
the value from a pointer. A pointer is a reference to a memory address storing a
value. So to get the value from a pointer it is called dereferencing.

Assigning values to a 1 dimensional array

When you allocate memory for a 1 dimensional array you need to give it some
values using some formula.

// assign values to a 1 dimensional array
for (int i=0;i<5;i++)
{

a[i] = (i+1);

Printing out values from a 1 dimensional array

copyright © 2020 www.onlineprogramminglessons.com For student use only
106

We use for loops to print out values in array.

// print out values in a 1 dimensional array

for (int i=0;i<5;i++) 12345
printf("%d ", a[i]);
printf("\n");

Once you are finished using the allocated array you need to reclaim the memory,
so other programs can use the memory.

free(a);
todo

Allocate 1 dimensional array of any size you want, fill it with values using a
formula, then print out the array values and then free the array memory.

Allocating memory for a 2 Dimensional Array

We can also allocate memory for a 2 dimensional array . We first make a 1
dimensional array of integer row pointers (int**) known as pointers to pointers.

int** b = (int**) malloc(sizeof(int*) * 3); // declare number of row pointers

The sizeof operator indicated we need memory size for a int* and the 3 means an
array of 3 int™* pointers. * =multiply

Each row pointer will then point to a 1-dimensional array of int columns which
will hold the values of the 2 dimensional array for each row.

b[0] = (int*) malloc(sizeof(int) * 4);
b[1] = (int*) malloc(sizeof(int) * 4);
b[2] = (int*) malloc(sizeof(int) * 4);

copyright © 2020 www.onlineprogramminglessons.com For student use only
107

Picture a allocated 2 dimensional array like this. A 1 dimensional array of int
pointers pointing to 3 a 1 dimensional array of int values.

Once you allocate memory for the 2 dimensional array you can assign new values
to it like this:

b2[0][2] = 5;

You can retrieve values like this.

x = b2[0][5];

Where the first square bracket contents is the row index and the second square
bracket contents is the column index. All indexes start at O;

printf("%d\n",x); ’

Alternately you can use the value of * operator
(((b+1))+2) = 5;

Where *(b+1) get you a pointer to row 2 (index 1), because getting the value of a
pointer to pointer is a pointer.

(*(b+1))+2) gets you a pointer to column 3 (index 2) the address of row 1
coliumn3. ALL memory values have their own address location.

The leading * lets you assign the value to the memory location the value 5.

(((b+1))+2) = 5;

copyright © 2020 www.onlineprogramminglessons.com For student use only
108

We do the same for reading back the value, and then print it out.

X = *(*(b+1)+2); 5
printf("%d\n",x);

Most people use the square brackets [][] when accessing allocated 2 dimensional
arrays.

Assigning values to a 2 dimensional array
We just assign values in a nested for loops.

intr=0;

intc=0;

for (r=0;r<3;r++)

{
for (c=0;c<4;c++)
{
b[rllc] = (r+1)*c;
}

}

Printing out values from a 2 dimensional array
We just print values in nested for loops

for (r=0;r<3;r++)

{

for (c=0;c<4;c++)

{
printf("%d ",b[r][c]);

}

printf("\n");

copyright © 2020 www.onlineprogramminglessons.com For student use only
109

Deleting memory from an allocated 2-dimensional array.

We first delete memory for each row and then delete memory for the array that
was storing the row pointers.

for (r=0;r < 3; r++)
{
free(b[r]);
}

free(b);
todo

Allocate 2 dimensional array of any rows and columns sizes you want, fill it with
values using a formula, then print out the array values and then free the array
memory.

Lesson7 Homework Part 2
Question 3

Allocate memory for a 1 dimensional array. Use a second pointer and a loop to
assign values to each element of the array. You can increment the pointer
contained address like this p++ or use *p++ to access a value and increment.
Then print out the one dimensional array using the second pointer. Then free the
memory for the 1 dimensional array.

Question 4

Allocate memory for a 2 dimensional array. Use a second pointer and a loop to
assign values to each element of the array. You can uses a pointer to pointer or
just another pointer. You can increment the pointer contained address like this
p++ or use *p++ to access a value and increment. Then print out the two
dimensional array using the second pointer. Then free the memory for the 2
dimensional array

copyright © 2020 www.onlineprogramminglessons.com For student use only
110

Allocating memory for a structure

We use the Person and Student Structure from Previous Lessons.

Where the Person structure is:

Not using typedef using typedef
struct Person typedef struct person_type
{ {
char name[MAX_CHARS]; char name[MAX_CHARS];
int age; int age;
|5 } Person;

And the Student structure is:

Not using typedef using typedef
struct Student typedef struct student_type
{ {
struct Person p; Person p;
char idnum[MAX_CHARS]; char idnum[MAX_CHARS];
5 }Student;

You allocate memory to a structure using malloc. You need to put #include
<stdlib.h> on the top of your program so that the complier knows what malloc is.
You allocate memory for a Person structure data type as follows:

struct Person * ptr = (struct Person *) malloc (sizeof(struct Person));
If you use typedef then it is like this:

Person * ptr = (Person *) malloc (sizeof(Person));

copyright © 2020 www.onlineprogramminglessons.com For student use only
111

(Person *) is known as type casting which states the memory to be allocated is to
represent an structure Person address. We need to type cast because malloc
returns a void™ pointer. void* means a pointer to a no specified data type.

sizeof states the size of the data type to be allocated in bytes
sizeof(Person) means the number of bytes for a Person structure data type

When you access the variables in the structure using a pointer you use the arrow
-> operator rather than the dot . operator

pptr->name
pptr->age
When you allocate memory for a structure you cannot initialize the elements in

the structure when you create it, you must assign the values instead.

strcpy(pptr->name, "Tom");
pptr->age=24,;

»

pptr

v

name “Tom
Age 24

todo

Allocate memory for a person structure, assign values to it and print out the
values, using a printf statement

You allocate memory for a Student structure data type as follows:

struct Student * sptr = (struct Student *) malloc (sizeof(struct Student));

copyright © 2020 www.onlineprogramminglessons.com For student use only
112

If you use typedef then it is like this:
Student* sptr = (Student *) malloc (sizeof(Student));

(Student *) is known as type casting which states the memory to be allocated is to
represent an Student structure address.

sizeof states the size of the data type to be allocated in bytes
sizeof(Student) means the number of bytes for a Student structure data type

When you access the variables in the structure using a pointer you use the arrow
-> operator rather than the dot . operator

sptr->p.name
sptr->p.age
sptr->idnum

In the above situation we use the arrow -> operator on the p but use the dot
operator to access the name from p, because p is not a person structure pointer
but a just Person structure so we still use the dot . operator.

When you allocate memory for a structure you cannot initialize the elements in
the structure when you create it, you must assign the values instead.

strcpy(sptr->p.name, "Tom");
sptr->p.age=24;
strcpy(sptr->idnum,”S1234”);

sptr

\ 4

name “Tom”
Age 24
Idnum “S1234”

copyright © 2020 www.onlineprogramminglessons.com For student use only
113

To do

Allocate memory for a Student structure, assign values to it and print out the
values using a printf statement

LESSON 7 HOMEWORK Part 3

Question 5

Allocate memory for your Profession structure from Lesson3 and fill in some
values. Print out the profession using the printProfession function from also from
Lesson3. Put all your main function in a file called Homework?7.c

Question 6

Allocate memory for your JobDescription Structure from Lesson3 and fill in
some values. Print out the JobDescription using printlobDescription function
also from Lesson3. Put all your main function in a file called Homework?7.c

ALLOCATING MEMORY FOR AN ARRAY OF STRUCTURES

Note: we are using the typedef structure for the rest of the examples.
typedef is much better to use.

Allocate an array to hold 3 persons and assign the array with 3 persons

Person* pa = (Person*) malloc(sizeof (Person)*3);

pa »| Person Structure
Person Structure
Person Structure

copyright © 2020 www.onlineprogramminglessons.com For student use only
114

When you allocate memory for a structure you must assign values to each
structure in the array.

You use square brackets[] and a index to specify which structure you want to
access.

To assign values to the first structure in the persons array you would to this:

strcpy(pa[0].name,”tom”)
pa[0].age = 24;

Allocate an array to hold 3 students and assign the array with 3 students.

Student* sa = (Student*) malloc(sizeof (Student)*3);

sa »| Student Structure
Student Structure
Student Structure

When you allocate memory for a structure you must assign values to each
structure in the array.

You use square brackets[] and a index to specify which structure you want to
access.

To assign values to the the first structure in the student array you would do this
strcpy(sa[0].p.name,”tom”)

sa[0].p.age = 24;
strcpy(sa[0].idnum,”S1234");

copyright © 2020 www.onlineprogramminglessons.com For student use only
115

todo

Allocate memory for array to hold 3 persons and initialize with 3 persons.
In a loop using a printf function print out the person details.

Allocate memory for array to hold 3 students and initialize with 3 students.
In a loop using a print function print out the student detail.

LESSON 7 HOMEWORK Part 4

Question 7

Allocate an Array of Structures using your Profession structure from Lesson3 and
fill in some values. In a loop print out the professions in the profession array
using the printProfession function from also from Lesson3. Put all your main
function in a file called Homework7.c

Question 8
Make an Array of Structures using your JobDescription Structure from Lesson3

and fill in some values. In a loop using a printlobDescription function print out
the job description details. Put all your main function in a file called Homework7.c

ALLOCATING MEMORY FOR AN ARRAY OF STRUCTURE POINTERS

—»| Memory for some structure

Memory for some structure
—>| Memory for some structure

?el1

copyright © 2020 www.onlineprogramminglessons.com For student use only
116

Allocate an array to hold 3 persons Structures pointers
Person** pap = (Person**) malloc(sizeof (Person*)*3);

You need to allocate memory for the array of Person structure pointers
pap[0] = (Person*) malloc(sizeof (Person));

pap[1] = (Person*) malloc(sizeof (Person));
pap[2] = (Person*) malloc(sizeof (Person));

——— | pap[0] —— | Memory for Person structure

pap

pap[l] —— | Memory for Person structure
pap[2] | Memory for Person structure

When you allocate memory for a structure you must assign values to each
structure in the array.

You use square brackets[] and a index to specify which structure you want to
access,.

To assign values to the first structure in the persons array you would to this:

strcpy(pap[0]->name,”tom”)
pa[0]->age = 24;

todo

Allocate memory for array to hold 3 persons structure pointers and initialize with
3 persons. In a loop using a printf function print out the person details.

Allocate an array to hold 3 students structure pointers

Student** sap = (Student**) malloc(sizeof (Student*)*3);

copyright © 2020 www.onlineprogramminglessons.com For student use only
117

You need to allocate memory for the array of Student structure pointers

sap[0] = (Student*) malloc(sizeof (Student));
sap[1] = (Student *) malloc(sizeof (Student));
sap[2] = (Student *) malloc(sizeof (Student));

sap > sap[0] ———| Memory for Student structure

sap[l] ———| Memory for Student structure
sap[2] | Memory for Student structure

When you allocate memory for a structure you must assign values to each
structure in the array.

You use square brackets [] and a index to specify which structure you want to
access,.

To assign values to the first structure in an array Student structures you would do
this:

strcpy(sap[0]->p.name,”tom”);

sap[0]->p.age = 24;

strcpy(sap[0]->idnum,”S1234"”);

We must use the arrow -> operator to access the student structure, since the
array is storing structure pointers.

todo

Allocate memory for array to hold 3 students structure pointers and initialize
with 3 students. In a loop using a print function print out the student detail.

copyright © 2020 www.onlineprogramminglessons.com For student use only
118

LESSON 7 HOMEWORK Part 5

Question 9

Allocate an Array of Structures Pointers using your Profession structure from
Lesson3 and fill in some values. In a loop print out the professions in the
profession array using the printProfession function from also from Lesson3. Put all
your main function in a file called Homework?7.c

Question 10

Make an Array of Structures Pointers using your JobDescription Structure from
Lesson3. In aloop using a printJobDescription function print out the job
description details. Put all your main function in a file called Homework?7.c

Converting memory from one data type to another using a Pointer

There are situations when you want to uses a different data type from an existing
data type. Data types are just bits of ones and zeros grouped together in bytes
known as hexadecimal numbers. 1 byte is made up of 8 bits. It all depends in how
you interpret the bits to arrive at the data type you want. Each data type
interprets the data bits differently.

You may want to access individual bytes of the int data type separately. int
usually is 32 bits made up of 4 bytes.

32 bits int

Byte O Bytel Byte2 Byte3

To access a int memory as a 4 byte array we first make a int variable called x and
assigned hexadecimal 12345678 to it. (Ox means hexadecimal)

int x = 0x12345678;
printf("%04x\n", x);

copyright © 2020 www.onlineprogramminglessons.com For student use only
119

We then assign a char pointer to it, we use the & to get the address of x and you
need to type cast the int * data type to a char *

char* p =(char*)&x;
We now can read individual bytes from the in memory location

// reading bytes

int bl = p[0];
int b2 = p[1];
intb3 = p[Z]' 12345678
int b4 = p[3];

printf("%0x %0x %0x %0x\n", b1,b2,b3,b4);

We can also change individual bytes to new values:

// writing bytes

p[0] = 0x11; 11223344
p[1] = 0x22;
p[2] = 0x33;
p[3] = 0x44;

printf("%0x %0x %0x %0x\n", p[0], p[1], p[2], p[3]);
printf("%04x\n", x);

Do not confuse type casting a pointer to type casting a non pointer variable,.
When you type cast a pointer you are forcing the pointer type when you type
casting a non variable you are type casting a value data type not an address data

type.
void* is use to represent a memory address with no assigned data type.

You can also allocate a block of memory and then convert it to the data type you
want later.

void* px = (void*)malloc(100);

copyright © 2020 www.onlineprogramminglessons.com For student use only
120

Copying blocks of memory

You may have a void* block of memory of unknown data type, so you need to
copy byte by byte.

We can copy using a pointer or using an index.
We first copy using a pointer.

// allocate memory block of 100 bytes
void* m = malloc(100);

// type cast to a char*
char* p = (char*)m;

// initialize with sequential values

inti=0;
for (i=0;i<100;i++)
{
o) =i;
}

Note: we use *(p++) which assigns the value to the memory location pointed to
by p the address of p is increment. The address increments in bytes to the size of
the data type. For bytes it is 1 for ints it may be 4.

Which is quite different from (*p)++
(*p)++ means to increment the value pointed to by p by 1

// copy to another memory location
We first allocate memory using malloc.

// allocate memory block of 100 bytes
void* m2 = malloc(100);

copyright © 2020 www.onlineprogramminglessons.com For student use only
121

// point to and type cast to first and second block of memory
char* p1 = (char*)m;
char* p2 = (char*)m2;

// copy block using pointers
for (int i=0;i<100;i++)
{
*(p2++) = *(pl++);
}

// read back memory from second memory block
char* p2 =(char*)mz2;
inti=0;
for (i=0;i<100;i++)
{
printf("%d ",*(p2++));
}

printf("\n”);

Copy block of memory not using a pointer and using index | instead

We first typecast m to a char*
(char*)m

We now use the square brackets and the i used to select each individual bytes
((char*)m)|[i]

inti=0;
for (int i=0;i<100;i++)
{
((char*)m2)[i] = ((char*)m)[i];
}

We can also use the * operator as well.
We first typecast m to a char*

(char*)m

copyright © 2020 www.onlineprogramminglessons.com For student use only
122

We now use and the i to select each individual byte as an offset to the start of the
memory location

((char *)m)+i
We then use the * operator to get the byte value
*((char *)m)+i)

The round brackets are very important. The inner round brackets are used to
type cast m to a char* so that the i index can act as a offset to the memory
location m. The outer round bracers are used for the star * to access the value at
the selected byte.

inti=0;
for (i=0;i<100;i++)
{
(((char)m2)+i) = *(((char*)m)+i);

}

// read back memory from second memory block
char* p2 =(char*)m2;
inti=0;
for (i=0;i<100;i++)
{
printf("%d ",*(p2++));

}
printf("\n”);

copyright © 2020 www.onlineprogramminglessons.com For student use only
123

Lesson 7 HOMEWORK part 6
Question 11

Make a float variable and initialize with any value you like. Pass the float variable
to the parameter of a void* function that will return an int. Type cast the input
parameter as an int* and return the value of the int, back to the main into
another int variable. In the main type cast the variable to a float* and print out
the value. Put all your main function in a file called Homework7.c

Question 12

Make a unsigned int and assign 0x12345678 to it. Reverse the int to 0x87654321
using char pointers. Print the int before and after reverse. Put all your main
function in a file called Homework7.c

copyright © 2020 www.onlineprogramminglessons.com For student use only
124

LESSON 8 PASSING ARRAYS, STRUCTURES TO FUNCTIONS

Passing arrays to functions

Arrays are passed to a function by address. You can use the square operator [] or
star * operator. They both indicate passing an array by address. When you are
using the *operator them you can treat the array parameter as a pointer.

We can make a printArray function to demonstrate passing an array to a function
by address and print out the values. We also include an additional parameter n to
indicate the length of the array.

// pass array using [] operator
void printArray(int a[], int n)

{
inti=0;
for(i =0;i < n;i++)
pfintf(“%d "alil);
} printf("\gl");

// pass array using * operator
void printArrayPtr(int* a, int n)

{
inti=0;
for(i =0;i < n;i++)
{
printf("%d ",*a);
a++;
}
printf("\n");
}

copyright © 2020 www.onlineprogramminglessons.com For student use only
125

You would pass an array to the printArray functions as follows:

int a[] ={1,2,3,4,5};

printArray(a, 5); 12345

printArrayPtr(a, 5); 12345

todo

Passing a structure to a function by pointer

Passing structures to functions by pointer address is more efficient then passing a
structure by value. When you pass a structure by value then all the memory or
the structure is sent to the functions. When you pass a structure by pointer then
the address of the structure is sent to the function, that is more efficient. When
you pass a structure by value to a function, you cannot change the values of the
outside values of the structure inside the function, since you are actually passing
a copy of the structure values. When you pass a structure by pointer to a function
then you can change the outside values of the structure inside the function,
because you are passing the address of the structure to the function. You can
change the values of the variables in the structure because you have the address
of the structure variables.

Where the Person struct is:

typedef struct person_type

{
char name[MAX_CHARS];

int age;
} Person;

Note we are using typedef structure because it is more convenient.

copyright © 2020 www.onlineprogramminglessons.com For student use only
126

We can change the printPerson function from previous lesson to accept a person
structure pointer instead.

void printPerson(struct Person p)

{

printf("Nice to meet you %s\n",p.name);
printf("%s You are %d age years old\n", p.name, p.age);

}

bur person structure parameter now will have a star * to indicate pass by

pointer.

To access values in a pointer structure variable you use the arrow operator ->
structure_variable_name -> variable_name

To access name by Person pointer p:
p->name

To access age by Person pointer p:
p->age

Here is the print person function using a person structure pointer parameter.
void printPersonPtr(Person* p)

{

printf("Nice to meet you %s\n",p->name);
printf("%s You are %d age years old\n", p->name, p->age);

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
127

To call the printPerson function we supply the address of the structure using the
& operator.

Person p = {"Tom",24};
printPersonPtr(&p);

todo:

Make a printStudentPtr function to accept Student pointer to print out details of
a Student. Update the printStudent function to receive a Student structure by
pointer. Use the printStudentPtr function to print out a student.

Here is the Student structure as a typedef.

typedef struct student_type
{

Person p;

char idnum[MAX_CHARS];
}Student;

Where the Person struct is:

typedef struct person_type
{

char name[MAX_CHARS];
int age;

} Person;

Passing Arrays of Structures to Functions

Arrays of structures are passed to a function by address. You can use the square
operator [] or star * operator. They both indicate passing an array to structures by
address. When you are using the *operator them you can treat the array
parameter as a pointer. We can make a printPersons function to demonstrate
passing an array of structures to a function by address and print out the values.
We also include an additional parameter n to indicate the length of the array. Our
printPersons function calls the printPersonPtr function rather than the

copyright © 2020 www.onlineprogramminglessons.com For student use only
128

printPerson function to print out details of the person. The printPersonPtr
function is more efficient.

// pass array of structure using [] operator
void printPersons(Person persons[], int n)

{
inti=0;
for(i =0;i < n;i++)
{
printPersonPtr(&personsli]);
}
printf("\n");
}

// pass array of structures using * operator
void printPersonsPtr(Person* persons, int n)

{

inti=0;

for(i =0;i < n;i++)

{

printPersonPtr(persons);
persons++;

}
printf("\n");

You would pass an array of structures to the printPersons functions as follows:

struct Person persons[] = {{"Tom",24},{"Mary",20},{"Sue",28}};
printPersons(persons, 3);

copyright © 2020 www.onlineprogramminglessons.com For student use only
129

Nice to meet you Tom
Tom You are 24 age years old

Nice to meet you Mary
Mary You are 20 age years old

Nice to meet you Sue
Sue You are 28 age years old

Notice in the printPersons function and the printPersonsPtr function we have
called the printPersonPtr function rather than the printPerson function

In this situation you need to pass the person structure as a pointer address like
this, the & means address of

printPersonPtr(&personslil);
It is more efficient to pass by pointer.
todo
Make an array of 3 students.
Make an printStudents function that receives a student array and number of

students in the array. And print out the students in the array using the
printStudentPtr function.

Make an printStudentsPtr function that receives a student array as a pointer and
number of students in the array. PRINT out the students in the array using the
printStudentPtr function.

copyright © 2020 www.onlineprogramminglessons.com For student use only
130

Homework part A
Questionl

Make an Array of Structures using your Profession structure from Lesson3.Make
a printProfessions function and a printProfessionsPtr to print out the persons
in the person array. Make a printProfessionPtr function to print out the
Profession details. Put all your main function in a file called Homework8.c

Question2

Make an Array of Structures using your JobDescription Structure from Lesson3.
Make a printlobDescriptions function and a printJobDescriptionsPtr function to
print out the job description in the job description array. Make a
printlobDescriptionPtr function to print out the JobDescription details

Put all your main function in a file called Homework8.c

Passing an Array of Structure Pointers to a Function

Recapping:

An Array of Structure Pointers contain an array of pointers to a function, each
element contains the memory address of some structure

— | Memory for some structure

Memory for some structure

,TT

—>| Memory for some structure

Allocate an array to hold 3 persons Structures pointers

Person** pap = (Person**) malloc(sizeof (Person*)*3);

copyright © 2020 www.onlineprogramminglessons.com For student use only
131

You would then initialize the arrays with Person structure memory addresses.
You can do the easy way like this:

Person p1 = {"tom",24};
Person p2 = {"sue",22};
Person p3 = {"bill",26};

pap[0] = &p1;
pap[1] = &p2;
pap[2] = &p3;

Or you can allocate memory for each structure and assign values to them the hard
way like this:

pap[0] = (Person*) malloc(sizeof (Person*));
pap[1] = (Person*) malloc(sizeof (Person*));
pap[2] = (Person*) malloc(sizeof (Person*));
strcpy(pap[0]->name,”tom”)

pa[0]->age = 24;

strcpy(pap[1]->name,”Sue”)
pa[1]->age = 20;

strcpy(pap[2]->name,”Mary”)
pa[2]->age = 26;

We now have to make a function to print out the array of structure
pointers called printPersonsPtrPtr.

copyright © 2020 www.onlineprogramminglessons.com For student use only
132

using * []

// pass array of structures using p*[] operator
void printPersonsPtrPtr(Person* persons[], int n)

{
inti=0;
for(i =0;i < n;i++)
{
printPersonPtr(personsli]);
}
printf("\n");
}
Or using **

// pass array of structures using ** operator
void printPersonsPtrPtrPtr(Person** persons, int n)

{
inti=0;
for(i =0;i < n;i++)

{
printPersonPtr(*persons);
persons++;

}

printf("\n");
}

Again we will use our printPerson function that receives a pointes

void printPersonPtr(struct Person* p)

{

printf("Nice to meet you %s\n",p->name);
printf("%s You are %d age years old\n", p->name, p->age);

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
133

When we call the printPersonPtr function we must only give them a persons|i]
printPersonPtr(personsli]);

because persons[i] is already a pointer.

To do

Type in the above c code int your laesson8.c file and run it using both versions of
print Persons pointer functions

printPersonsPtrPtr(pap,3);
printPersonsPtrPtrPtr(pap,3);

You will get something like this: Nice to meet you Tom
Tom You are 24 age years old

Nice to meet you Mary
Mary You are 20 age years old

Nice to meet you Sue
Sue You are 28 age years old

We need now need to do the same for the Student structure
Here is the Student structure as a typedef.

typedef struct student_type
{

Person p;

char idnum[MAX_CHARS];
}Student;

copyright © 2020 www.onlineprogramminglessons.com For student use only
134

Where the Person struct is:
typedef struct person_type

{
char name[MAX_CHARS];

int age;
} Person;
You should do this in steps
(1) Allocate an array to hold 3 students structure pointers
Student** sap = (Student**) malloc(sizeof (Student*)*3);
(2) Initialize the arrays with Student structure memory addresses.
Student s1 = {{"Tom",24}, "S1234" };
Student s2 = {{"Mary",20}, "S5678" };
Student s3 = {{"{Sue",28}, "S1111"};
sap[0] = &s1;
sap[1] = &s2;
sap[2] = &s3;
(3) todo

make the print students array pointer functions

void printStudentsPtrPtr(Student* students[], int n)
void printStudentsPtrPtrPtrStudent™* students, int n)

(4) run the program

copyright © 2020 www.onlineprogramminglessons.com For student use only
135

You should get something like this:

Nice to meet you Tom

Tom You are 24 age years old
Your Student id is S1234

Nice to meet you Mary

Mary You are 20 age years old
Your Student id is S5678

Nice to meet you {Sue

{Sue You are 28 age years old
Your Student id is S1111

Homework part B
Question 3

Make an Array of Structures Pointers using your Profession structure from
Lesson3. In a loop print out the persons in the person array. Make a
printProfessionPtrPtr and printProfessionPtrPtrPtr function to print out the
Profession details. Put all your main function in a file called Homework8.c

Question 4

Make an Array of Structures of Structures using your JobDescription Structure
from Lesson3. In a loop print out the job description in the job description array.
Make a printJobDescriptionPtrPtr and printJobDescriptionPtrPtrPtr functions
to print out the JobDescription details. Put all your main function in a file called
Homework8.c

Question5

In the Student structure change the Person structure to a punter. When you
initialize the student structure you need to allocate memory for it and assign
values to it, You will also need to change tithe printStudent functions just to
accept a pointer for the person structure.

copyright © 2020 www.onlineprogramminglessons.com For student use only
136

LESSON 9 FUNCTION POINTERS
A function pointer is a pointer to a function. Function pointers let you execute a
function from calling it from the function pointer. Function pointers can be
standalone, stored in an array or structure or passed to another function. They
make your programming more convenient and optimal. Function pointers may be
a little difficult to understand and use.
We first make a simple function that will print out the word “hello”.

void printHello()

{

printf("Hello\n");

We then declare a function pointer that will point to the hello function.

void (*f)();
void is the return type (*f) is the function pointer () is the parameter list of the
called function. The parameter list receives argument values that are passed to

the function when it executes.

The function pointer return type and parameter list must match the function you
want to point to.

Next we assign the printHello function to the function pointer.
f = printHello;

The function pointer receives starting address where the code for the printHello
function is stored.

We can now execute our function from the function pointer.

(*)(); Hello

copyright © 2020 www.onlineprogramminglessons.com For student use only
137

We are calling the printHello function from the function pointer using (*f) and the
argument list(). We need to put the *f in round brackets (*f) to avoid confusion.

This is very similar to calling a regular function by its name: f();
Except we use round brackets with a * around the function name: (*f())

The only difference is that the function pointer requires a star * to extract the
function code from the pointer just like a * in a regular pointer is used to extract
the value from the pointer.

intx=5;
int* p = &x >
printf(“%d\n”,*p);

Without the * proceeding the pointer it will print out the address of the variable
not the value it contains.

intx=>5;
printf(“%d\n”,p);
pointer some variable in memory at some address
»| Value stored in memory for the
P variable

The same thing with the function pointer, the function pointer contains the
address of the memory where the code for the function is stored. The * means to
start executing the code instructions at that address.

Function code instructions

-h
®
y

function pointer some function in memory at some address

copyright © 2020 www.onlineprogramminglessons.com For student use only
138

Here is the complete program:
#include <stdio.h>
// program to call a function pointer

// function to print out hello
void printHello()

{
printf("hello\n");

}

int main()

{

// declare a function pointer
void (*f)();

// assign a function to function pointer
f = printHello;

// execute a function using a function pointer
printf(" execute a function using a function pointer\n");

(*6)();

return 0;

}

Todo

Type in or copy past the following program and run it, then change the message
in the printHello function

copyright © 2020 www.onlineprogramminglessons.com For student use only
139

passing arguments to a function called by a function pointer

We first make a function to receive a message, you will need to put the function
at the top of your program.

void printMsg(char* msg)

{
printf("%s\n",msg);

}

The next thing we need to do is make a function pointer with the same signature
as the printMsg function.

void (*f2)(char* msg);
The function pointer return type and parameter list must match the function you
are pointing to. In our case the parameter list receives a char* the message we
want to print out and returns no value.
We now assign the printMsg function to the function pointer f2

f2 = printMsg;

We call the printMsg function using the f2 function pointer and pass it the char
string "happy" to it, which it prints out on the computer screen.

(*f2)("Happy");
Happy

copyright © 2020 www.onlineprogramminglessons.com For student use only
140

Here is the complete program:
#include <stdio.h>
// program to call a function pointer that receives a parameter

// function to print a message
void printMsg(char* msg)

{
printf("%s\n",msg);

}

int main()

{

// declare a function pointer
void (*f)(char* msg);

// assign a function to function pointer
f = printMsg;

// execute a function using a function pointer
printf(" execute a function using a function pointer\n");

(*f)("Happy”);

Happy
return 0;

}

Todo

Type in or copy past the following program and run it, then change the message
in the passed to the printMsg function by way of the function pointer.

copyright © 2020 www.onlineprogramminglessons.com For student use only
141

passing arguments to a function and receiving values from a function
called by a function pointer

We first make a function that will receive 2 int values that will add them together
and return the results. Remember you need to put this function at the top of your
program to avoid compile errors.

int add(int a, int b)
{

returna +b;

}

The next thing we make a function pointer f3 with the same signature as the add
function.

int (*f3)(int a, int b);

We then assign the add function to the f3 function pointer.
f3 = add;

We now execute the function, passing 3 and 4 as arguments to it.
int x = (*3)(3,4);

The function adds together the two values 3 and 4 and returns the result to the
variable x that we then print out the value on the computer screen.

printf("%d\n",x); ’

copyright © 2020 www.onlineprogramminglessons.com For student use only
142

Here is the complete program:
#include <stdio.h>

// program to call a function pointer that receives a parameter and returns a
value

// function add 2 values and return the result
int add(int a, int b)

{

returna+b;

}

int main()

{

// declare a function pointer
int (*f)(int a, int b);

// assign a function to function pointer
f = add;

// execute a function using a function pointer
int x = (*)(3,4);

print(“\d\n”,x); 7

return 0;

}

Todo

Type in or copy past the following program and run it, then change the values
passed to the add function by way of the function pointer.

copyright © 2020 www.onlineprogramminglessons.com For student use only
143

array of function pointers

The next thing we want to store many function pointers in an array so we can
execute them all using a loop.

We make the following additional sub, mul and divide arithmetic functions that
we put at the top of our program file.

int sub(int a, int b)
{

returna-b;

}

int mul(int a, int b)

{

returna * b;

}
int divide(int a, int b)

{

returna / b;

}

We then make an array to hold the function pointers.
int (*f4[4])(int a, int b) = {add,sub,mul,divide};
It is same as making an array of ints
int a[4] ={1,2,3,4};

except we use a function pointer (*f4[4]) instead

copyright © 2020 www.onlineprogramminglessons.com For student use only
144

In a loop we execute all the arithmetic functions and print out the result values.

inti=0;

for(i=0;i<4;i++) 223

{ 15
x = (*fa[i])(5,3); 1
printf("%d\n",x);

}

The correct function is called and executed using the i index and the array
function pointer (*f4 [i]) and argument values (5,3).

Here is the complete program

#include <stdio.h>

// program to call a function pointer that receives a parameter
// and returns a value

int add(int a, int b)

{

returna +b;

}

int sub(int a, int b)
{

returna-b;

}

int mul(int a, int b)

{

returna * b;

}

int divide(int a, int b)
{

returna/ b;

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
145

int main()

{

// declare an array of function pointer’s
int (*f4[4])(int a, int b) = {add,sub,mul,divide};

// execute each function in the array using the function pointer

inti=0;
for(i=0;i<4;i++)
{
x = (*f[i])(5,3); 8
printf("%d\n",x); is
} 1
return 0;
}

Todo

Type in or copy past the following program and run it, then change the values
passed to the arithmetic function by way of the function pointer.

Allocating memory for an array of function pointers

We first make a variable to store an array of function pointers to function
pointers.

int (**f5)(int a, int b) ;

We then allocated memory for the array of function pointers using malloc
and assign to our function pointer array variable.

f5 = malloc(sizeof((*f5))*4);
This is the same thing as allocating memory for an array

int* pa = (int*)malloc(sizeof(int)*4)

copyright © 2020 www.onlineprogramminglessons.com For student use only
146

except we use a function pointer (*f5) we need the extra * because it is a pointer
to a pointer (**f5)

We then assigned the arithmetic functions to the allocated array.

f5[0] = add;
f5[1] = sub;
f5[2] = mul;

f5[3] = divide;
We then execute the arithmetic functions from the array of function pointers

for(i=0;i<4;i++) 8
{ 2
x = (*f5[i])(5,3); -

printf("%d\n",x);

}

Here is the complete program

#include <stdio.h>

// program to call a function pointer that receives a parameter and
returns a value
int add(int a, int b)

{

returna +b;

}

int sub(int a, int b)
{

returna-b;

}

int mul(int a, int b)

{

returna * b;

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
147

int divide(int a, int b)
{

returna / b;

}

int main()

{

// declare an array of function pointer’s
int (**f)(int a, int b) ;

// allocate memory for the array of function pointers
f = malloc(sizeof((*f))*4);

// assigned the arithmetic functions to the allocated array.

f[0] = add;
f[1] = sub;
f[2] = mul;

f[3] = divide;

// execute each function in the array using the function pointer
inti=0;
for(i=0;i<4;i++)
{
x = (*f[i])(5,3);
printf("%d\n",x);
}

return 0;

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
148

Using typedef to allocate memory for an array of function pointers (optional)

Typdef is a little easier to do but may be more difficult to understand. Typedef
allows you to define your own data type from known data types like int.

typedef int(*funptr)(int, int);

Using typdef our data type is now funptr representing the function pointer
signature of our arithmetic functions.

We now allocate an array of funptr’s using malloc
funptr* f6 = malloc(sizeof(funptr)*4);

We now assign the arithmetic functions to our arrays of function pointers.

fe[0] = add;
f6[1] = sub;
f6[2] = mul;
f6[3] = divide

we now execute all the arithmetic functions from the allocated array of function
pointers.

for(i=0;i<4;i++) 8
{ 2
x = (*#6[i])(5,3); O
printf("%d\n",x);

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
149

Passing a function pointer to another function

We first make a function called calculate that will receive a function pointer. We
will pass one of our arithmetic functions to the calculate function

int add(int a, int b)
{

returna +b;

}

The calculate function will call the received function pointer f with the received
parameter values a and b.

Here is the calculate function, remember to put it at the top of your program to
avoid compile errors.
void calculate(int(*f)(int a, int b),int a, int b)
{
int x = (*f)(a,b);
printf("%d\n",x);
}

The calculate function receives a function pointer
int(*f)(int a, int b)
having the same signature as one of the arithmetic functions like
int add(int a, int b).
The calculate function will call the add function using the function pointer and

passes parameters a and b. The calculate function will then print out the
calculated value ii received from the arithmetic function.

copyright © 2020 www.onlineprogramminglessons.com For student use only
150

Here is an example program:
#include <stdio.h>

// function add to add 2 numbers aand b
int add(int a, int b)
{

returna +b;

}

// declare function calculate that has a function pointer f as a parameter
// function pointer f receives the arguments a and b
// which are the parameters a and b in the calculate method
void calculate(int(*f)(int a, int b),int a, int b)
{
int x = (*f)(a,b);
printf("%d\n",x);
}

int main()

{

// declare and initialize variables a and b
inta=5;
intb=3;

// call function calculate and pass the add function to it

// calculate function receives the add function

// and the variables a and b as parameters

// the function calculate calls the add function to add the variables
// the add function adds the variables a and b together

// and returns the answer back to the calculate function5+3 =8

// the calculate function receives the result 8 and prints to the screen

calculate(add, a, b);

return 0;

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
151

Todo

Type in or copy past the following program and run it, then change the values
passed to the calculate function by way of the function pointer.

Passing an array of function pointers to another function
We can also make a function to receive an array of function pointers.

void do_calculations(int(*f[])(int a, int b), int a, int b)

{

inti=0;

for(i=0;i<4;i++)
{
calculate(f[i],a,b);
}

The do_calculations function receives an array of function pointers. Thenin a
loop it calls the calculate function passing a function point and values a and b to
it. Using the pointer array and passed values a and b (5,3) it prints out this:

15

Here is an example program:
#include <stdio.h>

int add(int a, int b)
{

returna +b;

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
152

int sub(int a, int b)
{

returna-b;

}

int mul(int a, int b)

{

returna * b;

}

int divide(int a, int b)
{

returna / b;

}

// receive an array of function pointers
void do_calculations(int(*f[])(int a, int b), int a, int b)

{

inti=0;
for(i=0;i<4;i++) 8
(2
. 15
calculate(f[i],a,b); 1
}
}
int main()
{

// declare an array of function pointer’s
int (*f[4])(int a, int b) = {add,sub,mul,divide};

// declare and initialize variables a and b
inta=>5;
intb=3;

copyright © 2020 www.onlineprogramminglessons.com For student use only
153

do_calculations (f, a, b); 2
2

return 0; 15

} 1

Todo
Try the above program, try different values of a and b.
Make a do_calculations function that get a pointer to a pointer like this:

void do_calculations_ptr(int(**f)(int a, int b), int a, int b)

{

inti=0;

for(i=0;i<4;i++)
{
calculate(f[i],a,b);

}

Use the do_calculation_ptr function in the above program. Try with different
values of a and b. The operation should be the same because (**f) and (f[])
usually mean the same thing inmost C compilers.

Next use make a allocated array of function pointer of arithmetic functions, and
pass to the do_calculation_ptr function.
Storing a function pointer in a structure.

We can make a structure to hold a function pointer. We will use our person
structure from before.

copyright © 2020 www.onlineprogramminglessons.com For student use only
154

// structure to hold persons name, age and print function
typedef struct person_type

{

char name[81];

int age;

void (*printPerson)(char* name,int age);

}Person;

We can also use one of our print person function from previous lessons

// function to print out person info
void printPerson(char* name, int age)

{

printf("your name is: %s, you are %d years old\n",name, age);

}

In our main function we make the person structure

// make the person structure
Person p = {"tom",24,printPerson};

Then we print out the person using the function pointer stored in the person
structure like this:

// print person info
p.printPerson(p.name, p.age);

Here is the complete program:
#include <stdio.h>

// structure to hold person’s name, age and print function
{

char name[81];

int age;

void (*printPerson)(char* name,int age);

}Person;

copyright © 2020 www.onlineprogramminglessons.com For student use only
155

// function to print out person info
void printPerson(char* name, int age)

{

printf("your name is: %s, you are %d years old\n",name, age);

}

int main()

{

//We make the person structure
Person p = {"tom",24,printPerson};

// print out the person using the function pointer
// stored in the person structure
p.printPerson(p.name, p.age);

return O;

}

Todo

Type in or copy paste the above program and run it, and try different values.
The allocate a person structure and rerun the program. What did you have to do
to make it run?

Lesson 9 Homework
Make a message from an array of words. Make a print message function to

receive the array of words message. Make functions lower, upper, reverse_letters
and reverse_words.

Function Description

Lower Make all words lower case
Upper Make all words upper case
Reverse_letters Reverse all letters
Reverse_words Reverse all letters in each word

copyright © 2020 www.onlineprogramminglessons.com For student use only
156

Note: These functions change the message words in place, and does no printing.

Put functions lower, upper, reverse_letters and reverse words, in an array of
function pointers. Call the print message function with the array of function
pointers and the array of words. Inside the print_message function call each
function from the array of function pointers in a loop and print out the results.
Call your homework file homework9.c

copyright © 2020 www.onlineprogramminglessons.com For student use only
157

LESSON 10 FILE ACCESS

Files allow you to store data for later retrieval. Files are opened, read, written
and closed using a file pointer. For this lesson make a new C source file called
Lesson10.c and in the main function type in the following programming
statements for the following File example programs.

FILE* fp;
Write character to a file

We use the fputc function to write characters one by one sequentially to a file.
We first open the file "test.txt" for write with the fopen function using the ","w"
write specifier. Then we check if the file is open and the write characters to the
file. You must close the file when you are finished writing characters. If you do not
close the file, then the contents of the file will be lost.

// open file
FILE* fp = fopen("test.txt","w");

// check if file opened
if (fp !=0)
{
// report cannot open file
printf("cannot open file: test.txt for read\n");
exit(1);

// make characters to write to file
char s[] = "Hello";

// write characters to file
int i=0;
char ch;

copyright © 2020 www.onlineprogramminglessons.com For student use only
158

for (i = 0; i < strlen(s); i++)
{
char ch = s[i]; // get char from string
fputc(ch,fp); // write char to file

}

fputc('\n',fp); // write end of line char to file
fclose(fp); // close file

Read characters from a file

The fgetc function is used to read characters from a file. Each char from the file is
read as an int so that the end of file EOF indicator -1 can be acknowledged.

We first open the file "test.txt" for read with the fopen function using the read
"r" specifier. Then we check if the file is open and read character from the file.
You must close the file when you are finished reading characters. If you do not
close the file, then the file may not be able to be used by somebody else.

// open file
FILE* fp = fopen("test.txt","r");

// check if file opened

if (fp !'=0)

{
// report cannot open file
printf("cannot open file: test.txt for write\n");
exit(1);

}

// get first char in file
int ch = fgetc(fp)

copyright © 2020 www.onlineprogramminglessons.com For student use only
159

// loop to end of file
while (ch !=-1)
{
putch(ch); // print out char to screen
ch = fgetc(fp); // get next char
}

fin.close(); // close file

}

write lines to a file

The fputs function is also used to write lines one by one sequentially to a file.
fputs automatically inert the newline character \n at the end of the line for you.
We first open the file "test.txt" for write with the fopen function using the write
"w" specifier. Then we check if the file is open and the write characters to the
file. You must close the file when you are finished writing characters. If you do not
close the file, then the contents of the file will be lost.

// open file
FILE* fp = fopen("test.txt","w");

// check if file opened

if (fp !'=0)
{
// report cannot open file
printf("cannot open file: test.txt");

exit(1);

}
// write lines to file Hello
fputs("Hello",fp); there
fputs("there",fp);
fclose(fp);

copyright © 2020 www.onlineprogramminglessons.com For student use only
160

Read line by line from a file

To read lines from a file line by line we use the fgets function that takes in a
character string, length of character string and a file pointer. This function return
0 if the end of file is encountered.

We first open the file "test.txt" for read with the fopen function using the "r"
specifier. Then we check if the file is open and read character from the file. You
must close the file when you are finished reading characters. If you do not close
the file, then the file may not be able to be used by somebody else.

We keep reading lines to the end of file is found. When the fgets function returns
0 the end of file has been reached. Some Unix compilers work different from
Windows compilers. The fgets function may retain the end of line terminator \n.
We can remove the ‘\n’ character by using the strstr function that you were
introduced to in the previous lessons.

// read lines from a file

// open file
FILE* fp = fopen("input.txt","r");

// check if file opened

if (fp !'=0)
{
// report cannot open file
printf("cannot open file: test.txt");
exit(1);
}

char line[256];
char* ptr;

copyright © 2020 www.onlineprogramminglessons.com For student use only
161

// loop to end of file
while (fgets(line,256,fp))
{
// remove \n
ptr = strstr(line, "\n");
*ptr = 0;
puts (line); // print out line
}

fclose(fp); // close file
}

Hello
there

Append line’s to end of file

The append "a" specifier is used to direct the fputs function to write lines to the
end of the file one by one sequentially to a file. We first open the file "test.txt"
for append write with the fopen function using the append "a" specifier. Then
we check if the file is open and the write lines to the file starting to the end of the
file. You must close the file when you are finished writing characters. If you do not
close the file, then the contents of the file will be lost.

// append lines to end of file

// open file
FILE* fp = fopen("test.txt","a");

// check if file opened

if (fp !'=0)
{
// report cannot open file
printf("cannot open file: test.txt");
exit(1);
}

copyright © 2020 www.onlineprogramminglessons.com For student use only
162

// append lines to file
fputs("see you later",fp);
fputs("goodbye",fp);

fclose(fp);

Hello
To do: there

see you later
Printout test.txt file goodbye

write to a csv file (comma separated values)

The fprint function is also used to write columns to a file separated by commas
We first open the file "test.csv" for write with the fopen function using the write
"w" specifier. Then we check if the file is open and the write characters to the
file. You must close the file when you are finished writing characters. If you do not
close the file, then the contents of the file will be lost.

// write columns separated by commas to a file

// open file

FILE* fp = fopen("test.csv","w");
// check if file opened

if (fp !=0)
{
// report cannot open file
printf("cannot open file: test.txt");
exit(1);
}

copyright © 2020 www.onlineprogramminglessons.com For student use only
163

// write lines to file
fprintf(fp,"one,two,three\n");
fprintf(fp,"five,six,seven\n");

fclose(fp);

one, two, three
four, five, six

Read a csv file.

A csv file is a file where data are stored row by row in columns separated by
commas. The strtok function is used to separate the words between the commas.

File: test.csv

one, two, three
four, five, six

// read lines from a csv file

// open file
FILE* fp = fopen("input.csv","r");

// check if file opened

if (fp !'=0)
{
// report cannot open file
printf("cannot open file: test.txt");
exit(1);
}

char line[256];
char* ptr;

copyright © 2020 www.onlineprogramminglessons.com For student use only
164

// loop to end of file
while (fgets(line,256,fp))

{
ptr = strtok(line, " ,\n\r");

while(ptr != NULL)

{
printf("%s\n",ptr); // print out word

ptr = strtok(NULL, " ,\n\r");
}

fclose(fp); // close file
}

Output token words:

one
two
three
four
five
six

Writing and Reading Records to and from a file

Records are the data variable values defined in a structure written to a binary
file. A binary file differs from a text file since it stores binary values where as a
text file only contains printable values. The values in the binary and text files may
be the same it is just the way they are interpreted. For example hex value 10 is
interpreted as a new line in a text file but in a binary file it is just the value 10.

To write to a binary file you need some data record. A record can be a structure.
The data variables declared in a structure must be fixed lengths, therefore the
string char* pointer cannot be used. For our example we will use the Book
structure as follows:

copyright © 2020 www.onlineprogramminglessons.com For student use only
165

typedef struct

{
char ISBN[20];

char title[50];
double price;

} Book;

// print a book
void printBook(Book& b)

{
printf("%s %s $%.2f",b.ISBN,b.title,b.price);

}

The first thing we need to do is write some book records to a file. Each record is
the data variable values defined in the Book class.

We first make a book structure.
Book book1={"123456789","Happy Days",23.56};
Then write the book record to the file using the fwrite method. The sizeof
method calculates the total number of data bytes in the Book structure., the 1
just indicated we are writing just 1 data record.
fwrite((char*)&book1,sizeof(Book),1,fp);
When we open the file in binary write mode. "wb"

// write records to a file

// open file
FILE* fp = fopen("records.bin","wb");

copyright © 2020 www.onlineprogramminglessons.com For student use only
166

// check if file opened

if (fp==NULL)

{
// report cannot open file
Printf("cannot open file: records.bin\n";
exit(1);

}
// write book to file
Book book1("123456789","Happy Days",23.56);
fwrite((char*)&book1,sizeof(Book),1,fp);

Book book2("876543245","Wizard of 0z",19.96);
fwrite((char*)&book2,sizeof(Book),fp);
fclose(fp);

Once we write some book records to the file we can read back the records and
display them on the console screen. We use the fread function to read book
records stored previously on the file. We open file with the mode "rb" read
binary.

// read from binary file

// open file
fp = fopen("records.bin","rb");

// check if file opened

if (fp==NULL)

{
// report cannot open file
printf("cannot open file: records.bin\n";
exit(1);

}

// read records from a file
Book book;

copyright © 2020 www.onlineprogramminglessons.com For student use only
167

while(fread((char*)&book,sizeof(Book),1,fp))

{
printBook(book);

}

fclose();

123456789 Happy Days $23.56

876543245 Wizard of Oz $19.96

Append records to a binary file
We can also add new records to the end of the file using the "ab"
// append records to a binary file

// open file
fp =open("records.bin","ab");

// check if file opened

if (fp==NULL)

{
// report cannot open file
printf("cannot open file: records.bin\n" ;
exit(1);

}

// write book to file

Book book3("87654542","Alice in Wonderland",18.88);
fwrite((char*)&book3,sizeof(Book),1,fp);

fclose(fp);

Again we read the book records from the binary file and display on the console
screen.

copyright © 2020 www.onlineprogramminglessons.com For student use only
168

// read from binary file

// open file
fopen("records.bin","rb");

// check if file opened

if (fp==NULL)

{
// report cannot open file
cout << "cannot open file: records.bin" << endl;
exit(1)

}

// read records from a file
while(fread((char*)&book,sizeof(Book),1,fp))

{
printBook(book);

}

123456789 Happy Days $23.56

fclose();
876543245 Wizard of Oz $19.96

87654542 Alice in Wonderland $18.88

Open binary file for simultaneously Read and Write

Opening a file for reading and writing is very convenient, we open an existing file
with the "r+b" mode and a new file with the "w+b" mode or append "a+b" to
end of file. We will open with append to end of file "a+b"

// open file for read/write
File* fp = fopen("records.bin", "a+b");

copyright © 2020 www.onlineprogramminglessons.com For student use only
169

// check if file opened

if (fp 1= NULL)

{
// report cannot open file
Printf("cannot open file: records.bin for read and write\n";
exit(1);

}

// write book to file
Book book4("765344532","Open Skies",12.78);
fwrite((char*)&book4,sizeof(Book),1,fp);

Once we write a new record to the end of the file we can go the start of the file
and read each record one by one and display on the console screen.

We use the fseek function to set the file pointer to any position of the file.
int fseek (FILE * stream, long int offset, int origin);

stream - Pointer to a FILE object that identifies the stream.

Offset - Number of bytes to offset from origin.

Origin - Position used as reference for the offset. It is specified by one of the
following constants to be used as arguments for this function:

Constant Reference position

SEEK_SET Beginning of file

SEEK_CUR Current position of the file pointer
SEEK_END End of file

To start at the end of the file:

fseek(fp,0, SEEK_SET)

To go to the end of the file:
fseek(fp,0, SEEK_END)

copyright © 2020 www.onlineprogramminglessons.com For student use only
170

To go to current position in the file:
fseek(fp,0, SEEK_CUR)
To go to any position in the file:

fseek(fp,position, SEEK_SET);

We now read the file and print out the records

// read from start of binary file
fseek(fp,0, SEEK_SET)

while(fread((char*)&book,sizeof(Book),1,fp))

{
printBook(book);

}

123456789 Happy Days $23.56
876543245 Wizard of Oz $19.96
87654542 Alice in Wonderland $18.88
765344532 Open Skies $12.78

We can read/wrote from any position on the file using fseek(fp,position, SEEK_SET)
We now write a new book to record position 2.

The formula is:
file record position = record number * size of record
Record position and record numbers start at O..
fio.seekp(2*sizeof(Book));
// write book to file

Book book5("3443223475","Hello World",6.89);
fwrite((char*)&book5,sizeof(Book),1,fp);

copyright © 2020 www.onlineprogramminglessons.com For student use only
171

We read all records again:
fseek(fp,0, SEEK_SET)

while(fread((char*)&book,sizeof(Book),1))

{
printBook(book);

}

123456789 Happy Days $23.56
876543245 Wizard of 0Oz $19.96
3443223475 Hello World $6.89

765344532 Open Skies $12.78

We can specify which record to read using fseek Here we read record 2 from the

file.

fseek(fp, 2 * sizeof(Book)), SEEK_SET);
fread((char*)&book,sizeof(Book),1,fp);
printBook(book);

87654542 Alice in Wonderland $18.88

Always close the file when you are finished using it or you will lose all your data.

fclose(fp);

copyright © 2020 www.onlineprogramminglessons.com For student use only

172

LESSON 11 RECURSION
When a function calls itself it is known as recursion. Recursion is analogues to a
while loop. Most while loop statements can be converted to recursion, most

recursion can also be converted back to a while loop.

The simplest recursion is a function calling itself printing out a message.

void print_message() | like programming

{ intf("1 lik . ", | like programming
pr!nt ("1 like programming\n"); | like programming
print_message();) :

) | like programming

| like programming

Unfortunately this program will run forever.
We can add a counter n to it so it can terminate at some point.

void print_message(int n)

{
If(n > 0)
{
printf("l like programming\n");
print_message(n-1)
}
}

Now the program will print the message n times

Every time the print_message function is called n decrements by 1

When n is 0 the recursion stops. You may place the statement printf("l like
programming\n") before or after the recursive call. If you put it before than the
message is printed first before each recursive call.

copyright © 2020 www.onlineprogramminglessons.com For student use only
173

If you put after than the message is printed after all the recursive calls are made.
There is quite a difference in program execution.
The operation is very similar to the following while loop:

n=>5

while(n > 0)

{
printf(“l like programming\n”);
n--;

}

You should now run the recursion function

You would call the function like this:
| like programming

| like programming
| like programming
| like programming
| like programming

print_message(5);

It will print | like programming 5 times.

Recursion is quite powerful, a few lines of code can do so much.
Our next example will count all numbers between 1 and n. This example may be
more difficult to understand, since recursion seems to work like magic, and

operation runs in invisible to the programmer.

void countn(int n)

{
if(n ==0)
{
return 0;
}
else
{
return countn(n-1) + 1
}
}

copyright © 2020 www.onlineprogramminglessons.com For student use only
174

count(5) would return 5

When (n == 0) this is known as the base case. When n == 0 the recursion stops
and O is return to the last recursive call. Otherwise the countn function is called
and n is decrementd by 1.

It works like this:

main calls countn(5) with n=5
countn(5) calls countn(4) with n=4
countn(4) calls countn(3) with n=3
countn(3) calls countn(2) with n=2
countn(2) calls countn(1) with n=1
countn(1) calls countn(0) with n=0

countn(0) returns O to count(1) since n ==

countn(1) add’s 1 to the return value 0 and then returns 1 to count(2)
countn(2) add’s 1 to the return value 1 and then returns 2 to count(3)
countn(3) add’s 1 to the return value 2 and then returns 3 to count(4)
countn(4) add’s 1 to the return value 3 and then returns 4 to count(5)
countn(5) add’s 1 to the return value 4 and then returns 5 to main()

main() receives 5 from count(5) and prints out 5

The statement return countn(n-1) + 1 is used to call the function recursively and
also acts as a place holder for the value returned by the called function.

We could rewrite the recursive part as follows:

int x = countn(n-1);
return x +1;

x will now receive the return value from the function call and 1 will be added to
the return value and this new value will be returned to the caller.

If you can understand the above then you understand recursion. If you cannot
then maybe the following diagram will help you understand.

copyright © 2020 www.onlineprogramminglessons.com For student use only
175

main() <

v 4+1 =5
count(5)

v 3+1 =4
count(4)

: 2+1=3
count(3)

v 1+1 =2
count(2)

\ 4 0+1=1
count(1)

! 0
count(0)

You probably don’t need to understand how recursion works right away.
Sometime you just need to accept things for now then understand later. One day
it will hit you when you are thinking about something else.

You could also think that main calls 5 functions sequentially where each function
receives a number and returns the number and then 1 is added to it.

int count(int n)

{

return n;

}

copyright © 2020 www.onlineprogramminglessons.com For student use only
176

n=0;

n = count (n)+1;
n = count (n)+1;
n = count (n)+1;
n = count (n)+1;
n = count(n)+1;
printf("%d\n",n);

Although not quite the same operation but it gives you an idea what the recursion
is doing, it is just adding 1 to the number it has and then return the new value.
Our count function just returns the value it receives, each statement adds 1 to it,
then n receives the new value. Whereas int the recursion function countn returns
0 in the base case and then after each recursive call 1 is added to the value
previously return to it and this new value is returned.

The thing to remember about recursion is it always return’s back where it is
called. Here are some more recursive function examples:

Sum numbers 1ton

int sumn(int n)

{
if(n ==0)
{
return 0;
}
else
{
return sumn(n-1) + n;
}
}

sumn(5) would return 15

copyright © 2020 www.onlineprogramminglessons.com For student use only
177

It works similar to countn instead of adding 1 its adds n.
0+1+2+3+4+5 =15

Our counter n serves 2 purposes a recursive counter and a number to add.

Multiply numbers 1 to n (factorial n)

We can also make a multn function which multiples n rather than adding n. This
is basically factorial n.

int multn(int n)

{
if(n ==0)
{
return 1;
}
else
{
return multn(n-1) * n;
}
}

multn(5) would return 55
since 1*1%2%*3*4*5 =55

Our base case returns 1 rather than 0 or else our result would b 0O;

Power x"

Another example is to calculate the power of a number x"
In this case we need a base parameter b and an exponent parameter n.

copyright © 2020 www.onlineprogramminglessons.com For student use only
178

int pown(int b, int n)

{
if(n ==0)
{
return 1;
}
else
{
return pown(b,n-1) * b;
}
}

pawn(2,3) would return 9 because 2*2*2=8 since 2°=8

Every time a recursive call is made the program stores the local variables in a call
stack. Every time recursive call finishes executing, the save local variables
disappear and the previous local variables are available. These are the ones
present before the recursive function was called. These save variables may now
be used in the present calculations.

For the above example 2°=8 the call stack would look like this.

n=0
b=2 1
n=1 n=1
b=2 b=2 2
n=4 n=2 n=2 n=2
b=2 b=2 b=2 b=2 4
n=5 n=5 n=3 n=3 n=3 n=3
b=2 b=2 b=2 b=2 b=2 b=2 8

Every time the recursive function finished executing it returns a value. Each
returning value is multiplied by the base b. In the above case the returning values
arel1,2,4and 8

copyright © 2020 www.onlineprogramminglessons.com For student use only
179

The return value is the value from the previous function multiplied by b (2)
return pown(b,n-1) * b;

the function first returns 1then 1 *b=1*2=2 then2 *2=4andfinally4*2=8

efficient power x"

A more efficient version of pown can be made relying on the fact then even n can
return b * b rather than just return * b for odd n

int pown2(int b,int n)
{
if (n==0)
{

return 1;

}

if (n %2 ==0)
{

return pown2(b, n-2) * b * b;

}

else

{

return pown2(b, n-1) * b;
}
}

Operation is now much more efficient1*2*4=8
Summing a sequence
Adding up all the numbers in a sequence

n*(n+1)/2

copyright © 2020 www.onlineprogramminglessons.com For student use only
180

-
-

Py
=
+
N

<
N

0 0
1 1
2 4
3 6
4 16
5 25
Total: 42

int segn(int n)
{
if(n == 0)
{

return 0;

}

else{

return (n * (n + 2))/ 2 + seq(n-1);
}

}
Seqn(5) =42
Fibonacci sequence

Recursion is ideal to directly execute recurrence relations like Fibonacci sequence
The Fibonacci numbers are the numbers in the following integer sequence.
0,1,1,2,3,5,8,13,21, 34,55, 89, 144,

In mathematical terms, the sequence fn of Fibonacci numbers is defined by the
recurrence relation.

copyright © 2020 www.onlineprogramminglessons.com For student use only
181

fn = fn—l + fn—2
with seed values
f0=0andf1=1.

A recurrence relation is an equation that defines a sequence based on a rule that
gives the next term as a function of the previous term(s).

int fib(int n)

{
if (n ==0)

{

return O;

}

elseif (n==1)

{

return 1;

}

else

{
return fib(n-1) + fib(n-2);

}
}

Notice The recursive statement is identical to the recurrence relation

fib(5) would return 5

Combinations
We can also calculate combinations using recursion.

Combinations are how many ways can you pick r items from a set of n distinct
elements.

copyright © 2020 www.onlineprogramminglessons.com For student use only
182

Call it nCr
Pick two letters from set S={A, B, C, D, E}
Answer:{A, B}, {B, C}, {B, D}, {B, EXA, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E}

There are 10 ways to choose. 2 letters from a set of 5 letters. The combination
formula is

nCr=n!/ rl(n-r)!
The Recurrence relation for calculated combinations is:
base cases:

nCn=1
nCO=1

recursive case:
nCr=n-1Cr + n-1Cr-1 forn>r>0
Our recursive function for calculating combinations is:

int combinations(int n, intr)

{
if(r==0]]| n==r)
{
return 1;
}
else
{
return combinations(n-1, r) + combinations(n-1, r-1);
}
}

combinations(5,2) would return 10

copyright © 2020 www.onlineprogramminglessons.com For student use only
183

Print a string out backwards

With recursion printing out a string backwards is easy, it all depends where you
put the print statement. If you put before the recursive call then the function
prints out the characters in reverse. Since n goes from n-1 to 0.If you put the
print statement after the recursive call then the characters are printed not
reverse since n goes from Oton.

// reverse a string
void print_reverse(char* s, int n)

{
if(n ==0)
{
printf("\n");
}

else

{
printf("%c",s[n-1]);
print_reverse(s, n-1);
}
}

You would call the print_reverse function like this

char s[] = "hello"; olleh
print_reverse(s, strlen(s));

Check if a string is a palindrome

A palindrome is a word that is spelled the same forward as well as backwards:
Like "radar" and "racecar"

copyright © 2020 www.onlineprogramminglessons.com For student use only
184

int is_palindrome(char* s, inti, intj)

{

if (i >=j)
return 1;

else

{
if (s[i] !=s[j])

return O;
else
return is_palindrome(s,i+1, j-1);
}
}

You would call the print_reverse function like this:

char s2[] = "radar"; 1
printf("%d\n",is_palindrome(s2, 0,strlen(s2)-1));

char s3[] = "apple";

printf("%d\n",is_palindrome(s3, 0,strlen(s3)-1));

Permutations

Permutations are how many ways you can rearrange a group of numbers or
letters. For example for the string “ABC” the letters can be rearranges as follows:

ABC
ACB
BAC
BCA
CBA
CAB

copyright © 2020 www.onlineprogramminglessons.com For student use only
185

Basically we are swapping character and then print them out
We start with ABC if we swap B and C we end up with ACB

// print permutations of string s
void print_permutations(char* s, int i, int j)
{

int k;

char c;

// print out permutation

if (i == j)
{
printf("%s\n", s);
}
else
{

for (k =i; k <=j; k++) {

// swap i and k
c = s[i];

s[i] = s[k];

s[k] =c;

// recursive call
print_permutations(s, i + 1, j);

// put back, swap i and k
c =sli];

s[i] = s[k];

s[k] =c;

copyright © 2020 www.onlineprogramminglessons.com For student use only
186

You would call the print_permutations function like this:

char s4[] = "ABC"; BC

print_permutations(s4, 0,strlen(s4)-1); ACB
BAC
BCA
CBA
CAB

Combination sets

We have looked at combinations previously where we wrote a function to
calculate home many ways you can choose r letters from a set of n letters.

nCr nchooser
Combinations allow you to pick r letters from set S={A, B, C, D, E}
n=5r =2 nCr 5C2
Answer:{A, B}, {B, C}, {B, D}, {B, EHA, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E}
We are basically filing a seconded character array with all possible letters up to r.
Start with ABCDE we would choose AB then AC then AD then AE etc.
We use a loop to traverse the letters starting at n =0, and fill the comb string.

When n =r we then print out the letters stored in the comb string

void print_combinations(char s[], char combs|],
int start, int end, int n, intr)

{
inti=0;
intj=0;

copyright © 2020 www.onlineprogramminglessons.com For student use only
187

// Current combination is ready to be printed
if (n==r)
{
for(j=0;j<r;j++)
printf("%c ",combs[j]);
printf("\n");
return;

}

// replace n with all possible elements.
for (i=start;i<=end && end -i+1>=r-n;i++)
{
combs[n] = s[i];
print_combinations(s, combs, i+1, end, n+1, r);
}
}

You would call the print_combinations function like this:

char s5[] = "ABCDE";
char combs[5+1] = {0};
print_combinations(s5, combs,0,strlen(s5)-1,0,2);

Determinant of a matrix using recursion.

In linear algebra, the determinant is a useful value that can be computed from the
elements of a square matrix. The determinant of a matrix A is denoted det(A),

detA, or |A

AB
AC
AD
AE
BC
BD
BE
CD

In the case of a 2 x 2 matrix, the formula for the determinant is:

la b|
|A| = | | =ad-bc
|c d]

copyright © 2020 www.onlineprogramminglessons.com For student use only

188

For a 3 x 3 matrix A, and we want the s formula for its determinant |A] is

|a b c| | e f| | d f| | d e |
Al =|d ef | =a] | -b | | +c| I
lg hi] | hi | lg 1] | g h|

= aei + bgf — ceg — bdi - afh

Each determinant of a 2 x 2 matrix in this equation is called a "minor" of the
matrix A. The same sort of procedure can be used to find the determinant of a
4 x 4 matrix, the determinant of a 5 x 5 matrix, and so forth.

Our code actually follows the above formula, calculating and summing the miners.

// calculate determinant of a matrix
float determinent(float matrix[3][3], int size)
{

int c;

float det=0;

int sign=1;

float b[3][3];

intij;

int m,n

// base case

if(size == 1)

{

return (matrix[0][0]);

}

else

{
det=0;
for(c=0; c<size; c++)

copyright © 2020 www.onlineprogramminglessons.com For student use only
189

for(i=0; i<size; i++)
{
for(j=0; j<size; j++)
{
b[i][j] = 0;
if(i!=0 && jl=c)
{
b[m][n] = matrix[i][j];
if(n<(size-2))
{

n++;

det = det + sign*(matrix[0][c]*determinent(b,size-1));
sign = -1*sign; // toggle sign
}
}

return (det);

}

You call and run the determinant function like this:

-306
float m[3][3] = {{6,1,1},{4,-2,5},{2,8,7}};

printf("det = %f\n",determinent(m,3));

copyright © 2020 www.onlineprogramminglessons.com For student use only
190

There are many more recursive examples, too numerous to present.
If you do all the following to do questions you will be a recursive expert.

Todo

Write a recursive function called void reverse_string(char*s, int n) that reverses a
sting in place. The recursive string receives the stings and outputs the string in
reverse. No printing is allowed.

Write a recursive function int search_number(int a[], Int n) that searched for a
number insofar an array and return the index of the number if found otherwise
returns -1 if not found.

Write a recursive function int search_digit(int d, int x) that searched for a number
insofar an number and return 1 of the number if found otherwise returns O if not
found.

Write a recursive function called int sum_digits (int d) that adds up all the digits
in a number of any lengths. The recursive function receives an int numbers and
returns the sum of all the digits.

Write a recursive function called void format_number(char* s, int n) that can
insert commas in a number. For example 1234567890 becomes 1,234,567,890

Write a recursive function int is_even(int n) that return true if a number has even
count of digits or 0 if the number of digits is odd.

Write a recursive function void print_binary(int d) that would print a decimal
number as a binary number. A binary number just has digits O to 1.

Where a decimal number has digits 0 to 9. The decimal number 5 would be 0101
in binary, since 1*1+ 0*2 +1* 4 + 0 *8is 10. We are going right to left.

copyright © 2020 www.onlineprogramminglessons.com For student use only
191

To convert a decimal number to binary You just need to take mod 2 of a digit and
then divide the number by 2

5%2=1 €1
5/2=2
2%2=0 €0
2/2=1
1%2=1 €1
1/2 =0
0%2=0 €0

We are done so going backwards
S5inbinaryis0101

Write a recursive function int is_prime(int n) that returns true (1) if a number is
prime otherwise false (0).

A prime number cam only is divides evenly by itself. 2,3,5,7, are prime numbers.
You can use the mod operator % to test if a number can be divided evenly by
itself. 4 %2 =0 4 can be divided evenly by 2 so there for 4 is not a prime number.

Put all your functions in a c file called Lesson11.c Include a main function that
tests all the recursive functions.

copyright © 2020 www.onlineprogramminglessons.com For student use only
192

LESSON 12 PROJECTS
Project 1 Spelling Corrector

Read in a text file with spelling mistakes, find the incorrect spelled words and
offer corrections. The user should be able to choose the correct choice from a
menu. Look for missing or extra letters or adjacent letters on the keyboard.
Download a word dictionary from the internet as to check for correct spelled
words. Use a array to store the words. Store the correct spelled file.

Project 2 MathBee

Make a Math bee for intermixed addition, subtraction, multiplication and division
single digit questions. Use random numbers 1 to 9 and use division numbers that
will divide even results. Have 10 questions and store results in a file. Keep track of
the users score. You make random numbers like this:

#include<stdlib.h>
#include<ctime>

// seed random number generator
srand((unsigned int)time(0))

// get random number 1 to 10
int x = (rand() % 10) + 1;

Project 3 Quiz App
Make a quiz app with intermixed multiple choice, true and false questions.

You should have two structures MultipleChoice and TrueAndFalse. Store all
questions in one file. Store the results in another file indicating the quiz results.

copyright © 2020 www.onlineprogramminglessons.com For student use only
193

Project 4 Phone Book App

Make a phone book app that uses array of structures to store Phone numbers and
names. You need an Contact structure to store name and phone number. You
should be able to view, add, delete, scroll up and down contacts as menu
operations. Contacts need to be displayed in alphabetically orders. Offer to
lookup by name or by phone number. Contacts should be stored in a file, read
when app runs, and saved with app finished running. Bonus, add email and
address lookups as well.

Project 5 Appointment App

Make an Appointment book app that uses a array of structures to store
Appointments. You need an Appointment structure to store name, description
and time. You should be able to view, add, delete, scroll up and down
appointments as menu operations. Appointments need to be displayed in
chronological orders. Appointments should be stored in a file, read when app
runs, and saved with app finished running.

END

copyright © 2020 www.onlineprogramminglessons.com For student use only
194

