C++ Mini Lessons Last Update: Mar 31, 2021

From http://www.onlineprogramminglessons.com

These C++ mini lessons will teach you all the C++ Programming statements you
need to know, so you can write 90% of any C++ Program.

Lesson1 Input and Output

Lesson 2 Functions

Lesson 3 Classes and Inheritance

Lesson4 Operators

Lesson 5 Control Statements

Lesson 6 Arrays

Lesson 7 Copy Constructors and Assignment Operators
Lesson 8 Move Constructors and Move Assignment Operators
Lesson 9 STL Vectors, Lists, Sets and Maps

Lesson 10 10 File Access

Lesson 11 Virtual Methods, Abstract Classes and Polymorphism
Lesson 12 Interfaces and Templates

Lesson 13 Recursion

Lesson 14 C++ Project

Let’s get started!

You first need to download a C++ Compiler. This is needed to edit, compile and
run C++ programs. You can download the Codeblocks C++ Compiler or alternately
you can use your own C++ compiler. Download CodeBlocks from this link.

http://www.codeblocks.org/downloads

Download and install the codeblocks-17.12mingw-setup.exe file that includes

everything

Once you installed and run CodeBlocks you will get this screen that asks you to
select the C++ Compiler to use. We selected the GNU GCC Compiler and then
pressed the “Set as Default” button.

copyright © 2021 www.onlineprogramminglessons.com For student use only

http://www.onlineprogramminglessons.com/
http://www.codeblocks.org/downloads

Compilers auto-detection

Mote: After auto-detection, at least one compiler's master path is still empty and therefore
Inspect the list below and change the compiler's master path later in the compiler options.
Select you favourite default compiler here:

invalid.

Compiler Status

GMU GCC Compiler Detected

L Set as default |

W
Current default compiler: GMU GCC Compiler
The following screen then appears.
B8 Start here - Code:Blacks 17.12 - m] x
Eile Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DogyBlocks Settings Help
FeEA e smm|Qaiasrsen N E LR SR -]]
- ot -~
(F R < | BRI Xid e biD] BT R INEEFEIEEENEEEIEENE
Management X ||| istart here: x|
4| Projects | Symbols | Files b ~
(O Workspace
‘ = The open source, cross-platform IDE
Belease 17.12 rev 11256 (2017-12-28 10:44:41} gec 5.1.0 Windewsiunicods - 32 bit
u Create a new project &E t Open an existing project Q Tip of the Day
Wisit the Code::Blocks forums Report a bug or request a new feature
"
v
Logs & others x
ﬂ j Code=Blocks XT QSeard'\ results X] j Ceee XT QBui\d log X] ? Build messages X] j CppCheck/Vera++ B 2
SpeliChecker: Thesaurus files 'C:\Program Files (x86)\CodeBlocks/share /codeblocks\SpellChecker th_en_CA.idx' not found! “
v
S| default &

copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 1 Input and Output
You first need to make a Project to store all your C++ lesson files.

From the start menu select Create a New Project or from the file menu select,
Open New Project.

Next Select Console application and then press the Go button.

Mew from template >
Projects Category: | <All categories= e
Build targets
Eiles I,}ﬂ @ GGJ A Cancel
Custom \..f ARDUTNG g

ARM Project AVR Project Arduino Code::Blocks
Project plugin

8 =2 o 5

Console D application DirectX Drynamic Link
application project Library

-z 8 @

Empty project FLTK project Fortran DLL Fortran

Iser templates

application
|.: GLEW GLUT ﬁ View as
1 L L
G G (®) Large icons
Fortran library GLFW project GLUT project GTK+ project () List
W

TIP: Try right-dlicking an item

1. Select a wizard type first on the left
2. 5elect a spedific wizard from the main window (filter by categories if needed)
3. Press Go

The Console screen appears next.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Console application by

Welcome to the new console application wizard!
m Co “ 50 Ie This wizard will guide you to create a new console application.

When you 're ready to proceed, please didk ext"...

Mext = Cancel

[ms]
|'||

1
~

Press Next button

Console application >

Pleaze select the language you want to use.
& Console

Please make a selection

c

Select C++ and then press Next button

copyright © 2021 www.onlineprogramminglessons.com For student use only

Using File Explorer make a Folder to hold your C++ lesson files called Cpp, and
then enter CpplLessons as the project name.

Console application =

Please select the folder where you want the new project
m Co nso Ie to be created as well as its title.

Project title:
|CppLesons |

Folder to create project in:
|C: Vessons'cpp |m

Project filename:
|C|:u|:uLesu:uns.cbp |

Resulting filename:
|C:'n.lesscuns'n,q:up'n,CppLesuns'n,CppLesuns.cbp |

The next screen tells you what C++ Complier the CodeBlocks is using.

Console application bt

Please select the compiler to use and which configurations
m CO nso Ie you want enabled in your project.

Compiler:
GMNU GCC Compiler HEYS
Create "Debug” configuration:
"Debug” options
Qutput dir. : |bin'|,Debug |

Objects output dir.: |0bj's,Debug |

Create "Release” configuration:

"Release” options

Output dir.: |bin'|,Re|ease |

Objects output dir.: |Dbj'|Release |

You can just select Finish

copyright © 2021 www.onlineprogramminglessons.com For student use only

You should get something like this after clicking on main.cpp in the Management
window.

¥ “main.cpp [CppLessons] - CodesBlocks 17.12 - O X
File Edit View 5Search Project Build Debug Fortran wxSmith Tocols Tools+ Plugins DoxyBlocks Settings Help
‘FRE@ ¥ LBA ARG > G O @ ob VB sEGIsI LG Y 0 B EW
¢ <global> « | main{) : int
(&< @R Qd e biD Ml e o Lebsa il [0 &0 | m=m==E] o
e ————
< t X J*main.cpp X]
B Projects T 1 #include <iostream>
@ Workspace 2 #$include <string>
El! Cpplessons =
EIB Sources 4 nsing namespace std;
L] maincpp 5
6 | int main()
7 {
8 I cont << "Hello world!"™ << endl:
s |
10 return O:
11 }
1z
< >
Logs & others x
«| J)CodezBlodks X |) Searchresuts X | fiCccc x| GBuildlog x| ¥ Buldmessages x| /Cb
mingw3Z-g++.exe -Wall -fexceptions -g -c C:\lessons'cpp'\Cpplessons'main.cpp -o obj 2
“Debugimain.o
mingw3Z-g++.exe -o bkin\Debug\Cpplessons.exe obj‘\Debug'main.o
Cutput f£ile is bin‘\Debug'Cpplessons.exe with size 1.50 MB
Process terminated with status 0 (0 minutes(s), 1 sscondis))
0 error(s), 0 warning(s}) (0 minute(s}), 1 second(s}}
w
|C;'C++ Windows (CR+LF) WINDOWS-1252 Line 9, Cal 2, Pos 119 Insert Maodified Read/Write defauli

copyright © 2021 www.onlineprogramminglessons.com For student use only

Next you need to build the program before you can run it. From the Build menu
select Build.

P8 main.cpp [Cpplessons] - Code:Blocks 17.12 — [} >
FEile Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help
: Ai @ > S 0 [pebu v@li e sIeTul e N I @ | E] M
Compile current file Ctrl-Shift-F9 I vI
= Run Ctrl-F10
: z =z
4% Build and run F9 Ih|B| |¢ﬂ_ﬂ‘h R|I:I|WE|E||D
& Rebuild Ctrl-F11 cpp <
Clean 1 $include <iostream>
Build workspace 2)
. 3 nusing namespace std;
Rebuild workspace
4
Clean workspace Is int main ()
B sbort = {
7 cont << "Hello world!"™ << endl:
Errors LA 3 return O;
Select target L = }
0
Export kakefile
< >
Logs & others b
4 [j Code::Blocks X] QSeardﬂ results X] j Ceoc X] QBuillllng X] ? Build messages > j [« 3
\Debugimain. o ~
mingw22-g++.exe -o bin\Debug\Cpplessons.exe obj‘\Debugi\main.o
Cutput file is bin‘Debug.Cpplessons.exe with size 1.50 MB
Process terminated with status 0 (0 minute(s), 1 second(s))
@ error(s), 0 warningis) (0 minute(s), 1 secondis})}
w
C/C++ Windows (CR+LF} WINDOWS-1252 Line 1, Col 1, Pos 0 Insert Read/Write defauli
If you have no errors, then you can run your program.
Select Run from the Build menu
¥ main.cpp [Cpplessons] - Code:Blocks 17.12 — O pre
File Edit Wiew Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help
& Build Ctrl-F9 b@,k@’{i@ﬂm v|§b%Ef§>=%:@:@>:‘-: IIBIEZI-|

Compile current file Ctrl-Shift-F9

Run Ctrl-F10 |
=yl

~ | mainQ : int

B E L REIEEEIEEE LT

- Build and run
& Rebuild Ctrl-F11 epp ¢
Clean 1 #include <iostrcam>
Build workspace =
3 nusing namespace std:
Rebuild workspace 4
Clean workspace 3 I int main()|
B ~bort s i
7 cout << "Hello world!" << endl:
Errors 3 = return o
Select target v s }
o
Export Makefile
< >
Logs & others. >
4| Jj codeu:Blocks < | () Search results > | Jjcece >¢| Gy Buildlog >< | % Build messages x| Acr
Debugimain .o -~
mingw3Z-g++.exe -—o bin\Debugh\CppLessons.exe obj\Debughmain.o
Output file is bin\DebugiCpplesscns.exe with size 1.50 MB
Process terminated with status 0 (0 minuts(s), 0 second(s))
0 srror(s), 0 warningi(s) (0 minutesrs). 0 sscond(s))
-
c/c++ Windows (CR+LF) WINDOWS-1252 Line 5, Col 11, Pos 57 Insert Read/Write defaull

copyright © 2021 www.onlineprogramminglessons.com For student use only

You should get something like this:

B Chlessens\cpp\CpplessonsibintDebughCpplessons.exe - O *
Hello world!

A C++ program contains programing statements to tell the computer what to do.
These programing statements are grouped together in a function enclosed by
curly brackets, so they can run one by one sequentially.

In a C++ program the main function is the first function to run. Here is the
program and main function again.

#include <iostream>
using namespace std;

int main()

{

cout << "Hello world!" << endl;
return O;

main is the function name and cout << "Hello world!" << end|l; is a programming
statement printing Hello world! on the screen. All programing statements end in a
semicolon ;

copyright © 2021 www.onlineprogramminglessons.com For student use only

Our first C++ program prints our “Hello World” on the screen. If your compiler did
not generate the sample program above for you then you will have to type in the
programming statemnts your self into your C++ compiler then build and run it.

A C++ program starts with the folowing include statement

#include <iostream>
The include statement is called a preprocessor it tells the C++ compiler to use
functions from the iostream file. These functions are actually grouped inside a
class definition called iostream. When a class definition is used in a program then
it becomes an object. We will study classes and objects in the preceding lessons

so do not worry about them now.

The iostream class belong to the namespace std so we need to tell the compiler
thate we are using classes from the std namespace.

using namespace std;
The next programing statement is the main functon definition header.

int main()

{

Inside the main function definition header we have the programming statements
enclosed in curly brackets { } The open { curly bracket means to start the
programming statements. The closing } curly bracket means to end the
programing statements inside the function.

Our first programing statement prints “Hello World” on the console screen

cout <<"| like C++ Programming << endl;
cout is used to print out messages to the screen. The << operator introduces
what is to be printed. The endl directive is used to start a new line. cout is actially

a ostream object that is used for output and the << operator is a function of the
ostream class that tell’s the program to print messages on the screen.

copyright © 2021 www.onlineprogramminglessons.com For student use only

This main function return’s a value The return keyword is used to specify what
value is to be returned. The main function usually returns a 0 which means every
thing is okay.

return O;

}

Before we proceed it is important to understand the terminology: classes,
functions, programming statements and objects.

data type What type of data is to be represented

variable Stores a string or numeric value. All variables have
a data type

programming is an instruction containing commands to perform

statement a desired action, like printing a value on the screen,

get a value from the key board or calculate a
certain value

function Contains programing statements that tell the
computer what to do and performs operations on
variables using these programming statements

class Contains values and functions
namespace contains classes
object Computer Memory allocated for a class variables

when a program runs on the computer

The next thing we need to do is get values from the keyboard. We will ask the
user to type in their name and then greet them. Type in the following statements
in the C++ editor right after the | like C++ Programming statement.

cout << "Please type in your name: ";

string name;

cin >> name;

cout << "Nice to meet you " << name << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

You need to put the #include <string> preprocessor statement at the top of your
program right after #include <iostream> so that the compiler knows about string
variables. You should have something like this:

#include <iostream>
#include <string>
using namespace std;

int main()

{

cout << "l like C++ Programming" << endl;

cout << "Please type in your name: ";

string name;

cin >> name;

cout << "Nice to meet you " << name << endl;

return 0;

}

Your codeblocks will now look like this:

18 main.cpp [CppLessons] - CodexBlocks 17.12 - o x
File Edit View Search Project Buid Debug Foran wiSmith Tools Tools+ Plugins DoxyBlocks Settings Help
BBE@ LY UBE[AB[G P 3 0 v Bl P MEE Y L 6 |®
¢ <global> ~ | main() int
(E B el @] S N =] \ \
Management X maincp X
| Projects Symbol | Fiks b a
Q) Workspace 2
--.d Cpplessons 3
=B Sources 4 using namespace std;
main.cpp H
[int main()
cout << "Hello world!" << endl;
g cout << "Please type in your name: ";
10 string name;
11 cin >> name;
12 cout << "Nice to meet you " name endl;
143
14 return 0;
15
18
< >
Logs &others X
4| J codenplocks x|\ Searchrests x| /) Cer x| € Buildlog | ¥ Buldmessages X fjC b
\Debug\main.o A
mingw32-g+.exe -o bin\Debug\CpplLes cbj\Debug\main.o
v
CjC++ Windows (CR+LF) ‘WINDOWS-1252 Line 12, Col 36, Pos 232 Insert Read/Write defauli

copyright © 2021 www.onlineprogramminglessons.com For student use only

Now build and run your program, and enter the name “Tom”. You will get
something like this:

We first ask the user to type in their name using the cout statement.

cout << "Please type in your name: ";
Then we obtain the user name from the keyboard. We first declare a string
variable called name and then use cin and operator >> to read a string from the
keyboard. The entered name is placed in the string variable name. Variables are

used to store values and must be declared before using them.

string name;
cin >> name;

cin is actially a istream object that is used for input and the >> operator is a
function of the istream class used to obtain values from the keyboard.

cout is then used to print out the string message “Nice to meet you" and the
name of the user that was stored previously in the variable name.

cout << "Nice to meet you " << name << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

C++ has two types of values: string values and numeric values. String values are
messages enclosed in double quotes like "Hello World" where as numeric values
are numbers like 5 and 10.5 Numeric values without decimal points like 5 are
known as an int and numbers with decimal points like 10.5 are known as a float
or double. Variable’s store string or numeric values that can be used later in your
program.

We now continue our program ask the user how old they are. Type in the
following statements at the end of your program.

cout << "How old are you? ";

int age = 0;

cin >> age;

cout << "You are " << age << " years old" << end|

Make sure you save your file before proceeding.
You should have something like this:

#include <iostream>
#include <string>
using namespace std;

int main()

{

cout << "l like C++ Programming" << end|;

cout << "Please type in your name: ";
string name;
cin >> name;
cout << "Nice to meet you " << name << endl;
cout << "How old are you? ";
int age = 0;
cin >> age;
cout << "You are " << age << " years old" << end|I

return 0;

copyright © 2021 www.onlineprogramminglessons.com For student use only

Your codeblocks will now look like this:

B8 main.cpp [Cpplessons] - CodenBlocks 17.12 - O X
File Edit View 5Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help

FeBEA « > H AR D > G @ O [pebug ;> Y2 62 %I 4 6! 2

;| <global> v

PE B | 2] @] &) § R A=

™ t »
anagemen main.cpp X

4 | Projects | Symbaols Files P
Q Workspace
i--'.' Cpplessons
- Sources
. main.cpp

nsing namespace std;

B I I T Y S L B

int main{()

Hi

W

10
11

- MAame;
13 2 "Nice to mest you " << name << endl;
14
15
16

17

I "You are " << age << " years old" << endl;
19
20 return O;
21

£ >

Logs & others

4| /| CodeuBlocks 3| _ Search resuits | JjCeee | $yBuildlog " Build messages x| fce

L3

C/C++ Windows (CR+LF) WINDOWS-1252 Line 1, Cel 1, Pes0 Insert Read/\Write defauli

Build and run the program and enter Tom for name and 24 for age, you should
get something like this.

copyright © 2021 www.onlineprogramminglessons.com For student use only

We first ask the user to enter there age using cout
cout << "How old are you? ";
then we declare an int variable age
int age = 0;
We enter the age from the keyboard and assign it to the variable age
cin >> age

Using cout we print out the message “You are”, the value store in the variable age
and the message “years old”

cout << "You are " << age << " years old" << endl;

If you have got this far then you will be a great C++ programmer soon.

Most people find Programing difficult to learn. The secret of learning program is
to figure out what you need to do and then choose the right programming
statement to use. If you want to print messages and values to the screen you use
a cout statement. If you want to get values from the keyboard, you use a cin
statement.

If you want to store values, you use variables. You need to tell the compiler what
kind of data you want to store, like int, double or string. String is a class, and the
string variable is an object. A class is a user specified data type that can do many
things that you will find about soon.

You should concentrate on getting your programs running rather than understand
how they work. Once you get your programs running and you execute them
understanding will be come much easier. Understanding will be much easier,
because you can now make an “association connection” to the program
statement that is running that produces the desired input or output action.

copyright © 2021 www.onlineprogramminglessons.com For student use only

C++ Data Types

C++ has many data types that can be used to represent different kinds of numbers

as follows:
Data Type Size Min value Max Value Example
char 8 -128 127 byte x = 100;
short 16 -32768 32767 short x = 1000;
int 32 -2/731 2731-1 int x = 10000;
long 32 -2731 2731-1 long x = 10000;
float 32 -1.4E-45 3.4028235E38 | float f = 10.5f;
(f means float number)
double 64 -4.9E-324 4.9E-324 double d = 10.5;
bool 1 false True bool x = true;

The above data types represent signed numbers meaning they can store negative
or positive numbers.

bool represents a data type that store true or false values. True is represented by
a 1 and false is represented by a 0.

|

Note: C++ also has unsigned data types unsigned char, unsigned short, unsigned
int and unsigned long.

Data Type | Size Min value Max Value Example
uchar 8 0 256 byte x = 100;
ushort 16 0 65535 short x = 1000;
uint 32 0 2732-1 int x = 10000;
ulong 32 0 2732-1 long x = 10000;

C++ Lesson 1 Homework

Make a C++ program file called homeworkl.cpp that asks someone what their
profession title is and annual salary is. Use a double data type for salary and a
string for job title. Print out a message like this: “I am a Manager and | make
$100,000 dollars per year!”. Also when the program starts print out a welcome
message. Put your homework1.cpp file in a C++ project called Homework1.

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 2 FUNCTIONS

Functions allow you to group many programming statements together so that you
can reuse them repeatedly in your C++ Program. The most common function is
the main function that starts a C++ program, which we used previously in Lesson
1. A program may have many functions. Each function has a dedicated purpose,
and some action to perform. Functions usually are defined at the top of the
program in order as they are used. The main function is the last one because it
will call all the proceeding functions. When a function is called in a programming
statement it means it is executed. C++ also has many built in functions that you
can use, that make C++ programming easier to do, that you will learn later
through these lessons. It is now time to add functions to our previous Lesson 1
program. We will make a welcome, enterName, enterAge and printDetails
functions. Before proceeding, you may want to save your previous Main.cpp file
as Lessonl.cpp for future reference. With Main.cpp closed Right click on Main.cpp
and rename Lessonl.cpp

H [CppLessons] - CodenBlocks 17.12 — [m] x
File Edit View Search Project Build Debug Fortran wxSmith Tools Teoels+ Plugins DoxyBlocks Settings Help

FeB@ e % 1 8@ P G 9 B pebug ~|B|i > 4267 Y 4 6 5]
e PREBR
TR IR eV Y Y
Management x
4 | Projects | Symbols Files ¥
(D Workspace
-5y CppLessons
-8 Sources
Maip ===

Open Main.cpp

Open with >

Rename file...

Remove file from project

Format this file (AStyle)

Reparse this file

Build file

Clean file

Options >

Properties...

Logs & others x
4| /| Code:Blods ¥ | (4 Searchresuls % | Jf]Cecc | £)Buildlog > | % Buidmessages x /| CppChedgVera++ X J| CppChedkjVera++messages x| fcsab

Welcome to CodexBlocks! default iBr
Rename file it

Flease enter the new name;

Lesson 1.|:p|:||

Cancel

copyright © 2021 www.onlineprogramminglessons.com For student use only

We will now make a new C++ source file called Lesson2.cpp. From the File Menu
select New then File.

B Lessonl.cpp [Cpplessons] - Code:Blocks 17.12 - X
File Edit View Search Project Build Debug Fortran waSmith Tools Teols+ Plugins DoxyBlacks Settings Help
Ermpty file Ctrl-Shift-N | E‘ BUEGIE LG Y I BF -‘

& Open... -0 Class. ieoPEB R
BT Project. TR NEFEIELCT I EEEIECENE HERY
Open default workspace Build target..

Recent projects » Fie

Recent files v e ~
Custom...

Import project ' From template...

B save file Chrl-S Nassi Shneiderman diagram

=

E Savefile as.. . Frr—

Save project =
8 cout "Hello world!"™ << endl:
Save project as... X
El cout. "Please type in your name: ":
Save project as template... o
Save workspace 11 string name;
Save workspace as... i cin >> name;
13 cout. "Nice to mest you " << name << endl:
(8 Save everything Ctrl-Shift-5 | 14
15 cont << "How old are you? ":
@ Closefile oW |, int age = 0;
Close all files Ctrl-Shift-W |17 oin »> age:
Close project 18 cout "You are " << age << " years old"” < endl;
Close workspace 19
20 return 0:

(S Print... Cl-P |5y 3 .
Export » 5
Properties.. thers 7

B Quit Cirl-Q Code::Blocks XI (2 Search results x] e x] 3 Build log x] " Buld messages. XI /| CopChedkiVera++ XI /| CppCheck/Vera++messages x] J} €scope x] 3 Debugae b

~
—————————————— Run: Debug in Cpplessons (compiler: GNU GCC Compiler)-------=-====--=
Checking for existence: C:\lessons\cpp\Cp \bin\Debug\Cp] .exe
Executing: "C:\Program Files (x8¢)\CodeBlocks/cb console runner.exe™ "C:\lessons\cpp\Cp in\Debug\Cppl .exe™ (in C:\lessons\cpp\Cpplessons\.)
terminated with status 4 (0 minute
v
Create a new file clct+ Windows (CR+LF) WINDOWS-1252 Line6, Col 11, Pos 76 Insert Read/Write default @&

Select C++ Source File template

MNew from template >
Projects Category: | <All categories > - | | Go |
Build targets
A =3 P
Custom
User templates C/C++ header D source Empty file Fortran source

@
Java source

View as

(®) Large icons

(O List

TIP: Try right-dicking an item

1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go

Press GO button

copyright © 2021 www.onlineprogramminglessons.com For student use only

C/C++ source >

Welcome to the new CfC++ source file wizard!
TR
a {-'!‘-'++ FILE This wizard wil guide you to create a new C/C++ source file.

When you 're ready to proceed, please didk ext"...

Press Next button

Select C++

C/C++ source >

Flease select the language for the file.
R cro++ FILE

Please make a selection

C

< e Cancel

Press Next

copyright © 2021 www.onlineprogramminglessons.com For student use only

C/C++ source >

Please enter the file's location and name and
A fa
a {-'!‘-'++ FILE whether to add it to the active project.

Filename with full path:

-

Add file to active project
In build target(s):

alosbug |
v | Release
All Mone

< Back Einish Cancel

Check Debug and Release Checkbox’s, then select file browse button [...]
And enter file name Lesson2.cpp

¥ Select filename =
1 « lessons » cpp » Cpplessons @ v O Search Cpplessons yel
COrganize = Mew folder SEEE S 0
SWindows.~\ ™ Mame Date modified Type
adobe_photo bin 2018-01-D4 11:27 ... File folder
cygwing4 obj File folder
ed *+ Lessonl.cpp 2018-01-05 430 AM C++ Source
emudl8s
ESD
HP_Laserlet_|
Intel
lessons
<pp
Cpplessor ¥ € >
File npame: | Lesson2.cpp w
Save as type: | C++ files (*.cpp™ cog™.cc) ~

. Hide Folders Cancel

copyright © 2021 www.onlineprogramminglessons.com For student use only

Press Save Button, you should get the following screen

C/C++ source

Please enter the file's location and name and
whether to add it to the active project.

(R ¢/c++ FILE

Filename with full path:
|C:uessons\,cpp'n,CppLessu:nns'n,LessonZ.q:np |m

Add file to active project
In build target{s):

Qloebug |
v Release
All None
= Back Finish Cancel

Before pressing Finish button make sure The Debug and Release check boxes are
checked. You now need to remove the Main.cpp file or Lessonl.cpp file from the
project. A project can only have 1 cpp file with a main function.

Jiesmrmn

e ldh- 2 4

Logs Soters
4 Noadugods % Jsamdeds x Aoo x| Qbudlog X ¥oddresoes x| f pdeddreats x|) Goohedientimesoges x|) osape x Gyochupx b

Clessons\cppCpplesonsLessonl.cpp. s Windows (CR+1F) WINDOWS-1252 Line3, Cel 1, Pos 20 st ResdfWirte defauk 3

copyright © 2021 www.onlineprogramminglessons.com For student use only

In your Lesson2.cpp file type in the following code.

#include <iostream>
#include <string>
using namespace std;

void welcome();

string enterName();

int enterAge();

void printDetails(string name, int age);

int main()

{
welcome();
string name = enterName();
int age = enterAge();
printDetails(name, age);
return O;

void welcome()

{

cout << "Hello World" << end|;

}

string enterName()
cout << "Please type in your name: ";
string name;
cin >> name;
return name;

copyright © 2021 www.onlineprogramminglessons.com For student use only

int enterAge()

{
cout << "How old are you? ";
int age;
cin >> age;
return age;
}
void displayDetails(string name, int age)
{
cout << "Nice to meet you " << name << end|;
cout << name << " You are " << age << " years old" << endl;
}

You should now build and run the program. Enter Tom for name and 24 for
age, you should get this:

B Chlessonsicppt\ CpplessonsibiniDebug\ Cpplessons. exe — O >
Hello World
in your name: T
4

execution time : 12

Functions make your program more organized and manageable to use. Functions
have many different purposes. Function can receive values, return values, receive
and return values or receive or return nothing. Function syntax is as follows:

return_datatype function_name (parameter_list)
Parameter list = data_type parameter_name [,data_type parameter_name]

copyright © 2021 www.onlineprogramminglessons.com For student use only

Functions return values using the return statement and receive values through
the parameter list. The data type specifies what kind of data is returned or
received. In Lesson 1 we were introduced to the int, float, double and string data
types.

In C++ before you can use a function you need to declare it. A function declaration
is just the function definition header ending in a semicolon. A function
declaration is also known as a function prototype. Here are the function
prototypes for our lesson2 program.

void welcome();

string enterName();

int enterAge();

void printDetails(string name, int age);

The welcome function just prints “Hello World” and receives no values or returns
no value. The void data type specifies no value is returned or received.

void welcome()

{

cout << "Hello World" << end|;

}

The enterName() and enterAge() functions both return a value using the return
statement. The enterName() function returns a string value where as the
enterAge function returns an int value. Both of these functions have local
variables to hold the value obtained from the key board. Local variables are
known to the function only and cannot be accessed by other program code. The
enterName function has the local string variable name to hold the name obtained
from the keyboard. The enterAge function has the local string variable age to
hold the age obtained from the keyboard. Variables have names that represent
what values they are holding.

copyright © 2021 www.onlineprogramminglessons.com For student use only

string enterName()
cout << "Please type in your name: ";
string name;
cin >> name;
return name;

int enterAge()
{
cout << "How old are you? ";
int age;
cin >> age;
return age;

The printDetails function receives a name and age value to print out, but return’s
no value. The printDetails function receives the name and age through the
parameter list. Parameters hold received values and can be used just like a
variable inside a function.

void printDetails(string name, int age)
cout << "Nice to meet you " << name << end|;
cout << name << " You are " << age << " years old" << end]|;

}

The name and age inside the round brackets of the printDetails function
definition statement are known as parameters and contain values to be used by
the function. The parameters just store values from the calling function and are
not the same variables that are in the calling function. Although the parameter
names and values may be same as in the calling function variable names, but they

are different memory locations. The main purpose of the parameters is to receive
values for the functions.

copyright © 2021 www.onlineprogramminglessons.com For student use only

The main function call’s the preceding functions to run them and store the values
in its local variables and passes the stored variable values to the functions. Calling
a function means to execute the function. The values that are passed to the called
function from the calling function is known as arguments.

As stated previously variables inside a function are known as local variables and
are known to that function only. The name and age are local variables in the main
function but are also used as arguments to the printDetails function.

int main()

{
welcome();
string name = enterName();
int age = enterAge();
printDetails(name, age);
return 0;

Programming is all about storing values in variables and giving those values to
other functions so that they can process the data values.

Function prototypes are usually put into a header file. You should also do the
same. Make a file called C++ Header file called Lesson2.h and put in the include
statements and function prototypes as follows.

#include <iostream>
#include <string>
using namespace std;

void welcome();

string enterName();

int enterAge();

void printDetails(string name, int age);

copyright © 2021 www.onlineprogramminglessons.com For student use only

From the File menu select New then File

B “Main.cpp [CppLessons] - Code::Blocks 1712 - a8 X
|Bie| Ese Wiew Search Pioject Buid Debug Fomma widmth Took Toolse Pluging DogBlocks Setings Help
Empty fle s FlEEF MR gSs N n e[N

@ Open.. -0 Clazz.. vir+PEBR
Open with hex editor Project.. L o | o LalsC ~ |G N
Open default workspace Bildianpe
Recent projects *

Recent fles » ~
- Custom..
mpar projec e

B sweriie s Nassi Shneiderman dagrarm

LlEaie € | #include <atzing
Save project 7
Sove projectan & using namespace sta:

s
ST 16| void welcome():
Sove workspace 11 | string gemamen):
12| int gethge():
Sevemorkspace ..
e 13 | void printDetails(string neme, int age)
Srva wreryihing Cukshats |14
15 wold welcome()

O Closefile anw [0 o
Clese o8 iles cobshitW |17 | come <o wHelle Merids < endl;

Clese project 18
Close warkspace 19
20 string gesame(

& prink. e |3 = "
Export » N
Propertes.. b= =

@ auit Q| CodesBlocks x4 Sewchrewis X Ao X Buikdlog | ¥ Bukimessages x| / CopCheciNerat+ % /| ConCheck/vera++ messages % N Compe % Debuon P

Debug in Cpplessans (ssmpiler: CHU GIC Compiles
e Files (%6 |CoseSlocks; e tonsele runmer axes [reye)
erninated vith status 0 (0 minute(s), § seccad z)}
Creste s newfie ke Windows (CR+LF) WINDOWS-1252 Line 13, Col 1, Pox 182 Iner Modfied Resdicte defauk @

Select the C/C++ Header file type.

New from template

Projects Category: |<AII categories » V| | Go |
Build targets

Files E.:a [a aa ? Cancel

Custom
C/C++source D source Empty file Fortran source

User templates
@

Java source

View as

(® Large icons

(O List

TIP: Try right-clicking an item

1. Select a wizard type first on the left
2, Select a spedific wizard from the main window (filter by categories if needed)

3. Press Go

Press Go

copyright © 2021 www.onlineprogramminglessons.com For student use only

C/C++ header s

Welcome to the new CfC++ header file wizard!
m]l;“++ FILE This wizard will guide you to create a new CfC++ header file.

When you ‘re ready to proceed, please dick Text™...

lad]

Press Next
C/C++ header x

Please enter the file's location and name and
m]l!,ll""" FILE whether to add it to the active project.
Filename with full path:

Header quard word:

Add file to active project
In build target(s):

alosbug |
v | Release
All Mone

copyright © 2021 www.onlineprogramminglessons.com For student use only

Make sure the Debug and Release check boxes are checked before proceeding.
Select the filename browse button ... then type in Lesson2.h

BB select filename x
A <« lessons » cpp » Cpplessons » v | O Search Cpplessons F-l
Organize = New folder SEEER 0
Cpplessor Mame Date modified Type
bin bin 2018-01-0411:27 .. Filefolder
obj obj 2018-01-0411:27.. File folder
csharp
java
python
OEM

OneDriveTer
Perflogs
Program Files

Program File: ¥ < >

File name: | Lesson2.H -

Save as type: | C/C++ header files (*.h;* hpp;*.hiee ™ hh) ks

~ Hide Folders Cancel

Press Next
C/C++ header et

Please enter the file's location and name and
m ﬂfﬂ++ FILE whether to add it to the active project.
Filename with full path:
|C: Yessons\cpp\CpplessonsiLesson2. h |m

Header guard word:
|LESSON 2 H_INCLUDED |

Add file to active project
In build target{s):

dloebug |
v Release
All Mone

copyright © 2021 www.onlineprogramminglessons.com For student use only

Make sure Debug and Release are checked then Press Finish
Your Lesson2.h should look like this after typing in the function prototypes.

B Lesson2.h [CppLessons] - CodexBlocks 17.12 - X
Fle Edit View Search Project Buid Debug Fortran woSmith Tools Tools+ Plugins DoxyBlocks Settings Help
=T IEES [Q &3> % @ b PV LAY A |5
; e | MEBR
CEIERIEEIRY ; Ve L il [O]EA]| | laa|sCHl a4k
pmmase % Lesson2.cpp X | Lesson2h X<
4 Projects | Symbols | Fles b 1 3ifn 5
(O Workspace 2 D
=B Cpplessons 3
=B Sources 1
«] Lesson2.cpp 5
= B Headers 6
leson2h 7 using namespace std;
9 void welcome () ;
10 string getName():
11 int gethAge();
12 void printDetails(string name, int age):
13
14
15 fendif
16
< >
Logs &others X
| /) CoderBlods x| (Searchresults X | fj€ccc X | Gy Buildlog > | " Buld messa ges X | /| CppChedqVerat+ X | J} CppCheckVera++ messages X | J) Cscope x| £)Debuage ¥
~
ebug in Cpplessons (compiler: GNU GCC Compiler)---------------
AL Pp\CHl \bim\|
es (x0€)\CodeBlocks/ch console runner.exe \bin\Debug\Cp exe” (in C:\lessons\cpphCpplessens\.)
[Process terminated with status -1073741510 (0 minute(s), 24 second(s))
v
clo+ Windows (CR+LF) ~ WINDOWS-1252 Line5, Col 16, Pos 96 Insert Read/Wiite default @

#ifndef LESSON2_H_INCLUDED
#define LESSON2_H_INCLUDED

Are known as guards and allow the .h file only to be read once. Without the
guards the .h file may be read many times and resulting in duplicate function
declaration error messages.
The guard ends with

#endif
You now need to remove the include statements and function prototypes on the
top of the Lesson2.cpp file since they are no longer needed. You need to include
the Lesson2.h file at the top of your main.cpp instead like this:

#include "Lesson2.h"

So that the cpp file can read the function prototypes from the Lesson2.h file.

copyright © 2021 www.onlineprogramminglessons.com For student use only

P Lesson2.cpp [CppLessons] - CodexBlocks 17.12 - | X

File Edit View Search Project Build Debug Forran waSmith Toels Tools+ Pluging DoxyBlocks Settings Help

FREGI I UMAQARAEE > § O B e LA LAY A B
 <global> ™ VC?C:}“uEﬂBR
LA IIICIFIRY é oo L il |O]EA| | ECELY Y
Management X LessanZ.cpp %
4 | Projects | Symbols | Files P 1 A
OWurkspace 2
ildepl.essons 3 include "LessonZ.h"
= Sources 4
R L ccon2.cpp 5
=B Headers & void welcome ()
L[] Lessonzh 7 {
8 cont << "Hello World" << endl:
3 N
10
11 string getName()
12 {
13 cont << "Please type in your name: ";
14 string name;
15 cin >> name;
16 return name;
17
18
19 int getldge()
20 [v
< >
Logs & others X
4| J Code:Bocks X () Searchresults Jiceee % Gy Buildlog X H:"Bui\dmessages X | /| CppCheckiVera++ | J| CppCheck/Vera++ messages X| ficsab
o
Ci\lessons\cpp\CppLessons\Lesson2.cpp Cjc++ Windows (CR+LF) ~ WINDOWS-1232 Line1, Col1, Pos0 Insert Read/Write default &

It’s now time to comment your program. All programs need to be commented so
that the user knows what the program is about. Just by reading the comments in
somebody will know exactly what the program is supposed to do. We have two
types of comments in C++. Multi-line comments that are usually at the start of a
program or a function. They start with /* and end with a */ and can span multiple
lines like this:

/*
Program to read a name and age from a user and
print the details to the screen

*/

Other comments are for one line only and explain what the current or proceeding
program statement it is to do. The one-line comment starts with a // like this:

// function to read a name from the key board are return the value

We now comment the program. Please add all these comments to your program.

copyright © 2021 www.onlineprogramminglessons.com For student use only

/*
Program to read a name and age from a user and print
the details on the screen

*/
#include "Lesson2.h"

// function to print welcome message
void welcome()

{

cout << "Hello World" << endl;

}

// function to obtain a name from the keyboard
string enterName()
{

cout << "Please type in your name: ";

string name;

cin >> name;

return name;

// function to obtain an age from keyboard
int enterAge()
{

cout << "How old are you? ";

int age;

cin >> age;

return age;

// function to print name and age on screen
void printDetails(string name, int age)
{
cout << "Nice to meet you " << name << end|;
cout << name << " You are " << age << " years old" << end];

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

int main()

{
welcome(); // welcome user
string name = enterName(); // obtain a name
int age = enterAge(); // obtain an age
printDetails(name, age); // print out name and age
return 0;

C++ Lesson 2 Homework

Make a C++ program file called homework2.cpp that has functions to ask
someone what their profession title is, annual salary is and to print out the
information. Print out a message like this: "l am a Manager and | make $100,000
dollars per year! ". Use a string for the profession title variable. Use a double data
type for salary variable. You should have functions welcome, enterProfession,
enterSalary and printDetails(). Call all the functions from the main function. Put
your homework2.cpp file in a C++ project called Homework2.

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 3 CLASSES

Classes represent another level in program organization. They represent
programming units that contain variables to store values and functions to do
operations on these variables. This concept is known as Object Oriented
Programming and is a very powerful concept. It allows these programming units
to be used over again in other programs. The main benefit of a class is to store
values and do operations on them transparent from the user of the class. It is very
convenient for the programmers to use classes. They are like building blocks that
are used to create many sophisticated programs with little effort.

A class is first defined in a header file and implemented in a cpp file. A class
definition is similar to a function prototype but also contains variable and
constant definitions. A class starts with the keyword class and the class name.
Following the class definition are the constants and variables. Constants are
values once initialized never change and variables are used to store values that
can be changed. Constants and variables are usually private meaning they can
only used by the class internally. Private variables are a mechanism known as
encapsulation which means some one is using the class but does not know
anything about the internal variables, they are hidden from the user. Following
the variables are the constructor’s and functions. Constructors are used to
initialize the variables defined in the class, functions are used to access the
variables and to do operations on the variables. These operations may include
addition, incrementing etc. Functions define in a class are also known as methods.
To avoid confusion, we will call functions declared in a class to be called methods
and functions not belonging to a class still to be called functions. Constructors and
methods are usually public meaning this can be used externally by other methods.
Some methods may also be private, meaning that can only be used internally,
only by methods belonging to the class. The class definition ends with a
semicolon. Do not forget the semicolon!

copyright © 2021 www.onlineprogramminglessons.com For student use only

The class syntax as follows:

class class_name

{

private:
constant declarations
variable declarations

public:
constructor declarations
method declarations

}’.

As mentioned previously a class is like a user defined data type. But the class is
much more powerful because it can represent a value and have methods to do
things (operations) on its variables. A class specifies what variables and methods
an object is going to have, just like an architect designs plans for a house on paper
and defines how many rooms the house will have. When the house is built from
the plans it becomes a house object that some one could live in. When your
program runs memory is allocated for the variables defined in the class that was
specified in your program and the values live in the memory locations. When the
program runs the memory locations holding variables defined in the class are now
called objects. We will now define a Person class that has variables to store a
name and age and methods to do operations on them. These operations include
initializing retrieval, assighnment and output. Usually a class definition file is put in
a .h header file and the class implementation file is put into .cpp source file.

Make a new C++ header file called Person.h, and type the following code into it.
Make sure Debug and Release are checked before you press the Finish button.

#ifndef PERSON_H_INCLUDED
#define PERSON_H_INCLUDED

/*
Person Class to store a person's name and age
*/

#include <iostream>

copyright © 2021 www.onlineprogramminglessons.com For student use only

#include <sstream>
#include <string>
using namespace std;

// define a class Person
class Person
{
private:
string name;
int age;
public:

// initialize a default Person
Person();

// initialize Person
Person(string name, int age);

// return name
string getName();

// assign name
void setName(string name);

// return age
int getAge();

// assign age
void setAge(int age);

// return person info as a string
string toString();

b

#endif // PERSON_H_INCLUDED

copyright © 2021 www.onlineprogramminglessons.com For student use only

The Person class definition starts with the class key word and class name Person.
class Person{

Our Person class has 2 private variables to store person name and age.
private:

string name;
int age;

We make the variables private because we want them to be only access by our
class methods, nobody else.

The following constructor and methods are public because they will be used
externally by other methods. Next, we declare the constructor’s whose only
purpose in life is to initialize the variables in the class. We have many types of
constructors. Default, initializing and copy constructors. Default contractors
would initialize an object to a default value. An initializing constructor would
initialize an object to some know values passed to it. Initializing constructors are
also known as parameter constructors because they have parameters to receive
values. A copy constructor would copy values from an existing object.
Constructors are considered special methods. Methods that have the same name,
but different parameter lists are known as overloaded methods. This is the
default constructor declaration; no values are passed to it:

Person();

This is the initializing constructor, it gets 2 parameter values to initialize the object
with, a name and an age:

Person(string name, int age);

copyright © 2021 www.onlineprogramminglessons.com For student use only

We next declare the get and set methods. The get methods are known as getters
because the get and return values where the set methods are known as setters
because they assign values to the variables declared in the class, setters are also
known as mutators, meaning mutate values (change values).

string getName();

void setName(string name);
int getAge();

void setAge(int age);

Lastly, we have the toString method that return a string info about the class.

All classes should have toString() method.

string toString();

The class implementation file is put into a cpp file. Make a new C++ source file
called Person.cpp. Make sure Debug and Release are checked before you press
the Finish button or else they will not be compiled into the project.

Mew from template

Projects Ca

tegory: | <All categories >
Y

Build targets
Files
Custom

User templates c

h 8 B3 ¢ F

fC++ header [of{sE=FATG] D source Empty file Fortran source

Q@

Java source

TIP: Try right-dicking

3. Press Go

Type the following into the Person.cpp file

/*

an item

1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)

X

Cancel

View as
@ Large icons

(CList

Person Class to store a person's name and age

*/

copyright © 2021 www.onlineprogramminglessons.com For student use only

#include "Person.h"

// default Person
Person::Person()

{
this->name ="";
this->age = 0;

}

// initialize Person
Person::Person(string name, int age)

{
this->name = name;
this->age = age;

}

// return name
string Person::getName()

{

return this->name;

}

// assign name
void Person::setName(string name)

{

this->name=name;

}

// return age
int Person::getAge()

{

return this->age;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// assign age

void Person::setAge(int age)

{
this->age = age;

}

// return person info as a string

string Person::toString()

{
ostringstream sout;
sout << "Nice to meet you " << this->name << endl;
sout << this->name << " You are " << this->age << " years old" << end];
return sout.str();

The class implementation file starts with
#include "Person.h"

The Person.h file includes the Person class definition that the Person.cpp source
file needs to know about.

Each method name in the implementation file starts with Person:: the :: is known
as a resolution operator which tells the compiler which method belongs to which
class. The class implementation file uses another keyword called this that
indicates that a variable or methods belong to the defining class.

A constructor is used to initialize a class and has the same name as the class. The
following is the default constructor that initializes our Person class to some
default values.

// default Person
Person::Person() {
this->name ="";

this->age = 0;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

The programming statements inside the default constructor assign values to the
variables name and age having default value empty string and 0 age.

this->name ="";

this->age = 0;

The initializing constructor initializes the Person class to the name and age values
passed to it.

// initialize Person
Person::Person(string name, int age)
{
this->name = name;
this->age = age;

}

The programming statements inside the initializing constructor assign values to
the variables name and age from the parameters name and age.

this->name = name
this->age = age

The keyword this specifies which variables belongs to the Person class. The
parameter name and age just store values to be assigned to the Person class
variables and are not the same ones in the Person class. The this keyword
differentiates the variables defined in the class definition and the parameters.
Without using the this keyword the variables defined in the class would never be
initialized. Alternatively you could use different names for the parameter then the
this keyword is not necessary. It is probably better to use the this keyword since
you will always know which variables were defined in the class definition.

The get methods return the values of the variables defined in the class.
Get methods are also known as getters.

copyright © 2021 www.onlineprogramminglessons.com For student use only

// return name
string Person::getName()

{

return this->name;

}

// return age
int Person::getAge()
{

return this->age;

}

The this keyword indicate the variables that were defined in the class.

The set methods assign values the variables defined in the class. Set methods are
also known as setters or mutators.

// assign name
void Person::setName(string name)
{

this->name=name;

}

// assign age
void Person::setAge(int age){
this->age = age;

}

We use the this keyword to distinguish between a variable defined in the class
and the parameter since they both have the same name. The other alterative is to
use a different name for the parameter which most people do. Using the this
keyword is a more modern approach but may be too professional for most
people.

All classes should have a toString() method so that it can easily return the class
info as a string message.

copyright © 2021 www.onlineprogramminglessons.com For student use only

string Person::toString(){
ostringstream sout;
sout << "Nice to meet you " << this->name << end|;
sout << this->name << " You are " << this->age << "
return sout.str();

years old" << end|;

Inside we use the ostringstream class to store our info message. We instantiate a
ostringtream object by declaring the sout variable having the data type
ostringsteam. We use the sout variable just as we used the cout variable. This is a
handy situation to be in. The alterative is to use a string variable. The problem
with a string variable is that you cannot join string and numeric values. In order to
use a string variable, we would have to convert all numeric values to string values.
The ostringsteam class solves all our problems and can easily joining string and
numeric values together. The sout variable returns a string by calling the str()
method of the ostringstream class.

Usually a class definition must not contain any input or output statements. A class
must be a reusable program unit not dependent on any input or output print
statements. The purpose of the class is to contain information that can be easily
accessed. Therefore, our main function must provide all the input and output
print statements. We will use the input and output functions from our previous
program. Make a new C++ source file called Lesson3.cpp and type in the following
code.

/*
Program to read a name and age from a user and print
the details on the screen

*/

#include "Lesson3.h"
#include "Person.h"

copyright © 2021 www.onlineprogramminglessons.com For student use only

// function to print welcome message
void welcome()

{

cout << "Hello World" << endl;

}

// function to obtain a name from the keyboard
String enterName()
{

cout << "Please type in your name: ";

string name;

cin >> name;

return name;

// function to obtain an age from keyboard
int enterAge()
{

cout << "How old are you? ";

int age;

cin >> age;

return age;

int main()
{
welcome(); // welcome user
string name = enterName(); // obtain a name
int age = enterAge(); // obtain an age
Person p(name, age); // make person object
cout << p.toString() << endl; // print out name and age
return 0;

copyright © 2021 www.onlineprogramminglessons.com For student use only

Make a new .h header file called Lesson3.h and copy in the contents of Lesson2.h.
There is not much change needed to be made from the original Lesson2.cpp file.
Build and run the program, type Tom for name and 24 for age. You will get the
following output.

Hello World

Please type in your name: Tom
How old are you? 24

Nice to meet you Tom

Tom You are 24 years old

At the top of the Lesson3.cpp file We must include our person class definition or
else the compiler will not be able to know about the Person class.

#include "Person.h"
Much of them main function is not changed and can be used as is.
We create the Person class with the following statement:

Person p(name, age);
This calls the Person constructor of the person class to create the person object
and initialized with the values name and age. The mechanism that allocates
memory in the computer for the variables and method code defined in the class,
is known as instantiation. When a class is instantiated in computer memory it is
known as an object. When a class is written in a program then it is still known as a
class not an object. Objects are made from class definitions. We can make many
objects from the same class definition. Just like a builder can make many houses
from the same drawing.

The cout statement calls the toString() method to print out the Person info.

cout << p.toString() << end]l;

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can define a default Person object like this:
Person p;

It is just like declaring a variable like x
int x;

Except it is a Person variable p the variable p represents the Person object stored
in computer memory created from the class person. Always remember objects
are made from class definitions. Objects represent memory for the variables
declared in the class definition when the object is instantiated (created) from the
class definition.

Note the () are not included when instantiating a default person object. If you
include the round brackets then the compiler thinks you a declaring a person
default constructor not instantiating a default person object.

Things to do:

Declare and instantiate a default Person class called p2. Use the getters to obtain
values from Person p and the setters to assign values to Person p2. Then print out
the p2 Person class info using cout and the toString method. .Do this in your
Lesson3.cpp file.

LESSON3 HOMEWORK Question 1

Make an Profession class that stores an profession’s job title and salary. Use a
string for title and a double data type for salary. Make a default constructor and a
initializing constructor that receives a profession title and a salary. Make getters
and setters for title and salary. Make a toString() method that prints out the
profession details like this:

| am a Manager,
| make $100,000 dollars

copyright © 2021 www.onlineprogramminglessons.com For student use only

In your main function function instantiate a Profession object with a title and a
salary. Use the enterTitle() and enterSalary() function from homework 2 to get a
title and salary from the keyboard.

Also include a welcome () function that prints out what the program is suppose
to do. From the Profession object print out the title and salary using the getters.
Next change the profession title and salary using the setters and then print out
the profession object again.

You can put your main function in a file called Homework3.cpp. Make files
Profession.h and Profession.cpp for the Profession class.

INHERITANCE

The beauty of classes is that they can be extended to increase their functionality.
We can make a Student class that uses the public variables and methods from the
Person class. This is known as inheritance. The Student class can only access the
public variables and methods from the Person class. We have additional access
modifiers public, protected, and private. The default is private.

access modifier description example
Public Access by anybody public int age;
Protected Access by derived class protected int age;
Private Access by its own class only private int age;

A Student class will have an additional variable called idnum that will represent a
string student id number. Using inheritance, the student class will be able to use
the public variables and methods of the Person class. The Person class is known
as the super or base class and the Student class is known as the derived class.

Person Class

Student Class

copyright © 2021 www.onlineprogramminglessons.com For student use only

Inheritance is a one way street. The Person class knows nothing about the
Student class where as the Student class knows all about the Person class.

Create a new C++ header file called Student.h, make sure Debug and Release are
checked before pressing the finish button.

Create a class called Student that inherits from the Person class using the
following statement.

// define a class Student that inherits the Person class
class Student: public Person {

The colon : specifier and public keyword is used to define the inheritance
relationship. This means the Student class can use the public variables and
methods from the Person class. We now need to define a student id number
variable for the Student class.

// student id number
private:
string idnum;

We define a default constructor that will initialize the student name, age and
idnum to default values.

// default Student
Student();

We now define a constructor that will initialize the student name, age and idnum.

// initialize Student
Student(string name, int age, String idnum);

copyright © 2021 www.onlineprogramminglessons.com For student use only

The student ID getter and setters are as follows:

// return student id
String getIDnum();

// assign student id
void setIDnum(string idnum);

Lastly declare a toString method

// return student info string
string toString();

Here is the complete Student class definition:

#ifndef STUDENT_H_INCLUDED
#define STUDENT_H_INCLUDED

#include "Person.h"
class Student: public Person {
// student id number
private:

string idnum;

public:

// initialize Student
Student(string name, int age, string idnum);

// return idnum
string getlID();

// assign idnum
void setID(string idnum);

// return student info string
string toString();

b

#endif // STUDENT_H_INCLUDED

copyright © 2021 www.onlineprogramminglessons.com For student use only

Now make a C++ Source file called Student.cpp. Make sure Debug and Release are
checked before pressing the finish button. On the top of Student.cpp you will
need to include the Student.h file.

#include "Student.h"

The Student default constructor must also call the Person default constructor
using the initializing operator : so that the Person object also gets initialized. The
idnum of the Student class is initialized to the default value of 0.

Student::Student() : Person()
{

this->idnum = 0;

}

The Student initializing constructor must also call the Person initializing
constructor using the initializing operator : so that the Person object also gets
initialized. The name and age parameters of the Student constructor are passed
to the Person constructor so that the Person object can be initialized also. The
idnum of the Student class is initialized to the value inside the parameter idnum.

Student::Student(string name, int age, string idnum)
: Person(name, age)

{

this->idnum = idnum;

}

The colon : initializing operator calls the base constructor of the Person class to
create a Person object and transfer the name and age values from the parameters
name and age of the Student constructor. The idnum will be initialized in the
Student constructor.

Here are the Student setters and getters:

// return student id
String getIDnum()

{

return this->idnum;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// assign student id
void setIDnum(string idnum)

{
this->idnum=idnum;

}

The last thing you need to make the toString() method. By using the super class

name and resolution operator you can call methods directly from the super
Person class inside the Student derived class.

Here is the Student toString() method calling the Person super class toString
method to get all the common info.

// return student info as a string
string Student::toString()
{
string s = Person::ToString();
s +=" Your student id number is " + this->idnum;
return s;

}

Here is the complete Student.cpp file:

#include "Student.h"

Student::Student(string name, int age, string idnum)
: Person(name, age)
{
this->idnum = idnum;

}

// return idnum
string Student::getID()
{

return idnum;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// assign idnum
void Student::setID(string idnum)

{

this->idnum = idnum;

}

// return student info string
string Student::toString()

{

string sout = Person::toString();
sout +=" Your student id numberis " + this->idnum;
return sout;

}

Testing Student class:

Before testing the Student class we need to make a function to get a Student Id
from the keyboard.

// function to obtain a student ID from the keyboard
String enterStudentID()

{

cout << "Please type in your student ID: ";
string studentID;
cin >> studentID;
return studentiD;

Now we can get a student id from the keyboard using our enterStudentID()
function.
String idnum = enterStudentID();
Next make a default Student
Students;
Then make a initialized student
Student s2(name, age, idnum);

copyright © 2021 www.onlineprogramminglessons.com For student use only

Then print out the student

cout << s2.toString() << endl;

You should get something like this:

Please type in your name: Sue
How old are you? 26

Please type in your ID: S1234
Nice to meet you Sue

Sue You are 26 years old

Your student id number is $1234

Things to do:

Declare and instantiate a default Student class called s2. Use the getters to obtain
values from Student s and the setters to assign values to Student s2. Then print
out the s2 Student info using cout and the toString method. Do this in your
Lesson3.cpp file.

LESSON3 HOMEWORK Question 2

Make a Department class that is derived from your Profession class that stores a
department name. A department name is the department that the professional
works in like the sales department. Make a default constructor and an initializing
constructor that receives a profession title, salary and a department name. Make
getters and setters for the Department class. Make a toString() method that
prints out the department info like:

| am a Manager,

| make $100,000 dollars
and | work in the Accounting department.

copyright © 2021 www.onlineprogramminglessons.com For student use only

In your main function instantiate a Department object. In file Homework3.cpp
make an additional function called enterDepartmentName() that gets a
department name from the keyboard. Update the welcome function that
describes what the program is supposed to do.

From the Department object print out the department and title and salary using
the getter. Next change the department name using the setters and then print
out the department object again.

Make files Department.h Department.cpp and update file Homework3.cpp.

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 4 OPERATORS

Operators

Operators do operations on variables like addition + , subtraction — and
comparisons > etc. We now present all the C++ operators with examples. Make a
new C++ file called Lesson4.cpp. In your Lesson4.cpp file in the main function,
type out the examples and use cout statements to print out the results.
Arithmetic Operators

Arithmetic operators are used to do arithmetic operations on numbers like
addition and subtraction. You can type in the operation right inside the cout
statement just like this

cout << (3+2) << end|;

Alternatively, you can use variables instead like this:

intx=3;
inty=2;
cout<<x<< "+"<< y<<"="<< (x+y)<<endl;

Operator Description Example Result
+ Add two operands or unary plus 3+2 5
- Subtract right operand from the left 3-2 1

or unary minus -2 -2
* Multiply two operands 3*2 6
/ Divide left operand by the right one 5/2 2
% Modulus - remainder of the division of left 5% 2 3
operand by the right

Comparison Operators
Comparison operators are used to compare values. It either returns true or false

according to the condition. True and false variables and values are known as bool.
True has the value 1 and false has the value 0.

copyright © 2021 www.onlineprogramminglessons.com For student use only

bool b = false;
cout << b << endl; // would print out 0 (false)

You can print out true and false rather than 1 and 0 by using:

cout << boolalpha;
cout << b << endl; // would print out false rather than 0

You can type in the operation right inside the cout statement just like this:
cout << (5 > 3) << endl; // prints out 1 (true)

Alternatively, you can use variables instead like this:

x=3

y=2;

cout<< x<< ">"<< y<<"="<< (x>y)<<endl; // prints out 1 (true)

Operator Description Example Result

> Greater than 5>3 True
- true if left operand is greater than the right

< Less than 3<5 true
- true if left operand is less than the right

== Equal to - true if both operands are equal 5== True

1= Not equal to - true if operands are not equal | 5!=5 True

>= Greater than or equal to 5>=3 True
- true if left operand is greater than or equal
to the right

<= Less than or equal to 5<=3 True
- true if left operand is less than or equal to
the right

Logical Operators

Logical operators are the && (and), | | (or), ! (not) operators. Logical operators
form conditions. A Conditions joins two boolean values together using a logical
operator. Boolean values are either true or false. The condition is then evaluated
as true or false

copyright © 2021 www.onlineprogramminglessons.com For student use only

true && false
boolean_value logical operator boolean value

\ J
Y

condition

You can type in the condition right inside the cout statement just like this:
cout << (true && true) << endl; // prints 1 (true)
Alternatively, you can use variables instead like this:

bool bx = true;
bool by = false;

cout << bx << " && " << by << " =" << (bx && by) << endl; // prints out 1 (true)

use this to print out true or false
cout << boolalpha; // true

Operator Description Example Result
&& true if both the operands are true true && true true
| | true if either of the operands is true true | | false true
! true if operand is false I false true
false if operand is true I true false

Compound conditions

Compound conditions combine Logical operators and comparison operators to
together.

You can type in the operation right inside the cout statement just like this:

cout << (5> 3 && 3 < 7) << endl; // prints 0 (false)
cout<<(5>3 || 3<7)<<endl; // prints 1 (true)

copyright © 2021 www.onlineprogramminglessons.com For student use only

Alternatively, you can use variables instead like this:

3;
2

’

X
y
cout << (x==y || x<=y) << endl; // prints 0 (false)

todo:

Make a large compound condition using many logical and comparison operators
like this:

cout<<(x==y || x<=y&& x>y || x !=y) << endl; // prints 0 (false)
Do not copy ours, make your own!
Precedence

Precedence forces which operation is to be one first. Multiplication and division
has precedence over addition and subtraction.

intx=3+4*6=3+24=27

You can force which operation you want to do first using round brackets ()
Intx=(3+4)*6=7+6=13

Now the 3 + 4 get calculated first and the 6 is then multiplied.

In compound conditions | | (or) has precedence over && (and)

You can force which operation gets performed first by using round brackets
cout<<(x==y || (x<=y&& x>y) || x!=y) << endl; // true

Now the && operation will get evaluated first.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Bitwise Operators

Bitwise operators act on operands as if they were binary digits. It operates bit by
bit. Binary numbers are base 2 and contain only 0 and 1’s. Every decimal number
has a binary equivalent.

Every binary number has a decimal equivalent. For example:

decimal 4 is binary 0100
decimal 10 is binary 1010.

Binary numbers are calculated from power of 2 weights right to left.

Exponent 7 6 5 4 3 2 1 0
Powerof 2 | 128 64 32 16 8 4 2 1
Binary 0 0 0 0 1 0 1 0

To calculate the decimal equivalent of a binary number you just add up the
weights where a 1 is present.

8+2=10

The bit wise operators actually do logic operations on two numbers just like the
arithmetic operators add two numbers

These logical operations are represents by truth tables

The & (and) operator is only true if a and b inputs both are true

The | (or) operator is only true if either are true

The ” (xor) operator is only true if both are a and b are different false if both a
and b are same.

& (and) | (or) A (xor)
a B result a b result a b result
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

copyright © 2021 www.onlineprogramminglessons.com For student use only

The & | and ” bitwise operators actual return a calculate bit result accordingly to
the above truth table just like the adding and subtraction operators.

You can type in the operation right inside the cout statement just like this:
cout << (10 | 4) << endl; // prints out 14

Alternatively, you can use variables instead like this:
x=10

y=4
cout << (x | y) << endl; // prints out 14

Operator Description Example Result

& Bitwise AND 10& 4 1010 10 decimal
& 0100 4 decimal;

0000 0 decimal

Bitwise OR 10| 4 1010 10 decimal
| 0100 4 decimal;

1110 14 decimal

~ Bitwise NOT ~10 -11 (1111 0101 in binary)

A Bitwise XOR 1074 1010 10 decimal
A0100 4 decimal;

1110 14 decimal

~ Bitwise NOT ~10 ~1010 10 decimal

0101 5 decimal

Shift operators
The shift operators multiply by powers of 2 or divide by powers of 2.

Multiplying is accomplished by shifting the bits left. Dividing by 2 is accomplished
by shifting the bits right.

copyright © 2021 www.onlineprogramminglessons.com For student use only

int x = 10; (0000 1010 in binary)
inty=x<<2; y=10%*2%*2=40(0010 1000 in binary)
intz=y>>2; z=40/2 /2 =10 (0000 1010 in binary)

You can shift by any power of 2

Multiplying by powers of 2:

X=4;

cout<<x<<end; //4

X=X<<2;

cout<<x<<end; // 16 because 4*2*2=16
Dividing by powers of 2:

cout<< x<<end;//8

X=X>> 2;
cout<<x<<end;//16/2/2=2

<< Bitwise left shift 10<<2 10*2*2=40
(0010 1000 in binary)
>> Signed Bitwise right | 40 >> 2 40/2/2=10
shift (0000 1010 in binary)

Increment/Decrement Operators ++ --

Increment operators ++ increment a variable value by 1 and decrement operators
-- decrement a value by 1.

They come in two versions, prefix increment/decrement value before
or postfix increment/decrement value after.
Prefix Increment before : y=++x ;

copyright © 2021 www.onlineprogramminglessons.com For student use only

x is incremented then value of y is assigned the value of x

X =5;
cout<<x<<endl; //5
Yy =++X;
cout<<y<<endl; //6
cout<<x<<endl; //6

postfix increment after y = x++

The value of y is assigned the value of x and then x is incremented

Xx=5;
cout<<x<<endl; //5
Y =X++;
cout<<y<<endl; //5
cout<<x<<endl; //6

copyright © 2021 www.onlineprogramminglessons.com For student use only

prefix Decrement before y =--x

x is decremented then value of y is assigned the value of x

X =5;
cout<<x<<endl; //5
Y =X

cout<<y<<endl; //4
cout<<x<<endl; //4

postfix decrement after vy = x--

The value of y is assigned the value of x and then x is decremented

X y
intx=5 5
y = X-- 4
Xx=5;
cout<<x<<endl; //5
Y =X--;

cout<<y<<endl; //5
cout<<x<<endl; //4

Increment decrement operators are usually used stand alone to increment or
decrement a variable value by 1.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Assignment Operators

Assignment operators are used in C++ to assign values to variables.

x =5 is a simple assighnment operator that assigns the value 5 on the right to the
variable a on the left. There are various compound operators in C++ like x += 5
that adds to the variable and later assigns the same. It is equivalent to x = x + 5.

intx=>5;

X+=5;

cout << (x) << endl; // 10
cout<< “x+=5=“<<x<endl;

Operator Compound Equivalent
= x=5 x=5

+= X+=5 X=Xx+5
-= x-=5 X=X—5
*= X *¥=5 Xx=x%*5
= X /=5 Xx=x/5
%= X %=5 X=X%5
A= x/N=5 x=x"5
&= X&=5 X=x&5
= X|=5 Xx=x]|5
<<= x<<=5 X=Xx<<5
>>= x>>=5 X=Xx>>5

Lesson 4 Homework to do Part 1

1. Print out if a number is even, using just a print statement and a arithmetic
operator

2. Print out of a number is odd, using just a print statement and a arithmetic
operator

copyright © 2021 www.onlineprogramminglessons.com For student use only

3. Swap 2 numbers using a temporary variable. Print numbers before and
after swapping.

4. Multiply a number by 8 using the shift operator. Print numbers before and
after shifting.

5. Divide a number by 8 using a shift operator. Print numbers before and after
shifting.

6. In a print statement, add 2 numbers together and check if they are less
than multiplying them together.

7. In a print statement, add 2 numbers together and check if they are less than
multiplying them together and greater then multiplying them together.

In a print statement, add 2 numbers together and check if they are less than
multiplying them together or greater then multiplying them together.

string Operators

String operators operate on string objects. To use strings you need to add
#include <string>

on the top of your cpp file to use strings.

There are many string operations, most of them are method calls. Here are just a
few of them:

// declare and assign string
string s1 = "hello";
string s2 = "there";

// join two strings together
string s3 =s1 +s2;
cout << s3 << endl; // hellothere

copyright © 2021 www.onlineprogramminglessons.com For student use only

// get a character from string
char c =s3[0];
cout<<c<<endl; //h

// get length of a string
unsigned int length = s3.length();
cout << length << endl; // 10

//get a sub string start index and length
string s4 = s3.substr(0,5);
cout << s4 << endl; // hello

//get a sub string from start index to end of string
string s5 = s3.substr(5); // prints out last letters from index 5
cout << s5 << endl; // there

// add a character to a string
string s6 = s3.substr(0,5)+ 'X' + s3.substr(5);
cout << s6 << endl; // helloXthere

// test if 2 strings are equal
cout << (s1 == s2) << endl; // false

// test if 2 strings are greater
cout << (s1 > s2) << endl; // false

// test if 2 strings are less

cout << (s1 < s2) << endl; // true

// test if 2 strings are less greater or equal
//-1=less 0=equal 1=greater

cout << (sl.compare(s2)) << endl; // -1
cout << (s2.compare(sl)) << endl; // 1

// get index of a char

int index = s6.find('X');
cout << index << endl; // 5

copyright © 2021 www.onlineprogramminglessons.com For student use only

// get index of a string
int index2 = s6.find("there");
cout << index2 << endl; // 6

// replace a string start position and length
s6.replace(0,5,"goodbye");
cout << s6 << endl; // goodbyeXthere

// remove a string start position and length
s6.erase(0,7);
cout << s6 << endl; // Xthere

// find and replace start, length and newstring
s6.replace(s6.find("there"),5,"files");
cout << s6 << endl; // X files

Lesson 4 Homework to do Part 2

8. Make a string of your favourite word and replace the first letter with
another letter, hint use substring or replace.

Example : change “hello” to “jello”

9. Make a string of your favourite word and replace the last letter with
another letter, hint use substring or replace

Example : change “jello” to “jelly”

10. Make a string of your favourite word and remove the middle letter, hint
use substring or replace.

Example : change “jelly” to “jely”

11. Using substr replace the last letter with the first letter in a word, do not
use a temporary. Hint use length and many substr’s.

Example : change “jely” to “yelj”

copyright © 2021 www.onlineprogramminglessons.com For student use only

12. Compare any of the two above strings are equal, greater or smaller to
each other.

13. Make a string of your favorite words and find the index of some of your
favorite letters. Once you find the index of your favourite letters erase the
letters then print out the string, see what new word you get!

Put all your homework in a file called homework4.cpp

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 5 PROGRAMMING STATEMENTS

Programming statements allow you to write complete C++ Program. We have
already looked at simple input, print and assignment statements. We now present
you with branch and loop programming statements. Continue with C++ file
Lesson4.cpp and try out all these branch loop statements one by one. Once you
see the program execution you will understand how theses branch and loop
statements work. You may also want to add some extra statements of you own.

Branch Control Statements

Branch control statements allow certain program statements to execute and
other not.

The if branch control statements contain a condition using conditional operators
from the previous lesson to direct program flow.

If (condition)
Statement(s)

When the condition is evaluated to be true the statements belonging to the if
statement execute. An if statement is a one-way branch operation.

// if statement

X =5;
if (x ==5)
{

cout << "xis 5" << endl;

Xis5

copyright © 2021 www.onlineprogramminglessons.com For student use only

If you have more than one statement in your if statement then you need to use
curly brackets so all statements get executed.

if (x >= 5) xis 5
{ X is greater or equal to 5
cout << "xis 5" << endl;
cout << "x is greater or equal 5" << end|;

}

Some people use curly brackets all the time.

We now add an else statement. An if-else control construct is a two-way branch
operation.

If (condition)
statements

else
statements

// if — else statement
X=2;
if (x ==5)
cout << "x is 5" << end|;
else
cout << "x is not 5" << end|;

Xisnot5

We can also have additional else if statements to make a multi-branch.

// multi if else
x =10;
if (x ==5)
cout << "x is 5" << end|;
else if (x < 5)

copyright © 2021 www.onlineprogramminglessons.com For student use only

cout << "x less than 5" << end|l;
else if (x > 5)
cout << "x greater than 5" << endl;

x greater than 5

Our multi branch if-else can also end with an else statement.

// multi if-else else
X =5;
if (x<5)

cout << "x less than 5" << end|l;
else if (x > 5)

cout << "x greater than 5" << end|;

Xis 5

else
cout << "x is 5" << end|;

If-else statements may be replaced by a switch statement. A switch statement is
considered an organized if-else statement. It is a little limited since if can only
handle equals. When the case values matched the switch value the statements in
the case execute. The break keyword exits the switch statement. The default
statements are executed of there is no match.

// switch statement

X=2;
switch(x)
{
case 1:
cout << "xis 1" << endl;
break;
case 2:
cout << "x is 2" << end|;
break;

copyright © 2021 www.onlineprogramminglessons.com For student use only

case 3:
cout << "x is 3" << end|;
break;

default:
cout << "xis " << x << endl;
break;

Xis 2

if statements can also be nested to make complicated conditions simpler.
You need to add curly brackets to avoid confusion for which statements will be
executed.

// nested if statement
X =5;
if (x >=0)
{
if (x > 5)
cout << "x greater than 5" << endl;
else
cout << "x less than equal 5" << end];

}

cout << "l like C++ Programming" << end|;

x less than equal 5
| like C++ Programming

Loop Control Statements
Loop control statements allow program statements to repeat themselves.
while loop

The while loop allows you to repeat programming statements repeatedly until
some condition is satisfied.

copyright © 2021 www.onlineprogramminglessons.com For student use only

The while loop requires an initialized counter, a condition, program statements
and then increment or decrement a counter. The while loop syntax is:

Initialize counter

while condition:
statement(s)
increment/decrement counter

When the condition is false the loop execution exits. While loops are used when
you do not know how many items you have.
Here is a while loop that prints out the numbers 0 to 4;

// while loop

x=0; 0

while (x <5) 1

{ 2

3

cout << x << endl; 4
X++;

}

To do:

Make the while loop print out the numbers 1to 5
Make a while loop that prints out the number 5 to 1 backwards.

do loop

The do loop also known as a do-while loop allows you to repeat programming
statements repeatedly until some condition is satisfied. The condition is at the
end of the loop, so the programing statements execute at least once.

The do loop requires an initialized counter, program statements, increment or
decrement a counter and finally a condition.

copyright © 2021 www.onlineprogramminglessons.com For student use only

The do loop syntax is:

Initialize counter

do{
statement(s)
increment/decrement counter

}

while condition;

When the condition is false the loop execution exits.
do loops are used when you do not know how many items you have.

Here is a do loop you can try out that prints out the number 5 to 1 backwards.

// do loop

x=0; 0

do 1

{ ;
cout << x << endl; 4
X++;

} while (x < 5);

To do:

Make the do loop print out the numbers 1to 5
Make a do loop that prints out the number 5 to 1 backwards.

for Loop

Another loop is the for loop. It is much more automatic then the while loop but
more difficult to use. All loops must have a counter mechanism. The for loop
needs a start count value, condition, increment/decrement counter. When the
condition is false the loop exits. For loops are used when you know how many
items you have.

copyright © 2021 www.onlineprogramminglessons.com For student use only

The for loop syntax is:

for (start_count_value,condition, increment/decrement_counter):
Statement(s)

Here we have a for loop to print out values 1 to 5, try it out.

// for loop
for (int i=;i<5;i++)
cout << i<<endl;

A WN RO

todo: Make the for loop print out the numbers 1to 5

Here is a for loop that counts backwards using a negative increment

// for loop counting backward
for (int i=4;i>=0;i--)
cout << i << endl;

O FRLr N WPH

todo: Make the for loop prints out the number 5 to 1 backwards.

Nested for loops

Nested for loops are used to print out 2 dimensional grids by row and column.

// nested for loop
for (int r=0;i<5;r++)

1:12345

{ 2:12345
cout<<r<<":"; 3:12345
for (int ¢ =0; c < 5; c++) 4:12345

{ 5:12345

cout<< c<<"";

}

cout << endl;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

To do: change the rows and columns and see what you get

Loops can also be used to print out characters in a string variable

// print out characters in a string

H
s = "Hello"; e
for (unsigned int i=0;i<s.length();i++) :
{ o

cout << s[i] << endl;

}

cout << end|;
to do: printout string back wards
Replace all occurrences of a string with another string:
string s = "tomorrow";
string snew = "xxx";
while(s.find("0") != std::string::npos) {

s.replace(s.find("0"),1,snew);

cout <<s<<endl; // tXXxmxxxrrxxxw

Lesson 5 HOMEWORK TO DO:
Exam Grader
Ask someone to enter an exam mark between 0 and 100. If they enter 90 or

above printout an “A”, 80 or above print out a “B”, 70 or above print out a “C”,
60 or above print out a “D” and “F” if below 60. Hint: use if else statements.

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can visualize a grade chart like this:

Mark Range Exam Grade
90 to 100 A
80 to 89 B
70to 79 C
60 to 69 D
0to 59 F

Mini Calculator

Make a mini calculator that takes two numbers and a operation like -, +, * and /.
Prompt to enter two number’s and a operation like this:

Enter first number: 3

Enter second number: 4

Enter (+, -. *. /) operation: +

Then print out the answer like this:

3+4=7

Hint: use a switch statement.

Use a while or do while loop so that they can repeatedly enter many calculations.
Terminate the program when they enter a letter like ‘X’ for the first number.

Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only

Ask the user how many rows they want.
Hint: use 2 nested for loops, start with a square of stars
Enhanced Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

*
% %k %
%k ok %k ok k
% %k %k % %k ¥ %
k %k %k %k %k %k k k %k

Ask the user how many rows they want.

Hint: use 2 nested for loops, start with a square of stars

Reverse a String

Reverse a String using a while loop or a for loop. Print the string before and after
reversal.

Test if a number is prime

Make a function called isPrime(x) that tests if a number is print. In a loop divide
the number between 2 to number-1 (or 2 to square root of number+1. For square
root use:

x = (int)sqrt(n);

put
#include <cmath>

At the top of your program so that the C ++ compiler can recognize the sqrt
function.

copyright © 2021 www.onlineprogramminglessons.com For student use only

If the number can be divided by any of the divisors then the number is not prime,
else it is prime. Print out the first 100 prime numbers.

The first 10 prime numbers are: 2, 3,5, 7,11, 13,17, 19, 23, and 29

Print out all factors of a number

Make a function call factors(x) that will print out all the factors of a number. The
factors of a number is all the divisors divided by the number evenly.
Example:

The Factors of 50 are:
1

2

5

10

25

50

Print out all prime factors of a number

Make a function call prime_factors(x) that will print out all the prime factors of a
number. The prime factors of a number is all the prime number divisors divided
by the number evenly.

Example: 12=2x2x3
Following are the steps to find all prime factors.

0) Enter a numbern
1) While n is divisible by 2, print 2 and integer divide n by 2
2) Inaforloop fromi=3to square root of n +1 increment by 2
in a while loop while n is divisible by i
print i
integer divide n by integer i

3) print nifitis greater than 2.

copyright © 2021 www.onlineprogramminglessons.com For student use only

For square root use:
X = sqrt(n);

put
#include <cmath>

At the top of your program so that the C ++ compiler can recognize the sqrt
function.

Make a Guessing game

Ask the user of your game to guess a number between 1 and 100. If they guess
too high tell them “Too High”. If they guess too low tell them they guess “Too
Low”. If they guess correct tell them “Congratulations you are Correct!”. Play 10
games as a round. Keep track in an array how many tries each game took. At the
end of 10 games in a table print out the tries for each game in the round. At the
end of the table print out total score of all the game tries. For each round keep
track of the lowest total score and inform the user if they beat the current lowest
score or not. At the end of each round ask the user if they want to play another
round of 10 games. You will need to first generate a random number to guess.

You can use this code to generate a random number:

// seed random number generator
srand((unsigned int)time(0));

// generate a random number
int number = rand() % MAX_NUMBER + 1;

Where MAX_NUMBER is a constant placed at the top of your program.
const int MAX_NUMBER = 100;
Also make another constant MAX_GAMES for the number of games to play.

const int MAX_GAMES = 10;

copyright © 2021 www.onlineprogramminglessons.com For student use only

You will need to include the following at the top of your program, for the compiler
to recognize the srand(), rand() and time() functions.

#include <ctime>
#include <cstdlib>

You should have functions to print a welcome message explaining how to play the
game, generate a random number, get a guess from the keyboard, check if a
guess is correct and print out the game scores. The main function should just call
your functions in a loop. Call your cpp file Homework5.cpp or GuessingGame.cpp

Object Oriented Guessing Game

Make a Guess Game class that will keep track of the guess number and tries per
game. You should have a methods to generate a random number, check if a
guess is correct, too low or too high and return the score per game. The main
function should just handle inputs from the keyboard and printing output to the
console. The GuessGame class should not handle any input and output, and is
used, mainly to store data. The main function would instantiate a new
GuessingGame object per round. The main would have an array of 10 Game
Objects. After all games have been played print out the scores of each game and
the average game. Also print out the game with the best score. Call your cpp file
Homework5b.cpp or GuessingGame2.cp

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 6 ARRAYS

Arrays store many sequential values together. We have one dimensional arrays
and multi dimensional arrays. One dimensional arrays are considered a single row
of values having many columns. You can visualize a one-dimensional array as
follows. Array are sequential values under a common name.

valuel value2 value3 valued value5

We declare and initialize 1 dimensional int array of size 5 as follows.
The size of the array is enclosed inside the square brackets.

int a[5] ={1,2,3,4,5};

1 2 3 4 5

We next declare a one-dimensional array of size 5 not initialized with values.
int a2[5];

In this situation you need to assign values separately as follows:
Arrays locations are assigned by an index. All indexes start at O.

a2[0] = 1;
a2[1] = 2;
a2[2] =3;
a2[3] =4;
a2[4] =5;
1 2 3 4 5

Arrays locations are also retrieved by an index. Index starts at 0

int x = a[0];
cout << x<<endl; //1

copyright © 2021 www.onlineprogramminglessons.com For student use only

We can also allocate memory for arrays when the program is running;
int* a3 = new int[5];

a3 is known as a pointer because it holds the address of the allocated memory for
the array. (points to the allocated memory)

You also access the allocated memory by index
a3[1] =2;
int x = a3[1];
cout << (x)<<endl; //2

or by the pointer dereference operator *
*(a3+1) = 2;
int x = ¥(a3+1)

cout << (x)<<endl; //2

Once you are finished using the allocated array you need to reclaim the memory,
so other programs can use the memory

delete[] a3;

We can use for loops to print out values in array.

// print out values in a 1 dimensional array

for (int i=0;i<5;i++) 12345
{

cout << a2fij<<"";
}

cout << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

Two-dimensional arrays

Two-dimensional arrays have grid of rows and columns. A two-dimensional array
having 3 rows by 4 columns is visualized as follows:

Row1l |columnl column 2 column 3 column 4
Row 2 |columnl column 2 column 3 column 4
Row 3 |columnl column 2 column 3 column 4

Here we declare and initialize a two-dimensional int array. We specify the number
of rows and columns inside square brackets..

int b[3][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};

1 2 3 4
5 6 7 8
9 10 11 12

We can also allocate memory for a 2 dimensional array. We first make a 1
dimensional array of int pointers for the number of rows.

int** b2 = new int*[3]; // declare number of row pointers

We have declared a 1-dimensional array to hold int pointers. Each
row pointer will point to a additional 1-dimensional array of int columns

b2[0] = new int[4];
b2[1] = new int[4];
b2[2] = new int[4];

We next assign values to the two-dimensional array by row index and column
index . The row index first and the column index second. The row and column
index’s start at O;

b2[2][3] = 11;

We retrieve values from the two-dimensional array also by row index and column
index. The row index is first and the column index second.

copyright © 2021 www.onlineprogramminglessons.com For student use only

The row and column index’s start at O;
x = b2[2][3];
cout << x<<endl; //11

The row index and column index of a two-dimensional array can be visualized as
follows. The row index is first and the column index second. The row and column
index’s start at O;

[0][0]

[0][1]

[0][2]

[0][3]

[1][0]

[1][1]

[1][2]

[11[3]

[2][0]

[2][1]

[2][2]

[2][3]

// print out values in a two-dimensional array
for (int r=0;r < 3; r++)

{
for (int c=0;c < 4; c++)
{ 1234
cout << b[r][c] << " "; 5678
} 9101112
cout << endl;
}

Delete memory from an allocated 2-dimensional array.

We first delete memory for each row and then delete memory for the array
storing the row pointers.

for (int r=0;r < 3; r++)
{
delete[] b2[r]
}

delete[] b2;

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 6 HOMEWORK

Question 1

Make an array of 10 numbers 1 to 10, print out the numbers in the array,
then add up all the numbers and print out the sum.

Question 2

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Ask the user of your program to enter a number in the array. Search for the
number in the array and report if it is found or not found.

Question 3

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Reverse all the numbers in the array. Print out the reversed array.

Question 4
Make a 2 dimensional array of 3 rows and 3 columns. Fill the 2 dimensional
array with numbers 1 to 9. Add up the sum of all rows, and print the sum

at the end of each row. Add up the sums of all columns, and print the sums
at the end of each column.

Your output should look like this.

101317

copyright © 2021 www.onlineprogramminglessons.com For student use only

Question 5

Make an array to hold 10 numbers.

Generate 1000 random numbers between 1 and 10.

Keep track of the random numbers counts generated in your array.
Print out the counts of the numbers 1 to 10;

Print out the numbers with the smallest and largest count and number.
Print out the number of even and odd number counts and number.
You can make a random number like this:

#include <ctime>
#include <cstdlib>

srand((unsigned int)time(0));
int x = (rand() %10) + 1;

Put all answers in a cpp file called homework6.cpp

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 7
COPY CONSTRUCTORS, ASSIGNMENT OPERATORS AND OVERLOADING

We continue with our Person class from previous lessons having a name and age.
class Person

{

private:
string name;
int age;
public:
Person(); // default constructor
Person(string name, int age); // parameter constructor
string getName();// return name
void setName(string name); // assign name
int getAge();// return age
void setAge(int age); // assign age
string toString(); // return person info as a string
b
const
The const keyword means cannot change a value once it is set.
const int SIZE = 100;
The constant variable SIZE is set to the value 100, and cannot be changed.
Object user data types can also be declared constant.

const Person p;

This means the variables of the person values cannot be changed.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Functions can also be const, especially getters.
string getName() const;

This means you cannot change the variables defined in the Person class that are
inside the getName() method.

To do:

Make all your getters in your Person and Student class to be const.

Constructor with Default Parameters

A constructor with default constructor acts as both as an default constructor and
a initializing constructor. Each parameter in a constructor with default values gets
a default value.

Person (strong name="", int age=0);

You do not put the default values in the implementation, just in the header.
Person::Person(string name, int age)
{

this->name = name;
this->age = age;

Important: When you have a Constructor with default values you ,must remove
the default constructor.

Copy Constructors

A copy constructor allows you to copy the values of an existing object. You make

a copy constructor by supplying a constructor with a reference to an existing
object.

copyright © 2021 www.onlineprogramminglessons.com For student use only

We declare a copy constructor for a Person class defined a previous lesson like
this:
Person(const Person& p);

We define a copy constructor for our Person class like this:

Person::Person(const Person& p)

{

name = p.name;
age = p.age;

The const key word means the parameter p Person object passed to the copy
constructor cannot be modified. This means you are not allowed to change the
values of the Person object p. We pass Person object p by reference using the &
(ampersand). Pass by reference means the copy constructor receives a fixed
address to the passed Person object. A reference is different from a pointer. A
pointer stores an address that can be changed. The address that the pointer is
pointing to, can be changed by the program, where as the address of a reference
cannot be changed and is said to be a fixed address.

You would use a copy constructor like this:

First make some Person object.
Person p("Tom",24);

Make a second Person object p2 using the copy constructor.
Person p2(p);

Person object p2 will now have the values of Person object p;

If you print out the object using the toString() method from p2 the output would
look like this:

Nice to meet you Tom
Tom You are 24 years old

copyright © 2021 www.onlineprogramminglessons.com For student use only

Our Person class definition with a copy constructor would now look like this.

class Person
private:
string name;
int age;

public:

Person(string name="", int age=0); // parameter constructor
Person(const Person & p); // copy constructor

string getName() const;// return name

void setName(string name); // assign name

int getAge()const;// return age

void setAge(int age); // assign age

string toString(); // return person info as a string

b
To Do:

Update your Person.h and Person.cpp files to include a copy constructor. Make a
new cpp file call Lesson5.cpp and make a Person object p with some hard coded
values. Then print out the person object details. Next copy the Person objects p
using the copy constructor. Now print out the copied object p2. The outputs
should be the same. Lastly using the set name and age functions on copied Person
object p2 change the name and age. Now print out the p and p2 again. The
output should be different now because they are both separate Person objects.

Assignment operator =

An assignment operator lets you assign or copy another object to an existing
object. The difference between a copy constructor and an assignment operator is
that an assignment operator copies an existing object to an existing object where
as copy constructor copies an existing object to a new object. For convenience
the assignment operator uses the operator assignment symbol ‘=’.

copyright © 2021 www.onlineprogramminglessons.com For student use only

This is the same assignment operator used to assign a value to a variable like:

int x;
X =5;

The only difference is we will be assigning an object values to another object.

Person p;
p = Person("Tom",24);

We declare an assignment operator for a Person class like this:
Person& operator = (const Person& p);
We define an assignment operator for the Person class like this:

Person& Person::operator = (const Person& p)

{
if (this 1=&p)
{
name = p.name;
age = p.age;
}
return *this;
}

The assignment operator is similar to the copy constructor, in that they both
receive a const Person object passed by reference, and they both assign values to
the receiving object which is this. The keyword this is a pointer to the current
object variables being acted upon.

We do not want the current object to copy itself so the following if statement is
used.

If(this 1= &p)

copyright © 2021 www.onlineprogramminglessons.com For student use only

The if statement means do not execute the following statements if the current
object address is equal to the address of the receiving Person object p. The
variable this is a pointer to the current object and &p is the address of the
receiving object. The & means address of a variable or address of object variable
like p in our case.

If they are different Person object addresses then the if statement is executed
and the current object will be assigned new values.

If(this 1= &p)
{

name = p.name;
age = p.age;

Note a reference to the current executing object is returned. A reference is return
for convenience so that other objects may want to be assigned to in a chain like
this.

p3=p2=pl;
You use an assignment operator like this
First make some Person object.

Person p("Tom",24);

You first need to declare a Person object before you can use the assignment
operator. If you do not then the copy constructor is called instead.

Person p2;
Next assign Person p to Person p2 using the assignment operator.
p2 = p;

Person object p2 will now have the values of Person object p;

copyright © 2021 www.onlineprogramminglessons.com For student use only

If you print out the object using the toString() method from p2 the output would
look like this:

Nice to meet you Tom
Tom You are 24 years old

Our Person class definition with an assignment operator would now look like this.

class Person
private:
string name;
int age;

public:

Person(string name="", int age=0); // parameter constructor
Person(const Person & p); // copy constructor

Person& operator= (const Person & p); // assignment operator
string getName()const;// return name

void setName(string name); // assigh name

int getAge()const;// return age

void setAge(int age); // assign age

string toString(); // return person info as a string

b

To understand the assignment operator think that the = sign is just a method
name

p2 = p;
which really means
p2.=(p); or p2.operator=(p);

Which assign the values of p to p2;

copyright © 2021 www.onlineprogramminglessons.com For student use only

Operators are used for convenience because we want to write a program that is
more natural to use like this:

p2 =p;
Which assigns the values of person object p to person object p2;
To Do:

Update your Person.h and Person.cpp files to include an assignment operator. In
your cpp file called Lesson5.cpp make a Person object p with some hard coded
values. Then print out the person object details. Next assign the Person object p
to p2 using the assignment operator. Now print out the copied object p2. The
Output should be the same. Lastly using the set name and age functions on
copied Person object p2 change the name and age. Now print out the p and p2
again. The output should be different now because they are both separate Person
objects.

Equal operator ==
The equal operator == return true if 2 objects have equal values otherwise false.

This is the same as using the variable equal = operator used to check if two
variables are equal like:

intx=5;
inty=4;
if(x==y)

The only difference is we will be checking objects if they contain equal values
variables.

Person p1 = Person(“Tom”,24);

Person p2 = Person(“Sue”,32);
if(p1 == p2)

copyright © 2021 www.onlineprogramminglessons.com For student use only

We declare an equal operator for a Person class from like this:
bool operator ==(const Person& p);
We define an equal operator for the Person class like this:
bool Person::operator== (const Person& p)
{
if (name == p.name && age == p.age)
return true;

else
return false;

The equal operator is similar to the assignment operator, in that they both receive
a const Person object passed by reference. The difference is the equal operator
return a bool data type bring true or false.
You use an equal operator like this:
First make some Person object.

Person p("Tom",24);

Then make a second Person object p2.

Person p2("Sue",32);

if(p ==p2)

cout << "p is equal to p2" << endl;
else

cout << "p is not equal to p2" << end];

p is not equal to p2

copyright © 2021 www.onlineprogramminglessons.com For student use only

Our Person class definition with an equal operator would now look like this.

class Person
private:
string name;
int age;

public:

Person(string name="", int age=0); // parameter constructor
Person(const Person & p); // copy constructor

Person& operator= (const Person & p); // assignment operator
bool operator== (const Person & p); // equal operator

string getName()const;// return name

void setName(string name); // assigh name

int getAge()const;// return age

void setAge(int age); // assign age

string toString(); // return person info as a string

I

To understand the equal operator think that the == sign is just a method name.
If (02 == p)

which really means
if(p2.==(p)) or if(p2.operator==(p))

Check’s if the values of p are equal to the values of p2;

We use operators for convenience because we want to write a program that is
more natural to use like:

If (02 == p)

Check’s if the values of p are equal to the values of p2.

copyright © 2021 www.onlineprogramminglessons.com For student use only

To Do:

Update your Person.h and Person.cpp files to include an equal operator. In your
cpp file called Lesson5.cpp make a Person object’s p and p2 with some hard
coded values. Then print out the each person object’s details. Use the equal
operator to test if both objects contain the same value. You may also want to use
a copy constructor and assignment operator for some additional testing.

C++ Overloaded Operators

The following chart is a list of available C++ operators. They are called overloaded
operators because they overloads the arithmetic operators +-*/% <> etc.

+ - * / % A
~ |) =
< > <= >= ++ -
<< >> == I= && | |
+= -= /= %= A= &=
= | = [<=] > 10 | 0
-> ->* new new [] || delete |delete []

You may want to try a few out for curiosity.
Friend functions

Friend functions allow other functions not belonging to a class to access the
private variables of some class.

A friend function is declared with the friend keyword in a class to let the compiler
know this function can access the private variables of this class. The friend
function code is defined outside a class. Friend functions are just ordinary stand
alone functions, not belonging to any class.

The << and >> operator’s used in cout and cin can also be overloaded so that the
Person class can use them to print out or receive info from your class.

copyright © 2021 www.onlineprogramminglessons.com For student use only

A friend function takes two parameters because the friend function does not
belong to a class and therefore does not have a pointer pointing to the current
object.

A friend function to overload the << operator to print out the contents of a
Person object would be declared like this.

friend ostream& operator << (ostream& out, const Person& p);

The friend function code is usually put in the cpp file where the class code is
implemented. Sometimes you may need to put the friend function code in the h
file to avoid compilation errors. Friend function may be difficult to implement on
some C++ compilers.

The code definition for a friend operator << output function for the person class is
as follows:

ostream& operator << (ostream& out, const Person& p)
out << "Nice to meet you " << p.name << end|;
out << p.name << " You are " << p.age << " years old";
return out;

}

The operator << gets an ostream object for outputting. It may output the
contents to a console screen or a file depending on what is passed to it. The
person object is passed by const reference so that the original person objects is
received and not a copy. Pass by reference is more efficient and less overhead
then pas by value. The const keyword again means the contents of the person
object cannot be changed.

You use a friend function like this:

Person p("tom",24);
cout << p << end|;

copyright © 2021 www.onlineprogramminglessons.com For student use only

The ostream object receives a cout object so that the person info is printed on the
console scream A reference to the ostream object is returned. A reference is
return for convenience so that other objects may want to be outputted toin a
chain like this.

cout << pl<<p2<<p3<<endl

A friend function to overload the >> input operator to get info contents for a
Person object would be declared like this.

friend istream& operator >> (istream& in, Person& p);

The code definition for a friend operator >> input function for the person class is
as follows

istream& operator >> (istream& in, Person& p)
{
cout << "What is your name? ";
in >> p.name;
cout << "How old are you? ";
in >> p.age;
returnin;

The operator >> input function gets an istream object for inputting. It may input
the contents from a keyboard or from a file depending on what is passed to it.
The person object is passed by reference so that the original person object can be
updated with new values. You use a friend function like this:

Person p;
cin >>p;

The stream object receives a cin object so that the person info is read from the
keyboard. A reference to the istream object is returned. A reference is return for

convenience so that other objects may want to be input in a chain like this.

cin >>pl>>p2>>p3;

copyright © 2021 www.onlineprogramminglessons.com For student use only

Our Person class definition with a friend function operator << and operator >>
would now look like this.

class Person
private:
string name;
int age;

public:

Person(string name="", int age=0); // parameter constructor
Person(const Person & p); // copy constructor

Person& operator= (const Person & p); // assignment operator
bool operator== (const Person & p); // equal operator

friend ostream& operator << (ostream& out, const Person& p);
friend istream& operator >> (istream& in, Person& p);

string getName()const;// return name

void setName(string name); // assign name

int getAge()const;// return age

void setAge(int age); // assign age

string toString(); // return person info as a string

b

The code for the friend functions would be in the Person cpp file
Or can be in the Person.h depending what your C++ compiler prefers.

To Do:

Update your Person.h and Person.cpp files to include the output and input friend
functions . In your cpp file called Lesson6.cpp make a Person object p, with some
hard coded values. Then print out the person object details using the output
operator <<. Then use the input operator >> to get new values from the keyboard.
Lastly print out the person object details using the output operator <<.

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 7 HOMEWORK Question 1

Update your Profession class from previous homework that stored a profession
title and salary. Add a copy constructor, assignment operator and equals
operator, that would compare the professions title and salary. Also add output <<
and input >> friend stream operators to your Profession class. Update your main
function to use the copy constructor, assignment operator and equals operator.

You no longer need to use the enterProfession and enterSalary functions.
Use the output << and input >> stream operators instead..

Add const to all your getters.
You can put everything in a file called Homework7.cpp.

Calling constructors from other constructors

To avoid code repetition one constructor may want to call another constructor. A
constructor always needs to validate inputs, if one input is invalid it may want to
initialize all variables you a default value. In this case a parameter constructor
may want to call the default constructor to avoid repetition code.

For example if the passed name parameter is empty then you would call the
default constructor to set all variables to a default value like this:

Person::Person(string name, int age)

{

if(name=="")

{

*this = Person();

}

else

{
this->name = name;
this->age = age;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

*this is used assign the values from the default constructor by way of the
assignment operator. Since this points to the current object, the current object
values gets initialized to default values.

It is difficult to call a constructor from the assignment operator but to save code
you may call the assignment operator from the copy constructor instead like this

Person::Person(const Person& p)

{
operator =(p);

}

We just call the assignment operator just like a normal function call using the
operator keyword and the assignment operator function name =.

Other alternatives for saving code are to use default parameters or a set function.
Default parameters let you specify default values for you parameter values when
you define the methods in your class. They work right to left. So it means the last

parameters need to be initialized first. To specify default parameter for the
person parameter constructor you would do this.

Person(string name="", int age=0);
Now you do not need the default constructor code any more.
You can now make person objects like this:
Person p;
Or with argument values like this:

Person p("tom",24);

Just by using one constructor the parameter constructor and default parameter
values.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Note: Default parameter initialization values only go on the method definition not
on the method implementation.

Set functions are very handy to use and avoid duplication of code in the
constructors and assignment operator.

A set function is similar to a constructor but is just a normal method that can be
called any time to assign values to an object. The set function is very similar the
setters except they have more than 1 parameter value.

Person::set(string name, int age)
{
if(name=="")

{

this->name ="";
this->age =0
}

else

{

this->name = name;
this->age = age;

}

Note this set function validates and calls the default constructor to initialize the
objects values to a default values. You can use the set function in the parameter
constructor like this:

Person::Person(string name, int age)

{

set(name, age);

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can use the set function in the assignment operator like this:

Person& Person::operator = (const Person& p)
{

if (this 1=&p)

{

set(p.name, p.age);

}

return *this;

}

Many people like and use set functions because you can have common code for
validation and assigning an object values.

Things to do:

Update your Person.h and Person.cpp files as follows. First call the default
constructor from the parameter constructor. In your cpp file called Lesson5.cpp
make a Person object p, with an empty name and any non-zero age. Print out p
to verify if the age was set to 0. Next call the assignment operator on the copy
constructor. Make a non empty Person object p2 and assign p2 to p; Print out p
and p2 to verify if they are the same values. Now include a default parameter
constructor. You can remove the default constructor since it is no longer needed.
Make an empty Person object and non empty person objects using the default
parameter constructor. Print out them both and verify one is empty and one is
not empty. Finally make the set method and include one in the default parameter
constructor and in the assignment operator. Make some empty and non empty
Persons and print them out to verify valid operation. Then use the set function on
the empty person object with some non empty values and print out the person
object to verify valid operation.

Adding the copy constructor, assignment operator, equals operator and stream
operators to a derived class

We will use the student class from previous lessons.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the student class definition with the additional contructors and operators
class Student: public Person {

private:
string idnum; // student id number

public:
Student(); // default student
Student(string name, int age, string idnum); // initialize Student
string getlD()const; // return idnum
void setID(string idnum); //assign idnum
string toString(); // return student info string

b
Derived Student class Constructor with Default Parameters

A constructor with default constructor acts as both as an default constructor and
a initializing constructor. Each parameter in a constructor with default values gets
a default value.

Student (string name="", int age=0, string idnum="");

You do not put the default values in the implementation, just in the header.
Student::Strudent(string name, int age, string idnum)

: Person(name, age)

{

this->idnum = idnum;

Important: When you have a Constructor with default values you ,must remove
the default constructor.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Derived Student class Copy constructor

The derived copy constructor is similar to a standard copy constructor. We use
the base class Person and derived class Student from previous Lessons.

Student(const Student& s);

The only additional thing we need is to initialize the base class copy constructor
with an initializer and initialize the idnum as follows. The compiler will extract the
Person from the Student and call the Person constructor to initialize the Person.

Student::Student(const Student& s)
: Person(s)

{

this->idnum = s.idnum;

Since the Student class is derived from the Person class the Person part of the
Student class is passed to the Person base class copy constructor automatically.
You would use the student copy constructor like this:
First make some Student object.

Student s("Tom",24, "S1234");
Then make a second Student object s2 using the copy constructor.

Student s2(s);

Student object s2 will now have the values of Student object s;

If you print out the object using the toString() method from s2 the output would
look like this:

Nice to meet you Tom
Tom You are 24 years old
Your student id number is S1234

copyright © 2021 www.onlineprogramminglessons.com For student use only

To Do:

Update your Student.h and Student.cpp files to include a copy constructor. Make
a new cpp file call Lesson5.cpp and make a Student object s with some hard
coded values. Then print out the student object details. Next copy the Student
objects s using the copy constructor. Now print out the copied object s2. The
outputs should be the same. Lastly using the set idnum on copied Student object
s2 change the idnum. Now print out the s and s2 again. The output should be
different now because they are both separate Student objects.

Derived Student class Assignment operator =

The derived class assignment operator is similar to the standard assignment
operator, the only additional thing we need to do is call the assignment operator
of the base class.

We declare an assignment operator for a Student class like this:
Student& operator=(const Student& s);
We define an assignment operator for the Student class like this:

Student& Student::operator=(const Student& s)

{
if(this 1= &s)

{

// call the assignment operator from the Person class
Person::operator=(s);
this->idnum = s.idnum;

}

return *this;

}

Note: Inside the Student assignment operator we have called the Person base
class assignment operator like this:

Person::operator=(s);

copyright © 2021 www.onlineprogramminglessons.com For student use only

You use an assignment operator like this:
First make some Student object.
Student s("Tom",24, "S1234");

You first need to declare a Student object before you can use the assignment
operator. If you do not then the copy constructor is called instead.

Student s2;

Then assign Student s to Student s2 using the assignment operator.
s2=S5s;

Student object s2 will now have the values of Student object s;

If you print out the object using the toString() method from s2 the output would
look like this:

Nice to meet you Tom
Tom You are 24 years old
Your student id number is S1234

To Do:

Update your Student.h and Student.cpp files to include an assighment operator.
In your cpp file called Lesson7.cpp make a Student object s with some hard coded
values. Then print out the Student object details. Next assign the Student object s
to s2 using the assignment operator. Now print out the copied object s2. The
outputs should be the same. Lastly using the set id function on the copied
Student object s2 change the id num. Now print out the s and s2 again. The
output should be different now because they are both separate Student objects.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Derived Student class Equal operator ==

The equal operator == returns true if 2 Student objects have equal values
otherwise false.

We declare an equal operator for a Student class from like this:
bool operator ==(const Student& s);

We define an equal operator for the Student class like this:
bool Student::operator ==(const Student& s)

{

// check if Person name and age equal and student id is equal
if (Person::operator==(s) && idnum == s.idnum)
return true;
else
return false;

Note: Inside the Student operator= method we have called the base equal
operator like this:
Person::operator==(s)
You use an equal operator like this
First make some Student object.
Student s("Tom",24, "s1234");
Then make a second Student object s2.

Student s2("Sue",32, "s5678");)

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can use like this:

If(s==s2)

cout << "s is equal to s2" << endl;
else

cout << "s is not equal to s2" << endl;
To Do:

sis not equal to s2

Update your Student.h and Student.cpp files to include an equal operator. In your
cpp file called Lesson5.cpp make a Student object’s s and s2 with some hard
coded values. Then print out the each Students object’s details. Use the equal
operator to test if both objects contain the same value.

Friend derived class functions

Friend functions can also be used with derived classes.
A friend function to overload the << operator to print out the contents of a
Student object would be declared like this.

friend ostream& operator << (ostream& out, const Student& s);

The code definition for a friend operator << output function for the Student class
is as follows

ostream& operator << (ostream& out, const Student& s)

{

out << (Person&)s << endl; // Call Person << stream operator
out << "Your student id is " << s.idnum << end|;
return out;

}

Note: we call the base class output stream operator like this:

out << (Person&)s << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

We need to typecast the s to a Person reference so the it prints out the Person
info only.

You use an output stream friend function like this:

Student s("Tom",24,"S1234");

cout << s << endl;
A friend function to overload the >> input operator to get info contents for a
Student object would be declared like this.

friend istream& operator >> (istream& in, Student& s);

The code definition for a friend operator >> input function for the Student class is
as follows

istream& operator >> (istream& in, Student& s)

{

in >> (Person&) s;
cout << "What is your student id? ";
in >> s.idnum;
returnin;
Note: we call the base class input stream operator like this:

in >> (Person&) s;

We need to typecast the s to a Person reference so the it access the Person info
only.

You use the input stream friend function like this:

Student s;
cin>>s;

copyright © 2021 www.onlineprogramminglessons.com For student use only

Our Student class definition now looks like this:
class Student: public Person {

private:
string idnum; // student id number

public:
Student(string name="", int age=0, string idnum=""); // initialize Student
Student(const Student& s); // copy constructor
Student& operator=(const Student& s); // assighment operator
bool operator ==(const Student& s) // equals operator
friend ostream& operator << (ostream& out, const Student& p);
friend istream& operator >> (istream& in, Student& p);
string getlD()const; // return idnum
void setID(string idnum); //assign idnum
string toString(); // return student info string

nn»

b
To Do:

Update your Student.h and Student.cpp files to include the output and input
friend functions . In your cpp file called Lesson5.cpp make a Student object s, with
some hard coded values. Then print out the Student object details using the
output operator <<. Then use the input operator >> to get new values from the
keyboard. Lastly print out the Student object details using the output operator <<.

Additional things to do.
Change the Student parameter constructor to a default parameter constructor.
make a set function for the Student class and the set function to the Student copy

and assignment operator. You can call the base class set method like this.

Person::set(s.getName(), s.getAge());

copyright © 2021 www.onlineprogramminglessons.com For student use only

Make some empty and non empty Students and print them out to verify valid
operation. Then use the set function on the empty student object with some non
empty values and print out the student object to verify valid operation.

Lesson 7 Homework Question 2

From previous homework’s update the Profession and Department classes. Add
copy constructors, assignment = and equals == operators . Also add the << output
and >> input stream friend operators. Replace the initializing constructor to use
default parameters, then remove the default constructors . In the main method
test all the new functions. Put the main method in a file called homework7.cpp.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 8 Move Constructors and Move Assignment Operators

Move constrictors and move assignment operators move data from one object to
another using a pointer to the same memory address. Moving data using the
same memory address is more efficient then copy values from one memory
address to the other. You can put all code in a file called Lesson8.cpp.

Rvalue and Ivalue’s

An rvalue is an expression that does not have any memory address, and an lvalue
is an expression with a memory address.

An lvalue is a variable in the left side of an assignment statement that stores a
values where a rvalue is a value on the right side of an assignment statement that

does not have a memory address like a constant.

intx=5;

"

lvalue rvalue
You cannot assign a variable to a constant:
5=x

You cannot assign a constant to a reference because a constant does not have an
address,

// int& x=5;
But you can move a Ivalue to a rvalue reference using the move operator &&
int&& x =5

cout << x<<endl; //5

copyright © 2021 www.onlineprogramminglessons.com For student use only

Move Constructor

A move constructor allows the resources owned by an rvalue object to be moved
into an lvalue without creating a copy. Usually the object has allocated memory
to be moved by pointer from one pointer to another.

In this situation the pointer in the Ilvalue object is pointed to by the rvalue
memory object. The pointer in the rvalue object then is set to nullptr, indicating
that the memory has been moved.

Our rvalue and lvalue will be an MyArray class having a pointer memory and a
size variable. Our move constructor is a follows:

// move constructor
MyArray (MyArray && arr){

// assign memory address from other array
this->ptr = arr.ptr;
this->size = arr.size;

// set other array ptr to null indicating it has been moved

arr.ptr = nullptr;
arr.size = 0;

To use the move constructor you must use std::move cast. The std::move() is a
cast that produces an rvalue-reference to an object, to enable moving from it.
The std::move(x) is equivalent to static_cast<T&&>(t);

To us we the move constructor you first make the lvalue object
MyArray a;

Then make the rvalue object by calling the move copy constructor using the move
operator cast and the Ivalue object a.

MyArray b=std::move(a);

copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is a MyArray class Example using a move constructor.

#include <iostream>
using namespace std;
const int DEFAULT_SIZE = 10;

// array class

class MyArray{

private:
int *ptr; // pointer to memory
int size; // size of memory

public:

// default constructor
MyArray()}{

cout << "Calling Default constructor"” << end|;
ptr = new int [DEFAULT_SIZE];
size = DEFAULT_SIZE;

}

// initializing constructor
MyArray(int size){

cout << "Calling Initializing constructor" << endl;
ptr = new int [size];
this->size = size;

}

// copy constructor
MyArray(const MyArray & arr){

cout << "Calling Copy constructor" << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

b

// create memory for array
this->ptr = new int[arr.size];
this->size = arr.size;

// copy values from other array
for(int i=0;i<arr.size;i++)
{
ptr[i] = arr.ptr[i]; // copy values from arr
}
}

// move constructor
MyArray (MyArray && arr){

cout << "Calling Move constructor" << endl;

// assign memory address from other array
this->ptr = arr.ptr; // use memory from arr
this->size = arr.size; // assign size from arr

// set other array ptr to null indicating it has been moved
arr.ptr = nullptr;
arr.size = 0;

// destroy memory
// note: nullptr cannot be deleted
// so program will not crash deleting a nullptr
~MyArray(}{
// Destructor
cout << "Calling Destructor'<<endl;
delete[] ptr;
size=0;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the main function:
int main() {

// make array
MyArray a;

// using copy constructor

// (not using move constructor)

cout << "not using move constructor" << endl;
MyArray b(a);

// using move constructor
cout << "using move constructor" << endl;
MyArray c=std::move(a);

return 0;

} 5
5

Calling Default constructor
not using move constructor
Calling Copy constructor
using move constructor
Calling Move constructor
Calling Destructor

Calling Destructor

Calling Destructor

Todo: print out which constructor got deleted

Move Assignment operator

The move assignment operator just moves the recourses from the other Ivalue
object and then signals the resources that they have been moved. In this situation

before resources are moved from the other lvaue object the memory recourses in
this object are deleted first.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the standard assignment operator:

MyArray& operator=(MyArray& arr)
{

cout << "Calling assignment operator" << endl;

// don’t copy self
if(this != &arr)
{

// delete old memory
delete[] ptr;
Size=0;

// make new memory
arr.ptr = nullptr;
arr.size = 0;

// copy values from other array
for(int i=0;i<arr.size;i++)

{
ptr[i] = arr.ptr[i]; // copy values from arr
}
}
return *this;

}

Here is the move assignment operator:

// move Assignment operator
MyArray& operator=(MyArray&& arr)

{

cout << "Calling Move assignment operator" << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

if(this != &arr)
{
// point to other array values
ptr = arr.ptr;
size = arr.size;
// set other ptr to nullptr indicating values have been moved
arr.ptr = nullptr;
arr.size = 0;
}

return *this;

Here is the move assignment test code:

cout << "not using assignment operator" << endl;
MyArray d;
d=c;

// using move

cout << "using move assignment operator" << endl;
MyArray e;

e=std::move(c);

We first declare MyArray objects d and e then assign the c array to them so we
call the assignment operator rather than the constructors. We use the c array

because the memory in the a array has been previously deleted.

Here is the test program output:

Calling assignment operator

using move assignment operator
Calling Default constructor

Calling Move assignment operator

copyright © 2021 www.onlineprogramminglessons.com For student use only

Using the Derived class move copy constructor

When you call the base move copy constructor you have to use std:move or else
the non move copy constructor is called.

DerivedClass(DerivedClass&& other) : BaseClass(std::move(other))

{
}

Using Derived class move assignment operator

When you call the base move assignment operator you have to use std:move or
else the non move assignment operator is called.

DerivedClass(DerivedClass&& other)

{ if(this != &other)
{ BaseClass::operator=(std::move(other));
}
return *this;

}

Here is a class the inherits the MyArray class.

Class MySumArray: public MyArray
{

private:
int sum;

// default constructor
MySumArray():MyArray()

{

sum =0;

copyright © 2021 www.onlineprogramminglessons.com For student use only

// intializer constructor
MySumArray(int size):MyArray(size)
{

sum =0;

}

// copy constructor
SumMpyArray(const MyArray & arr):MyArray(arr)
{

sum = arr.sum;

}

// move constructor
SumMyArray (MyArray && arr):MyArray(std::move(arr))
{

sum = arr.sum;

}

// assignment operator
MyArray& operator=(MyArray& arr)

{
if(this != &arr)
{
MyArray::operator=(arr);
sum = arr.sum();

return *this;

copyright © 2021 www.onlineprogramminglessons.com For student use only

// move assighment operator
MyArray& operator=(MyArray&& arr)

{ if(this != &arr)
{ MyArray::operator=(std::move(arr));
sum = arr.sum();
}
return *this;
}

Todo: Test the SumMyArray class in a main. Add a method to sum the values in
the array and return them.

LESSON 9 Homework Question 1

Add the move copy and move assignment operator to the Person and Student
class of the previous lesson. Test the copy, move copy, assignment and move
assignment operators. Make sure in your main you call the move copy constructor
and the move assignment operator using std::move operator.

Conversion operator

A conversion operator returns a value from a object. This may be a value or a
calculated value. A conversion operator is similar to what a ordinary function that
would do. Example we can have a conversion operator operator int() to return
the sum of the calculated values.

// conversion operator
// return sum of a array values
operator int()

{

int sum =0;

copyright © 2021 www.onlineprogramminglessons.com For student use only

for(int i=0;i<size;i++)
{

sum += ptr[il];

}

return sum;

}

Calling conversion operator is similar calling a function except the right value is
the object variable.

int total = e; // calling conversion operator

cout << total << end|;

overloading operator()

The operator() can be used for many things. We will use it to assign and retrieve
values in the array and to clear the array.

// assign or retrieve values
int& operator()(int i)

{

return ptr[i];

}

// retrieve values
int operator()(int i) const

{

return ptr[i];

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// clear array
void operator()()

{
for(int i=0;i<size;i++)
{
ptr[i]=0;
}
}

We would call the overloading operators like this

// assign a value
e(0) = 5;

// read a value
cout << e(0) << endl;

// clear array values

e();
using [] to access values in the dynamic array
Using [] brackets rather than ()

// assign retrieve values
int& operator()(int i)

{

return ptr[i];

}

// retrieve values
int operator()(int i) const

{

return ptr[i];

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// assign a value
e[0] =5;

// read a value
cout << e[0] << endl;

Explicit constructor
An Explicit keyword prevents implicit conversions. An implicit conversion happens
when the compiler does any automatic conversion it can do. In our case we have
a initializing constructor that can be called multiple ways.
MyArray(int sz){
cout << "Calling Initializing constructor" << end];
size = sz;

ptr = new int [sz];

}

We can call the initializing constructor like this:
MyArray a(5)
or like this:

MyArray a = 5;

Using the explicit keyword would force that the constructor only use this way.
MyArray a(5)

Not this way:
MyArray a = 5;

copyright © 2021 www.onlineprogramminglessons.com For student use only

To prevent this from happening we put the explicit keyword on the initializing size
constructor.

explicit MyArray(int sz){
cout << "Calling Initializing constructor" << end|;
size =sz;

ptr = new int [sz];

}

Now when we call:
MyArray a = 5;

We get this compiler message:

error: conversion from 'int' to non-scalar type 'MyArray' requested

explicit means that we are not preventing the constructor to be called, it means
to stop implicit conversion instead.

Note: we could still call the size constructor with a double since the double would
be truncated to a int.

MyArray a(5.5);

Stopping the default constructor and assignment operator from being called

You can mark the copy constructor and copy assignment operator as delete to
stop it from being called.

MyClass (const MyClass&) = delete;
MyClass& operator= (const MyClass&) = delete;

In this situation you do not to write code for the copy constructor and copy
assighment operator.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson8 Homework Question 2

Add the conversion operator, overload() operator and add delete to the copy
constructor and assignment operator of the MyArray class. Add the explicit
keyword to the copy constructor and try to prevent some conversion. Add the
test code to main.

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 9 STL VECTORS, LISTS, SETS AND MAPS

STL stands for Standard Template classes. These template calls are used a lot in
C++ programming. They provide expandable arrays known as vectors, link list
known as list, expandable array the only store unique values called sets and a
collection the stores name and value pairs known as map.

For the this lesson make a new C++ source file called Lesson6.cpp and in the main
function type in the following programming statements for the following Vectors,
Lists, Sets and Maps.

vectors

vectors are expandable arrays that store values. A vector needs to know what
type of data type it will use. You need to specify the data type to be used inside
diamond <> brackets like <int>. You will also need to place

#include <vector>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
vectors in your program.

// To create an empty vector
vector<string> v;

// Add a value to a vector
v.push_back ("Cat");
v.push_back ("Dog");

v. push_back ("Lion");

v. push_back ("Tiger");

We use the size method to print out the number of elements in a list.
// get and print the number of elements in an vector

unsigned int size = v.size();
cout << size <<endl; //5

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can get and print a value from a vector at a specified location by specifying an
index.

cout << v[0] << endl; // Cat
Change a value at a index:

v[0] = "Zebra";

cout << v[0] << endl; // Zebra

C++ does not print out the vector for you, so you need to do it your self using
loops.

// Print out array vector
for(unsigned int i=0;i<v.size();i++)

{
cout << v[i] <<"";) :
} Cat Dog Lion Tiger

A vector also has an iterator that can be used to print our vectors item values. An
iterator will access the items stored in a vector sequentially one by one.

To use an iterator you will need to place

#include <iterator>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
iterator in your program.

The vector has function begin() that returns an iterator at the beginning of the
vector and the function end() that returns an iterator at the end of the vector.
The end of the vector contains no value but is just used to specify the end of the
vector.

copyright © 2021 www.onlineprogramminglessons.com For student use only

vector<string>::iterator itr;

for(itr=v.begin(); itr!=v.end(); itr++)

{ Cat Dog Lion Tiger
cout << *(itr) << " ";

}

cout << end|;

search for an item in a vector

To search for a value we use the find function. You first specify a search range
using the begin() and end() functions. They return iterators at the beginning of
the list and the end of the list. The end of the list does not contain any value, but
is used to specify the end of the vector. If the item is not found then the end
iterator is returned. Find location of the animal.

itr = find(v.begin(), v.end(), "Lion");
if (itr != v.end())

cout << "found " << *jtr << endl; // found Lion
else

cout << "did not find Lion "<< endl; // did not find Lion

Once you have an iterator pointing to your search value you can also change its
value.

*jtr2 = "Elephant";
cout << *jtr << endl; // Elephant
If you do find the element then the itr points to the last value you specified, in our

case the end of the vector. Iterator points to location in the vector so we can read
it or change it.

copyright © 2021 www.onlineprogramminglessons.com For student use only

We print out the list again:

// print list
for(itr2=v.begin(); itr2!=v.end(); itr2++)
{
cout << *(itr2) << " ";
} Cat Dog Elephant Tiger

cout << end|;

To use the find method you need to place

#include <algorithm>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
find function in your program.

removing an item from a vector

You can remove an item pointed to by a iterator and using the erase function.
This is a two step process;

Step 1: point to an item in the vector using the find method.
itr = find(v.begin(), v.end(), "Dog");

Step 2: remove the item using the erase function.
v.erase (itr);

// print out vector
for(itr=v.begin();itr!=v.end();itr++)

{

cout << *(itr) <<" "; Cat Elephant Tiger

}

cout << end|l;

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can also remove a value from a vector by specifying an iterator and a index

// remove from index 2 (Elephant)
v.erase (v.begin()+2);

// print out vector
for(itr=v.begin();itr!=v.end();itr++)

{

cout << *(itr) << " ";

} Cat Tiger
cout << end|;

To sort a vector you use the sort function. You first specify a sort range using the
begin() and end() functions.

You need to put at the
To use the sort method you need to place

#include <algorithm>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
sort function in your program.

To sort a vector ascending we use the optional less function.

// sort a vector ascending
sort(v.begin(), v.end(),less<string>());

for(itr=v.begin();itr!=v.end();itr++)
{

cout << *(itr) <<" ";

}

cout << endl; Cat Dog Tiger

copyright © 2021 www.onlineprogramminglessons.com For student use only

To sort a vector descending we use the greater function.

// sort a vector descending
sort(v.begin(), v.end(),greater<string>());

for(itr=v.begin();itr!=v.end();itr++)

{

cout << *(itr) << " ";
} Tiger Dog Cat

cout << end|;

lists

Lists use link nodes to make a chain of values. A node is a memory cell that
contain a value to store and a pointer to the next node. In case of the last node
the next node points to NULL. When you add a value to a list it makes a new node
and adds it to the end or beginning of the list. A list needs to know what type of
data type it will use so you need to specify the data type to be used inside the
diamond brackets <int>. You will need to place

#include <list>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
lists in your program.

// To create an empty list

list<string> Is;

// Add a value's to end of a List

Is.push_back("Cat");
Is.push_back("Dog");

copyright © 2021 www.onlineprogramminglessons.com For student use only

// Add a value's to start of a List
Is.push_front("Lion");
Is.push_front("Tiger");

You cannot access individual elements in a list so you must use an Iterator to print
our list item values. An iterator will access the items stored in a list sequentially
one by one.

To use an iterator you will need to place

#include <iterator>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
iterator in your program.

You print a list using the iterator as follows:
list<string>::iterator itr2;

for(itr2=lIs.begin();itr2!=lIs.end();itr2++)
{

cout << *(itr2) <<" ";

}

cout << end|;

Tiger Lion Cat Dog

We use the size method to print out the number of elements in a list.
// get and print the number of elements in an list

unsigned int size = Is.size();
cout << size <<endl;//5

copyright © 2021 www.onlineprogramminglessons.com For student use only

To search for a value we use the find function. You first specify a search range
using the begin() and end() functions. They return iterators at the beginning of
the list and the end of the list. The end of the list does not contain any value, but
is used to specify the end of the list. If the item is not found then the end iterator
is returned.

itr2 = find(ls.begin(), Is.end(), "Dog");
if (itr !=Is.end())

cout << "found " << *itr2 << endl; // found Dog
else

cout << "did not find Dog" << endl; // did not find Dog

Once you have an iterator pointing to your search value you can also change its
value.

*itr2 = "Puppy";
cout << *itr2 << endl; // Puppy

If you do find the element then the itr points to the last value you specified in our
case the end of the list.

// print list
for(itr2=Is.begin();itr2!=lIs.end();itr2++)
{
cout << *(itr2) << " ";
} Tiger Lion Cat Puppy

cout << end|;

To use the find method you need to place

#include <algorithm>
using namespace std;

copyright © 2021 www.onlineprogramminglessons.com For student use only

At the top of your .cpp or .h file so that the compiler will know that you are using
find function in your program

To remove a item from the list by value we use an iterator and the advance
function. The advance function will advance the iterator by a specify number. We
will remove “cat” at index 2
We first point to the beginning of the list

itr2 = Is.begin();
Then advance the iterator by 2

advance(itr2,2);

To use the advance method you need to place

#include <algorithm>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
advance function in your program.
We then use the erase function to remove the element pointed to by the iterator.

Is.erase(itr2);

// print list
for(itr2=lIs.begin();itr!=Is.end();itr++)
{
cout << *(itr2) << " ";
}
cout << endl; Tiger Lion Puppy

A list has a built in sort method to sort a list

copyright © 2021 www.onlineprogramminglessons.com For student use only

// sort a list ascending
Is.sort();

for(itr2=lIs.begin();itr!=Is.end();itr2++)
{

cout << *(itr2) << " ";
} Lion Puppy Tiger

cout << end|;

A list has a built in reverse method to reverse a list

// sort a list descending
Is.reverse();

for(itr2=Is.begin();itr!=Is.end();itr++)
{

cout << *(itr2) <<" ";

}

cout << endl;

Tiger Puppy Lion

A list has methods to retrieve front and back values:

// get value at front of list
cout << Is.front() << end];

// get value at back of list
cout << Is.back() << end]l;

A list has methods to remove front and back values:

// remove a value from start of a List
Is.pop_front(); // Tiger

copyright © 2021 www.onlineprogramminglessons.com For student use only

// remove a value from end of a List
Is.pop_back(); // Lion

// print list
for(itr2=lIs.begin();itr2!=lIs.end();itr2++)
{
cout << *(itr2) << " ";
}
cout << end|; Puppy
Sets

Sets just store’s unique values. The data type to be used is specified inside
triangle brackets <string>. You will need to place

#include <set>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
sets in your program.

make a set:
set<string> setl;
add values to a set:
setl.insert("Cat");
setl.insert("Tiger");
setl.insert("Lion");
setl.insert("Lion");

print out the size of the set:

size = setl.size();

copyright © 2021 www.onlineprogramminglessons.com For student use only

cout << "l have aset of " << size << " animals " << end|;

| have a set of 3 animals

C++ does not print out the sets for you, so you need to do it your self using loops.
A Set has an iterator that can be used to print our set item values. An iterator will
access the items stored in a set sequentially one by one. Sets are printed out in
alphabetically order.

// print out set using iterator

set<string>::iterator itr3;

for(itr3=setl.begin();itr3!=setl.end();itr3++)
{

cout << *(itr3) << " ";

}

cout << endl;

Cat Lion Tiger

Note we only have 3 animals, sets do not contain duplicates.

Find an item in a set, returns an iterator where item found. If item not found
returns the end iterator.

itr3 = setl.find("Tiger");
if(itr3 1= setl.end())

cout << "Tiger found" << endl;
else

cout << "Tiger not found" << endl;

remove item by value from set:

setl.erase("Tiger");

copyright © 2021 www.onlineprogramminglessons.com For student use only

Print out set:

set<string>::iterator itr3;
for(itr3=setl.begin();itr3!=setl.end();itr3++)

{

cout << *(itr3) << " ";

}

cout << endl

Cat Lion

make another set called set2:
set<string> set2;
add value’s to set:

set2.insert("Cat");
set2.insert("Dog");
set2.insert("Lion");

Print out set using iterator:

for(itr3=set3.begin();itr3!=set3.end();itr3++)
{

cout << *¥(itr3) << " ";

}

cout << end|;

Cat Dog Lion

make empty set 3:

set<string> set3;

copyright © 2021 www.onlineprogramminglessons.com For student use only

take intersection of setl and set2 and print results:

set_intersection(setl.begin(),setl.end(),set2.begin(),set2.end(),inserter(set3,set3.begin()));
The inserter function is used to insert the elements into the result set3.

Print out set using iterator:

cout << "intersection" << endl;

set<string>::iterator itr3;

for(itr3=set3.begin();itr3!=set3.end();itr3++)
{

cout << *(itr3) << " ";

}

cout << end|;

Cat Lion

The intersection of 2 sets is a set of the items that are the same in both sets
make set 4:
set<string> set4;
take union of setl and set2 and print results:
set_union(set1.begin(),set1.end(),set2.begin(),set2.end(), inserter(setd,setd.begin()));

The inserter function is used to insert the elements into the result set3.
Print out set using iterator:

cout << "union" << end|;
for(itr3=set4.begin();itr3!=set4.end();itr3++)
{

cout << *(itr3) << " "; _
} Cat Dog Lion

cout << end|;

copyright © 2021 www.onlineprogramminglessons.com For student use only

The union of 2 sets is a set of the items that are the included in both sets

Both the set_intersection and the set_union functions also use the inserter
function that is used to inset the elements in the result set.

To use these funcions you need to place

#include <algorithm>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
these functions in your program.

Printing unique words in a string

Assign a word to a string like "tomorrow".
string s = "tomorrow";

Make a set and insert each letter into the set.
set<char> set4;
for(unsigned int i=0;i<s.length();i++)

{

setd.insert(s[i])

Print out the set, you should print out all the unique letters of the word.
set<char>:iterator itr4;

for(itrd=setd.begin();itrd!=setd.end();itr4++)
{

cout << *(itr3) << " ";
} mortw

cout << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

todo : try more words
Map

A Map contain a key and a value. A map can have many keys and corresponding
values. Think of a map is like a telephone book with the name as the key and the
telephone number as the value.

A map needs to know what type of data type for the key and the data type for the
value it will be using. The data type is specified inside diamond <> brackets like
<string, string>. The first data type is for the key and the second data type is for
the value.

You will need to place

#include <map>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
map in your program.

We then make a empty map as follows:

// make empty map
map<string, string> map1;

Next we add some keys and corresponding values:

// add keys and values to map
mapl["name"] = "Tom";

mapl["age"] = "24";

mapl["idnum"] ="S1234"

// get values from a map

cout << mapl["name"] << endl; // Tom
cout << map1["age"] << endl; // 24

cout << map1["idnum"] << endl; // S1234

copyright © 2021 www.onlineprogramminglessons.com For student use only

Alternatively you can use the insert method and a pair object to insets name and
a value into a map.

mapl.insert(pair<string, string>("name", "sue"));

A pair object contains a name and a value access by first and second data
members.

C++ does not print out the map as easy as other programming languages, we
must do it ourselves using the map iterator and a loop. The map is print out
automatically sorted by key. Print out map using a iterator:

map<string, string>::iterator itr4;

The iterator points to a pair object. From the iterator the key is printed using the
first member and the value is printed out using the second member:

for(itrd = map1l.begin();itrd != map1l.end();itr4++)

{
cout << itr4->first << " : " << itr4->second << end|l;
}
cout << endl;
age:24
idnum:S1234
name:Tom

We print a list of keys in a vector. The keys are already sorted
Print a list of keys from the map
// get list of keys

vector<string> v2;
map<string,string>::iterator itr5;

copyright © 2021 www.onlineprogramminglessons.com For student use only

for(itr5= map1.begin(); itr5 != map1l.end(); itr5++)

{
v2.push_back(itr5->first);

cout << itr5->first << endl;

}

age
idnum
name

Print a list of values from the map

vector<string> v3;
map<string,string>::iterator itr6;

for(itr6= map1.begin(); itr6 != map1l.end(); ++itr6)
{

v3.push_back(itr6->second);

cout << itr6->second << endl;

}

24
S1234
Tom

Print Map Sorted by Value

We will now print out a map sorted by value. We first fill a vector with the map
pairs that contain a key and a corresponding value.

// put map key and value pairs in a vector
vector<pair<string, string> > pairs(map1.begin(), mapl.end());

copyright © 2021 www.onlineprogramminglessons.com For student use only

Next we sort the vector pairs by value. You will need to use
the following comparator to sort the vector pairs by value

You need to put the comparator function at the top of the lesson8.cpp file just
before the main function. & means pass by reference which passes an absolute
address to the function. Pass by reference is good to use because only the address
is passed to the function and the value at that address can be easily changed. Pass
by value would only pass a value to the function and the value will only change
inside the function but not outside the function.

bool cmp_second(const pair<string,string> &a,const pair<string,string> &b)

{
}

return a.second<b.second;

// sort vector key value pairs
sort(pairs.begin(), pairs.end(),cmp_second);

// print out key value vector pairs
vector<pair<string, string> >::iterator itr7;

for(itr7=pairs.begin();itr7!=pairs.end();itr7++)

cout << itr7->first << " : " << itr7->second << end|;
cout << endl;
age:24
idnum : 51234
name : Tom

To do:

change the > to < in the cmp_second comparator function

copyright © 2021 www.onlineprogramminglessons.com For student use only

Using lambda

It is very inconvenient to add small additional function to a program ever tine you
need a piece of code to do something. There is a mechanism that allows you to
add a small inline function in your code instantly when you need it. The function
does not get a name and is known as an anonymous function, having no specified
name its gets a default name called lambda. We can now put our comparator
function right inside the sort function call.

Our lamda comparator function looks like this:

[1(const pair<string, string> & a, const pair<string, string> & b) -> bool

{

return a.second < b.second;

}

The function nameiis: []

The input parameter list is:
(const pair<string, string> & a, const pair<string, string> & b)

The return data type is specified as: -> bool

The function code is:

{

return a.second < b.second;

}

Which really means:
bool []J(const pair<string, string> & a, const pair<string, string> & b)

{

return a.second < b.second;

}

(The syntax is just a little different)

copyright © 2021 www.onlineprogramminglessons.com For student use only

Our sort call now looks like this, so much easier, no external sort function is
needed, and everything is contained in one programming statement.

// sort pairs vector
sort(pairs.begin(), pairs.end(),
[1(const pair<string, string> & a, const pair<string, string> & b) -> bool

{

return a.second < b.second;

hE

// print out vector pairs
for(itr7=pairs.begin();itr7!=pairs.end();itr7++)

{

cout << itr7->first << " : " << itr7->second << end|;

}

cout << end|;
To check if an element is in the map use the count method.

if(map1.count("name")>0)

{

cout << map1['name"] << endl;

}

Tom

To remove an item from the map use the erase method on the key
mapl.erase("name");

Type all the above examples in your file lesson6.cpp and, make sure you get the
same results.

To use lambda functions you need to set your complier to —std=c++11. In code
blocks you go to settings menu then select compiler then select c++11 checkbox

copyright © 2021 www.onlineprogramminglessons.com For student use only

Comnpiler settings

Global compiler settings

1*

Profiler settings

Batch builds

Global compiler settings
Selected compiler
G GCC Compiler -

Set as default Copy Rename Delete Reset defaults

Compiler settings Linker settings Search directories Toolchain executables Custom variables Build options 1| 4 [*

Policy:

Compiler Flags Other compiler options ~ Other resource compiler options #defines

E General ~
Have g++ follow the 1998 ISO C++ language standard [-std=c++98] []
Have g++ follow the C++11150 C++ language standard [-std=c++11]
Have g++ follow the C++14 150 C++ language standard [-std=c++14] []
Have g++ follow the coming C++0x (aka c++11) IS0 C++ language stan [
Have g++ follow the coming C++1y (aka C++14) IS0 C++ language star [
Have g++ follow the coming C++1z (aka C++17) IS0 C++ language star [
Have gee follow the 1990 IS0 C language standard (certain GMU extensio [
Have g follow the 1999 IS0 C language standard [-std=c949] O
Have g follow the 2011 150 C language standard [std=c11] O
In C mode, this is equivalent to -std=c90, in C++ mode, itis equivalent to [
Position Independent Code [-fPIC]
Static libgce [-static-ibgee]

Statir lihetdr++ etaticdihetdr 441
MNOTE: Right-dick to setup or edit compiler flags.

100

Lesson 9 Homework

Question 1

Make an vector called v1 of your favorite animals like: elephant, cat and dog.
Print out the vector of animals.

Ask the user of your program to type in name of one of the animal names from
your animals, that they don’t like.

Remove the animal from this list and put into another vector called v2.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Then ask them to type in the name of an animal they do like. Add this name to v1
and to v2.

Print out the animals in v1.
Print out the animals in v2.

Put all the code in your homework 9 file.

Call your cpp file Homework9.cpp.

Question 2

Repeat Question 1 but use a list rather than a vector.
Put all the code in your homework 9 file.

Call your cpp file Homework9.cpp.

Question 3

From questionl or question 2 put all the animals from animal list1 into a set
called setl.

Then take all the animals from list2 and put into another set called set2.

Print out the common animals between the two sets, then print out all the
animals that are in both sets.

Put all the code in your homework 9 file.
Call your cpp file Homework9.cpp.

Question 4

Fill a map called map1 with names and animals. The name should be the key and
the animal should be the value.

Example: "fluffy" "cat"

copyright © 2021 www.onlineprogramminglessons.com For student use only

Fill a second map called map2 with animals and sounds,

Example: "cat" "meow"

Print out all the key names to the screen. In a loop ask the user to type in one of
the names. Lookup up the name in map1 and obtain the animal. Next ask the
user what sound the animal makes.

Example:
Select a name: tom, bill, sally, sue
The user would type in sally

The program would respond:
sally is a cat

Next ask the user what sound the animal makes? Use map2 to look up the sound
the animal makes. If the user is correct the tell them they are correct, else tell
them what sound the animal makes.

Example:
What sound does a cat make?
The user would type in "purr"

The program would say
You are incorrect
cat’'s meow.

Anytime user types "exit" or a blank the program exits. If they type in a wrong
name let them know.

You can use the count method of the map class to check if a key name is in the
map.

if(map1l.count(name)==0)

{

cout << "name: " << "not known " << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

Put all the code in your homework 9 file.
Call your cpp file Homework9.cpp.

Question 5
Sentence Generator

A Sentence is composed of the following:
<article><adjective><noun><adverb><verb><article><adjective><noun>

Make an vector<string> of articles like: "a", "an" and "the"

Then make an vector <string> of adjectives like: "fat", "big", "smal

Then make an vector <string> of nouns like: "cat", "rat", "house"

Then make an vector <string> of adverbs like: "slowly", "gently", "quickly"

Then make an vector <string> of verbs like "ate", "sat on", "pushed"

EACH LIST SHOULD HAVE THE SAME AMOUNT OF ENTRIES LIKE 3 ENTRIES EACH
Make a map<String, vector <string >> called words to hold all the lists:

words ["articles"] = articles;
words ["adjectives"]=adjectives;
words ["nouns"]=nouns;

words ["adverbs"]=adverbs;
words ["verbs"]=verbs;

Next make a vector<string> of the map keys (parts of speech) to make a
sentence:

"articles"”, "adjectives", "nouns", "adverbs", "verbs", "articles", "adjectives", "nouns"

Finally make a sentence using the map entries, using the key parts of speech
vector and by selecting random words from the words map values vector.

You need to first seed the random number generator with the time of day to be
able to get random sentences.

copyright © 2021 www.onlineprogramminglessons.com For student use only

#include <cstdlib>
#include <ctime>

srand((unsigned int)time(0));

Next make a loop to print out the random sentences:

string sentence ="";
for(unsigned int i=0;i<keys.size();i++)
{

int r = rand()%3;

string key = keys[i];

sentence += words[key][r] + " ";

}

Then print out the sentence:

cout << sentence << " ." <<end|;
You should get something like this:
The big cat slowly ate the small rat

Which has picked random words from the dictionary sentence structure:
<article><adjective><noun><adverb><verb><article><adjective><noun>

Put all the code in your homework 9 file.
Call your cpp file Homework9.cpp.

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 10 File Access

For his lesson make a new C++ source file called Lesson9.cpp and in the main
function for each section type in the following programming statements.

File Access

C++ has extensive file objects for reading and writing to file. We concentrate on
the most used. You will need to use the following includes for file access

#include <fstream>
#include <cstdlib>

We will use the following input test file. Just make an empty text file and type in
the following contents.

Write character to a file

We use the putc method of the ofstream class to write characters one by one
sequentially to a file. As before we open the file then check if the file is open and
the write characters to the file. If you do not close the file, then the contents of
the file will be lost.

// write character to a file

// open file
ofstream fout("testl.txt");

// check if file opened
if (!fout)
{
// report cannot open file
cout << "cannot open file: testl.txt" << endl;
exit(1);
}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// characters to write to file
string s = "Hello";

// write characters to file
for (unsigned int i = 0; i < s.length(); i++)
{
char c = s]i];
cout << ¢;
fout.put(c);
}

cout << end|;
fout.put('\n');
fout.close();

testl.txt

Hello

Read characters from a file

The ifstream class is used to read characters one by one sequentially from a file.
The get method from the ifstream class is used to read characters from a file.
Each char from the file is read as an int so that the end of file EOF indicator -1 can
be acknowledged. The constructor of the ifstream class open a file using the input
file name. We check if a file is open by using the loperator on the ifstream object.
If the file cannot be opened, we terminate the program using the exit function.
After all characters have been read from the file we close the file using the close
method.

copyright © 2021 www.onlineprogramminglessons.com For student use only

// read character from a file

// open file
ifstream fin("test1.txt");

// check if file opened

if (!fin)

{
// report cannot open file
cout << "cannot open file: testl.txt" << endl;
exit(1);

}

// get first char in file
int ch = fin.get();

// loop to end of file
while (ch !=-1)
{
cout << (char)ch; // print out char
ch =fin.get(); // get next char
}

fin.close(); // close file

}

Hello

copyright © 2021 www.onlineprogramminglessons.com For student use only

write lines to a file

The ofstream class is also used to write lines one by one sequentially to a file.
We just use the << operator from our fout object. Since we have already declared
an ofstream object we need to use the open method of the ofstream object

instead to open a file. We first clear the ofstream object before opening it to reset
the ofstream object.

// write lines to a file

// open file
fout.clear();
fout.open("test2.txt");

// check if file opened

if (!fout)

{

// report cannot open file

cout << "cannot open file: test2.txt" << endl;
exit(1);

}

// write lines to file
fout << "Hello there" << endl;
fout << "l like programming << end|;

fout.close();

test2.txt

Hello there
| like programming

copyright © 2021 www.onlineprogramminglessons.com For student use only

Read line by line from a file

To read lines from a file line by line we use the getline function that takes in a
ifstream object and a string object. Since we have already declared an ifstream
object we need to use the open method of the ifstream object to open a file. We
first clear the ifstream object before opening the file to reset the ifstream object.

We keep reading lines to the end of file is found. When the fin object returns false
the end of file has been reached. Some Unix compilers work different from
Windows compilers. The getline function may retain the end of line terminator \n.
We use the find and erase methods of the string class to remove the \n.

After we read all the lines from the file the file must be closed.

// read lines from a file

// open file
fin.clear();
fin.open("test2.txt");

// check if file opened

if (!fin)

{
// report cannot open file
cout << "cannot open file: test2.txt" << endl;
exit(1);

}

// read first line from file
string line;
getline(fin,line);

copyright © 2021 www.onlineprogramminglessons.com For student use only

// loop to end of file
while (fin)
{
// remove \n
if(line.find('\n') != string::npos)
line.erase(line.find('\n'));

cout << line << endl; // print out line
getline(fin,line); // get next line

}

fin.close(); // close file Hello there
} | like programming

Read words from a file

Using the ifstream object we can read word by word from a file. The fin stream
object reads word by words separated by spaces.
After we read all the words from the file the file must be closed.

// read words from a file

// open file
fin.clear();
fin.open("test2.txt");

// check if file opened

if (!fin)

{
// report cannot open file
cout << "cannot open file: test2.txt" << endl;
exit(1);

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// read first word from file
string word;
fin >> word;

// loop to end of file
while (fin)
{
cout << word << endl; // print out word
fin >> word; // get next word

}
. . Hello
fin.close(); // close file
there
I |
like
programming

Append line to end of file

We can also write lines to the end of a file (append) using the ofstream class,
The second object of the constructor or open method specifies fie open modes.
We use the directive ios::app which states to open file in append mode

// append lines to a file

// open file
fout.clear();
fout.open("test2.txt",ios::app);

// check if file opened

if (!fout)

{
// report cannot open file
cout << "cannot open file: test2.txt" << end|;
exit(1);

copyright © 2021 www.onlineprogramminglessons.com For student use only

// characters to write to file
s = "Hello";

// write 3 hello lines to file test2.txt
fout << s << endl;
fout << s << endl;
fout << s << endl;

fout.close(); // close file

Hello
Hello
Hello

write lines to a csv file

A csv file is a file where data are stored row by row in columns separated by
commas. The ofstream class is also used to write lines one by one sequentially to
a file. We just use the << operator from our fout object. Since we have already
declared an ofstream object we need to use the open method of the ofstream
object instead to open a file. We first clear the ofstream object before opening it
to reset the ofstream object.

// write lines to a file

// open file
fout.clear();
fout.open("test.csv");

// check if file opened

if (!fout)

{

// report cannot open file

cout << "cannot open file: test3.csv" << end]l;
exit(1);

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// write csv lines to file
fout << "one,two,three,four"'<< endl;

fout.close(); // close file

one, two, three, four

Read a csv file.

A csv file is a file where data are stored row by row in columns separated by
commas. The ifstream class is used again to read lines one by one sequentially
from the file. In a for loop we use istringstream class to scan a line using the
getline function that will find each comma and then put the data for that row and
column in a vector object to be used later. The data retrieved are also called
tokens. We also use the istringstream class to retrieve each word from the line
separated by commas. We use the getline method with the istringstream object
And specify the delimeter as ‘,” to read each word from the line.

To use the istringstream class you need to
#tinclude <sstream>
At the top of your cpp or hfile,

File: test.csv

one, two, three, four

// read lines from a csv file
// open file

fin.clear();
fin.open("input.csv");

copyright © 2021 www.onlineprogramminglessons.com For student use only

// check if file opened

if (!fin)

{
// report cannot open file
cout << "cannot open file: test.csv" << end|;
exit(1);

}

// read first line from file
getline(fin,line);

// loop to end of file
while (fin)
{
// remove ‘\n’
if(line.find('\n') != string::npos)
line.erase(line.find('\n'));

// split lines into tokens
istringstream sin(line);
vector<string>v;

string word;
getline(sin,word,",');

// store words in a vector
while(sin)

{

v.push_back(word);
getline(sin,word,',');

}

// print out vector
for(int i=0;i<v.size();i++)

{

cout << v[i]J<< endl;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

getline(fin,line); // get next line

}

fin.close(); // close file

}

The tokens are also stored in the vector tokens.
Output token words:

one
two
three
four

Writing and Reading Records to and from a file

Records are the data variable values defined in a class written to a binary file. A
binary file differs from a text file since it stores binary values where as a text file
only contains printable values. The values may be the same it is just the way they
are interpreted. For example hex value 10 is interpreted as a new line in a text
file but in a binary file it is just the value 10.

To write to a binary file you need some data record. A record can be a class or a
structure. The data variables declared in a structure or class must be fixed
lengths, therefore the string object cannot be used. In this situation we use a
character string instead. For our example we will use the Book class as follows:

class Book

{

private:
char ISBN[20];
char title[50];
double price;

copyright © 2021 www.onlineprogramminglessons.com For student use only

public:

// construct a book
Book(string isbn=""
{

strcpy(ISBN,isbn.c_str());
strcpy(title,t.c_str());
price = p;

}

, string t="", double p=0)

// display a book
friend ostream& operator <<(ostream& out, const Book& b)

{

out << b.ISBN << " " << b.title << " $" << b.price << end|;
return out;

}
b
Notice we are using old fashion character strings arrays for ISBN and title. We are
still using string objects for convenience in our constructor parameters. We use
the cstring strcpy functions to copy the contents of a string object to a character
string. The string object has the method c_str() to convert a string object to a
character array.

strcpy(ISBN,isbn.c_str());

To use the strcpy funcions you need to place

#include <cstring>
using namespace std;

at the top of your .cpp or .h file so that the compiler will know that you are using
the strcpy function in your program.

The first thing we need to do is write some book records to a file. Each record is
the data variable values defined in the Book class.

copyright © 2021 www.onlineprogramminglessons.com For student use only

We first make a book object
Book book1("123456789","Happy Days",23.56);

Then write the book record to the file using the write method of the ifstream
class. The sizeof method calculates the total number of data bytes in the Book
object.

fout.write((char*)&book1,sizeof(Book));
When we open the file we use the ios::binary flag to set the file to binary mode.
// write records to a file

// open file
fout.clear();
fout.open("records.bin",ios::binary);

// check if file opened

if (!fout)

{
// report cannot open file
cout << "cannot open file: records.bin" << endl;
exit(1);

}

// write book to file
Book book1("123456789","Happy Days",23.56);
fout.write((char*)&book1,sizeof)Book));

Book book2("876543245","Wizard of 0z",19.96);

fout.write((char*)&book2,sizeof(Book));
fout.close();

copyright © 2021 www.onlineprogramminglessons.com For student use only

Once we write some book records to the file we can read back the records and
display them on the console screen. We use the read method from the ofstream
class to read book records stored previously on the file.

// read from binary file

// open file
fin.clear();
fin.open("records.bin",ios::binary);

// check if file opened

if (!fin)

{
// report cannot open file
cout << "cannot open file: records.bin" << endl;
exit(1);

}

// read records from a file
Book book;

while(fin.read((char*)&book,sizeof(Book)))
{

cout << book << endl;

}

123456789 Happy Days $23.56

fin.close(); 876543245 Wizard of Oz $19.96

We can also add new records to the end of the file using the ios::app flag.
// append records to a binary file
// open file

fout.clear();
fout.open("records.bin",ios::binary|ios::app);

copyright © 2021 www.onlineprogramminglessons.com For student use only

// check if file opened
if ({fout)
{
// report cannot open file
cout << "cannot open file: records.bin" << endl;
exit(1);
}

// write book to file

Book book3("87654542","Alice in Wonderland",18.88);
fout.write((char*)&book3,sizeof(Book));

fout.close();

Again we read the book records from the binary file and display on the console
screen.

// read from binary file

// open file
fin.clear();
fin.open("records.bin" ios::binary);

// check if file opened

if (!fin)

{
// report cannot open file
cout << "cannot open file: records.bin" << endl;
exit(1);

}

// read records from a file
while(fin.read((char*)&book,sizeof(Book)))
{
cout << book << endl;
} 876543245 Wizard of 0z $19.96

123456789 Happy Days $23.56

87654542 Alice in Wonderland $18.88

fin.close();

copyright © 2021 www.onlineprogramminglessons.com For student use only

Open binary file for simultaneously Read and Write

Opening a file for reading and writing is very convenient, in this case we use an
fstream object and use the flags fin.clear() and an ios::out to open a file for input
and output at the same time. We also use the ios::ate flag so we that the first
record can be added to the end of the file.

// open file for read/write
fstream fio("records.bin",ios::binary|ios::in|ios::out|ios::ate);

// check if file opened

if (!fio)

{
// report cannot open file
cout << "cannot open file: records.bin for read and write" << endl;
exit(1);

}

// write book to file
Book book4("765344532","Open Skies",12.78);
fio.write((char*)&book4,sizeof(Book));

Once we write a new record to the end of the file we can go the start of the file
and read each record one by one and display on the console screen.

We use the seekg(position) method from the fstream class to set the file pointer
to the start of the file.

Example: fio.seekg(0) will set the file pointer to position 0.

// read from binary file
fio.seekg(0);

while(fio.read((char*)&book,sizeof(Book)))
{

cout << book << endl;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

123456789 Happy Days $23.56
876543245 Wizard of Oz $19.96
87654542 Alice in Wonderland $18.88

765344532 Open Skies $12.78

We can read from any position on the file using seekg(position) and write to any
position using seekp(position). We now write a new book to record position 2.
The formula is:

file record position = record number * size of record

Record position and record numbers start at 0. Note we first clear the fstream
object before we set the record position, this is because when we read all the
records from the file the end of file flag was set.

fio.clear();
fio.seekp(2*sizeof(Book));

// write book to file
Book book5("3443223475","Hello World",6.89);
fio.write((char*)&book5,sizeof(Book));

We read all records again: 123456789 Happy Days $23.56

. 876543245 Wizard of Oz $19.96
fio.seekg(0);
3443223475 Hello World $6.89

while(fio.read((char*)&book,sizeof(Book)))
{ 765344532 Open Skies $12.78

cout << book << endl;

copyright © 2021 www.onlineprogramminglessons.com For student use only

We can specify which record to read using seekg(position). Here we read record 2
from the file.

fio.clear();
fio.seekg(2 * sizeof(Book));

fio.read((char*)&book,sizeof(Book));

cout << book << endl; 87654542 Alice in Wonderland $18.88

Always close the file when you are finished using it or you will lose all your data.
fio.close();

Lesson10 Homework To do

Question 1

Open a text file for write and write a small 5 line story in it then close the file.
Next open the file for read and count the number of letters, word, sentences and
lines. Words are separated by spaces and new lines. Sentences are separated by
periods “.” or other punctuation like “?”.

Lines are separated by ‘\n’. Words may contain numbers and punctuation like
apple80 and hyphens like don’t.

Print a report to the screen: the number of letters, words, sentences and lines.

Also write the report to a file called report.txt. Open the report file and display
the report file lines to the screen. Call your cpp file Homework10.cpp.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Question 2

Write a program that writes out another C++ program to a file. Then open up the
file you wrote that contains the C++ program and execute it.

Algorithm:

Open up a file for write with a cpp extension like “test.cpp”
Write lines to a file with print statements like:

fout << "#include <iostream> " << endl;

fout << "using namespace std;" << endl;

fout << "int main()" << endl;

fout << "{" << endl;

fout << “fout << \"I like Programming\" << end; " << end|;
you need to use "\"" as additional double quotes

fout << "return 0"<< endl;

3. fout << "}" << endl;

wwwwwnN =

w

4. close the file
5. open the test.cpp file in your C++ IDE and run the program
It should print out

| like programming

Call your C++ program Homework10_2.cpp.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 11 VIRTUAL METHODS, ABSTRACT CLASSES and POLYPHORISM
Virtual Methods
A virtual method is executed in the derived class not in the base class when the
object data type is a base class. This is known as overriding. A virtual method
starts with the keyword virtual.
virtual return_data_type method _name(parameter_list)
For an example the following Employee class has the virtual method toString.
virtual string toString();
Note: overriding means same method name and identical parameter data types.
Do not confuse with overloading where we have same method name but
different parameter data types.

Here is the Employee class with the virtual toString method:

class Employee

{

private:
string name;
string id;
double salary; // yearly salary

public:

// construct Employee with name, id and salary
Employee(string name,string id,double salary);

// return employee info
virtual string toString(); // <<<<<<<<<<<=======virtual method

b

copyright © 2021 www.onlineprogramminglessons.com For student use only

A derived class of the Employee class like the Manager class would have the
overridden toString(). The overridden toString method of the Manager class is
not virtual.

string toString();

Here is the Manager derived class having the overridden toString() method:

#include "Employee.h"

class Manager:public Employee

{
public:

// construct Manager with name, id and salary
Manager(string name,string id,double salary);

// return manager info
string toString(); // <<<<<<<<<<<======== overridden toString method

b
Note: the derived class does not have the virtual keyword.

When a manager is instantiated the toString method is called from the Manager
class rather than from the Employee class because the toString method in the
Employee class is marked virtual.

Employee* emp = new Manager("Tom Smith","M1234",100000);

Even though the pointer data type is an Employee*, the toString() method of the
manager class is called rather than the toString method from the Employee class.
This is known as overriding . The toString method of the Manager class overrides
the toString method of the Employee class. If the Employee class toString method
did not have the virtual keyword then the toString method of the employee class
would be called instead.

copyright © 2021 www.onlineprogramminglessons.com For student use only

If the pointer data type was a Manager* then the toString method of the
Manager class would be called regardless if the Employee toString method was
virtual or not virtual. This is because the data type of the pointer is a Manager.

Manager* emp = new Manager("Tom Smith","M1234",100000);

Derive classes are independent if their base class. Note: All virtual methods
declared in a class must have implemented code. The derive class does not need
to implement all virtual methods in the base class.

Todo:

Make an Employee class and a Manager class. Instantiate the Manager class in
two different ways. One way with an Employee pointer and the other way with an
Manager pointer. In both ways make the Employee toString virtual and non
virtual. You will have 4 different cases to try out.

Abstract Classes

Abstract classes are base classes that have methods to be implemented by its
derived class. These methods are called abstract methods and have no code in the
base class. Classes that have abstract methods are known as Abstract classes. The
code in the abstract class is to be implemented in the derived classes. Abstract
classes can never be instantiated since the class contains incomplete code in
some methods. Note: Non Abstract classes are called Concrete classes.

In our Employee class we can make abstract method to calculate the employee’s
wages for the week. A abstract method is a method, that is defined in the base
super class that has a virtual method header definition but no programming
statements and is equated to 0. Abstract methods in C++ are known as pure
virtual methods.

virtual double weeklyPay()=0; // pure virtual method

copyright © 2021 www.onlineprogramminglessons.com For student use only

The programming statements for a pure virtual method will be defined in the
derived class not in the super base class.

Virtual methods without = 0 are just virtual methods that must be implemented
in the super base class but may be optionally overridden by the derived class.

virtual string toString(); // virtual method

virtual methods without = 0 are not abstract methods because the code must be
implemented in the class they are declared in. they are just known as a virtual
method. virtual methods with = 0 are abstract methods because the code must be
implemented in the derived class and are known as a pure virtual method.

virtual double weeklyPay()=0; // pure virtual method

The weeklyPay method in the Manager class may be implemented as follows:

// calculate weekly pay

double Manager::weeklyPay()

{
double pay = getSalary() / WEEKS_IN_YEAR;
return pay;

}

Polymorphism

Polymorphism is another powerful concept in Object Oriented Programming.
Polymorphisms allows a super base class to represent many other different
derived classes. Polymorphisms executer’s a method that has the same name
from each derived class but produces a different behaviour. To demonstrate
Polymorphism, we will have an Employee super base class to represent many
kinds of Employees: Managers, Secretaries, Salesman and Workers derived
classes.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Employee
(base class)

A

Manager

Secretary

Salesman

Worker

Make a new C++ source file called Employee.cpp and a C++ header file called
Employee.h Your will need private variables: name, employee ID number and

salary. Make constructers, getters, setters and toString methods.

Here is our Employee abstract class:

/*

* Employee.h abstract class

*

#ifndef EMPLOYEE_H_INCLUDED
#define EMPLOYEE_H_INCLUDED

#include <iostream>
#include <iomanip>

#include <sstream>

#include <string>

using namespace std;

copyright © 2021 www.onlineprogramminglessons.com For student use only

class Employee

{

public:
const int WEEKS_IN_YEAR = 52;
const int HOURS_IN_WEEK = 40;

private:
string name;
string id;
double salary; // yearly salary

public:

// construct Employee with name, id and salary
Employee(string name,string id,double salary);

// return employee name
string getName();

// assign employee name
void setName(string name);

// return employee id
string getID();

// assign employee id
void setID(string id);

// return employee yearly salary
double getSalary();

// assign employee yearly salary
void setSalary(double salary);

// calculate weekly pay
virtual double weeklyPay()=0;

copyright © 2021 www.onlineprogramminglessons.com For student use only

// return employee info
virtual string toString();

b
#endif // EMPLOYEE_H_INCLUDED

Here is the Employee.cpp implementation file:

/*
* Employee.cpp

*

*/
#include "Employee.h"

// construct Employee

Employee::Employee(string name,string id,double salary)
{

this->name=name;

this->id=id;

this->salary = salary;

}

// return employee name
string Employee::getName()

{

return this->name;

}

// assign employee name
void Employee::setName(string name)

{

this->name = name;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// return employee id
string Employee::getiD()
{

return this->id;

}

// assign employee id
void Employee::setID(string id)
{
this->id = id;
}

// return employee yearly salary
double Employee::getSalary()

{

return salary;

}

// assign employee yearly salary
void Employee::setSalary(double salary)

{

this->salary = salary;

}

// return employee info

string Employee::toString()

{
ostringstream sout;
sout << name << " " << id << " $" << fixed << setprecision(2) << salary;
return sout.str();

}

We have done some formatting in our toString method, we have used format
manipulators from

#include <iomanip>

copyright © 2021 www.onlineprogramminglessons.com For student use only

manipulator description example
Fixed Use decimal point number Fixed
setprecision(n) | Specify number of decimal points setprecision(2)
setw(n) Set width setw(10)
left Align left left
right Align right right

We now need to make the derived classes. We will have 4 derived classes. Each
derived class will calculate the pay for the week differently, calculated from the
yearly salary. Each derived class will calculate the weekly pay separately as
follows:

Derived class | How to calculate weekly pay

Manager Divide yearly salary by number of weeks in year

Secretary Divide yearly salary by number of weeks in year plus $100
bonus

Salesman Divide yearly salary by number of weeks in year plus sales
Commission rate

Worker Divide yearly salary by number of weeks plus any overtime time
and a half

We put all the derived class definitions in their separate files. You can make
separate header and class files or from the File menu you can select class. This will
make both header and implementation files at the same time. Set all the check
boxes to the following before pressing the create button.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Create new class

Class definition

Class name: |Manager

Arguments: |
[]Has destructor []Has copy ctor
Virtual destructaor []Haz assigment op.
Inheritance
Inherits another cass
Ancestor: |EmpIDyEE

Ancestor's indude filename: |'Emp|uyee.h'

Scope: public

File paolicy

Add paths to project

Header and implementation file shall be in same folder

| Member variables

Add new:

|unsigned int m_Counter

Scope: |private e

[]add "Getter” method
[]add "setter” method
m_
Add
Remove
Documentation

[] Add documentation where appropriate

Use relative path

Folder: |C:Vessons\cpp\Cpplessons),

Header file
Folder: C:\essons\cppCpplessonstindu ||,
Filename: |Manager.h

Add guard blodk in header file

Guard block: | MANAGER _H

[]Header and implementation file shall always be lower case

Implementation file

Generate implementation file

Faolder: C:Yessons\cpp\CpplessonsY: |

Filename: |Manager.q::p |

Header indude: |'I'~"Ianager.h' |

Cancel

Here are the derived .h and .cpp files:

/*
* Manager.h derived class

*/

#ifndef MANAGER_H
#define MANAGER_H

#include "Employee.h"

copyright © 2021 www.onlineprogramminglessons.com For student use only

class Manager:public Employee

{
public:

// construct Manager with name, id and salary
Manager(string name,string id,double salary);

// calculate weekly pay
double weeklyPay();

// return manager info
string toString();

b
#endif // MANAGER_H_INCLUDED

/*
* Manager.cpp derived class
*

*/
#include "Manager.h"

// construct Manager with name, id and salary

Manager::Manager(string name,string id,double salary)
:Employee(name, id,salary)

{

}

// calculate weekly pay
double Manager::weeklyPay()

{
double pay = getSalary() / WEEKS_IN_YEAR;

return pay;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// return manager info
string Manager::toString()

{

return "Manager " + Employee::toString();

}
/*

* Secretary.h derived class

*/

#ifndef SECRETARY_H
#define SECRETARY_H

#include "Employee.h"
class Secretary : public Employee
{
// Constants
public:
const double BONUS = 100;
public:
// construct Secretary with name, id and salary

Secretary(string name,string id,double salary);

// calculate weekly pay
double weeklyPay();

// return manager info
string toString();

b

#tendif // SECRETARY_H

copyright © 2021 www.onlineprogramminglessons.com For student use only

/*
* Secretary.cpp derived class
*

*/
#include "Secretary.h"

// construct Secretary with name, id and salary

Secretary::Secretary(string name,string id,double salary)
: Employee(name, id, salary)

{

}

// calculate weekly pay
double Secretary::weeklyPay()

{
double pay = getSalary()/ WEEKS_IN_YEAR + BONUS;

return pay;

}

// return secretary info
string Secretary::toString()

{
return "Secretary " + Employee::toString();
}
/*
* Salesman.h derived class
*/

#ifndef SALESMAN_H
#define SALESMAN_H

#include "Employee.h"

copyright © 2021 www.onlineprogramminglessons.com For student use only

class Salesman: public Employee
{
// Constants
public:
static const double COMMISSION_RATE = .25;

private:
// weekly sales
double sales;

public:

// construct Salesman with name, id and salary
Salesman(string name,string id,double salary, double sales);

// calculate weekly pay
double weeklyPay();

// return salesman info
string toString();

b
#endif // SALESMAN_H

/*
* Salesman.cpp derived class
*

*/
#include "Salesman.h"

// construct Salesman with name, id and salary
Salesman::Salesman(string name,string id,double salary, double sales)
:Employee(name, id,salary)

{

this->sales = sales;

}
// calculate weekly pay

copyright © 2021 www.onlineprogramminglessons.com For student use only

double Salesman::weeklyPay()

{

double pay = getSalary()/WEEKS_IN_YEAR + sales * COMMISSION_RATE;
return pay;

}

// return manager info
string Salesman::toString()

{

ostringstream sout;

sout << "Salesman " << Employee::toString() << " Sales: $" << fixed <<
setprecision(2) << sales;
return sout.str();

}
/*
* Worker.h derived class

*/

#ifndef WORKER_H
#define WORKER_H

#include "Employee.h"

class Worker: public Employee
{

public:

// Constants
const double OVERTIME_RATE = 1.5;

private:

// hours overtime
int overtime;

public:

copyright © 2021 www.onlineprogramminglessons.com For student use only

// construct Worker with name, id and salary
Worker(string name,string id,double salary, int overtime);

// calculate weekly pay
double weeklyPay();

// return manager info
string toString();

b
#tendif // WORKER_H

/*
* Worker.cpp derived class
*

*/
#include "Worker.h"

// construct Worker with name, id and salary

Worker::Worker(string name,string id,double salary, int overtime)
:Employee(name, id,salary)

{

this->overtime = overtime;

}

// calculate weekly pay
double Worker::weeklyPay()
{
double pay_rate = getSalary()/ WEEKS_IN_YEAR / HOURS_IN_WEEK;
double pay = getSalary()/ WEEKS_IN_YEAR
+ overtime * pay_rate * OVERTIME_RATE;
return pay;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// return worker info
string Worker::toString()
{

return "Worker " + Employee::toString();

}

Polymorphism is like a giant if-else statement to execute the selected derived
object method. For example: If it is a Salesman derived class object, then we
calculate weekly wage using sales and commission.

Make a cpp file called Lesson8.cpp and put the following in the main function
.Our first step is to make an array to hold Employee derived objects.

// number of employees
const int NUM_EMPLOYEES = 4;

// make an array of employees pointers
Employee* employees[NUM_EMPLOYEES];

Next, we will the add the derived objects to the Array. Each derived object gets a
name, employee id, yearly salary, the salesman gets the sales for the week and
the worker get the number of over time hours for the week.

// fill array with derived objects

employees[0] = new Manager("Tom Smith","M1234",100000);
employees[1] = new Secretary("Mary Smith","S5678",40000);
employees[2] = new Salesman("Bob Smith","SM1111",20000,10000);
employees[3] = new Worker("Joe Smith","W2222",30000,5);

Next, we loop through the array printing out the employee info and the calculated
weekly pay. Notice the weekly pay is different for each employee type, this is
what we want, automatic selection. This is polymorphism in action.

// loop through employee array

// print out employee info
// calculate weekly pay.

copyright © 2021 www.onlineprogramminglessons.com For student use only

for (inti=0;i < NUM_EMPLOYEES; i++)
{
// print out employee info
cout << employees[i]->toString() << end]l;

// calculate weekly pay
double pay = employees[i]->weeklyPay();

// print weekly pay
cout << "My weekly pay is: $" << fixed << setprecision(2) << pay << endl;

Here is the polymorphism output:

Manager Tom Smith E1234 $100000.00

My weekly pay is: $1923.08

Secretary Mary Smith E5678 $40000.00

My weekly pay is: $869.23

Salesman Bob Smith E1111 $20000.00 Sales: $10000.00
My weekly pay is: $2884.62

Worker Joe Smith E2222 $30000.00

My weekly pay is: $685.10

Todo

Copy all the h and cpp code and put into separate files, and put the main function
in a cpp file called lesson8.cpp and then compile all files and run the main
function. Make sure you get the same output before proceeding.

Lessonll Home work
Question 1

In the Employee class make another pure virtual method :
virtual double raise()=0;

This will be used to give each employee a yearly raise.

copyright © 2021 www.onlineprogramminglessons.com For student use only

The raise method will be implemented in each derived class. The raise will be
calculated from the yearly salary. It could be calculated from percentage of yearly
salary or how many hours they work over time. For sales person it could be
calculated from their commission. It is up to you how you calculate the raise, but
the raise must all be a different, a unique dynamic calculation for each employee.
Some employees may not get a raise.

In the main function you will want to calculate the raise after you calculate the
weekly pay and add the raise to the weekly pay amount. The weekly raise amount
would be a percentage calculated from the yearly raise.

Your main function may now look like this:

// print out employee info
cout << employees|[i]->toString() << end];

// calculate weekly pay
double pay = employees[i]->weeklyPay();

// calculate raise
double raise = employees[i]->raise();

// add raise to pay
pay = pay + raise/52;

// print weekly pay
cout << "My weekly pay is: $" << fixed << setprecision(2) << pay << end|;

// tell employee about the raise
cout << "Which includes a weekly raise of $" << raise/52 << end|

You may update your existing Employee file’s and the main function in the

lessonl11.cpp file rather than making new files. In the real world programs are
always being added to.

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 12 INTERFACES and TEMPLATES

An interface is pure abstract class meaning it just has pure abstract methods.
Abstract methods are just method declarations but no code. The code is to be
implemented in the derived class. The purpose of an interface is to specify what
methods a class should have and to represent derived classes that implement the
interface. The interface becomes the super base class for the class it implements.
An interface can represent many other classes that implement the interface. C++
does not have interface keyword, so we make our own interface using the class
keyword. All methods in the interface must be pure virtual:

virtual method_definition_header = 0;

Pure virtual meaning all method code must be implemented in a derived class but
not in the interface itself.

An interface is defined as follows:

class interface_name

{

virtual method_definition_header(s) = 0;

}

Here is an ICalculator interface that defines methods that can be used in a
Calculator.

/*
* |Calculator.h interface

*/

#ifndef ICALCULATOR_H
#define ICALCULATOR_H

copyright © 2021 www.onlineprogramminglessons.com For student use only

class ICalculator

{
public:
virtual double add(double a, double b)=0;
virtual double sub(double a, double b)=0;
virtual double mul(double a, double b)=0;
virtual double div(double a, double b)=0;
b
#endif // ICALCULATOR_H

You can put the ICalculator interface into a file called ICalculator.h
Here is a Calculator class that implements the ICalculator interface.
class Calculator : public ICalculator

The ICalculator is the base class, the Calculator class implements the ICalculator
interface class.

/* Calculator.h

* implements Calculator interface
*/

#ifndef CALCULATOR_H

#define CALCULATOR_H

#include "ICalculator.h"

class Calculator : public ICalculator

{

public:
double add(double a, double b);
double sub(double a, double b);
double mul(double a, double b);
double div(double a, double b);

b
#endif

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can put the Calculator definition class into a file called Calculator.h

Here is the Calculator implementation file

/*
* Calculator.cpp
* implement ICalculator interface

*/
#include "Calculator.h"

double Calculator::add(double a, double b)
{

returna +b;

}

double Calculator::sub(double a, double b)

{

returna-b;

}

double Calculator::mul(double a, double b)

{

returna * b;

}
double Calculator::div(double a, double b)

{

return a/b;

}

You can put the Calculator implementation class into a file called Calculator.cpp

copyright © 2021 www.onlineprogramminglessons.com For student use only

TODO

Put the ICalculator interface in a file called ICalculator.h file and the Calculator
class definition in a file called Calculator.h and the Calculator class
implementation in a file called Calculator.cpp. In your Lesson12.cpp main
function, test all the calculator functions.

You can test like this:
Calculator calc;
cout << calc.add(3,4) << endl;

Alternatively you can make a Calculator test file called TestCalculator.cpp for your
main.

Lesson12 Homework
Question 1

Instantiate a Calculator class that implements the ICalculator Interface for
doubles. In a loop asking the user to type in 2 numbers and what operation they
want: + - * / and display the results. You can use ‘x’ to exit loop.

Put your code in a file called Homework12.cpp

Question 2

Add a accumulator instance variable to the Calculator that will sum up all the
results of the calculator. Have methods to retrieve and clear the calculator
accumulator. In your main methods do some calculations print out the
accumulator. After all calculations have been made clear the accumulator and the
print out its value. You need to make a Constructor that initializes the
accumulator to 0;

Put your code in a file called Homework12.cpp

copyright © 2021 www.onlineprogramminglessons.com For student use only

TEMPLATES

Templates allow you to specify the data type implicitly for a function or explicitly
for a class that it will use when it runs. Implicit meaning the compiler will figure
out the data type for you before the program runs. Explicitly meaning you must
specify the data type before the program runs. Templates are quite powerful and
impressive, allowing you the convenience to specify different data types for the
same function or class definition. C++ has many mechanisms to assist you in your
programming adventures.

Function templates

Function templates let you use a function with any data type. For example, you
have a function that adds 2 int’s like this:

int add(int a, int b)
{

returna + b;

}

but you want to add 2 doubles instead.

To do this we change our add function to a template function. A template
function starts with key word template <typename T> where T is the unknown
data type to be substituted, with the data type you want to use.

Templates can also be specified as template <class T> which as nothing to do with
a class but sometimes means the data type T will represent a class object instead.
They both almost work the same and either one can be used.

Here is our template add function:

template <typename T>
Tadd(Ta, Th)
{

returna +b;

copyright © 2021 www.onlineprogramminglessons.com For student use only

You use template function just like a regular function.
“Only the compiler knows for sure”.

Try it out:

Put the template function above the top of your main in your Lesson9.cpp file.
Then at the bottom of your main type in the following:

// add doubles
cout << add(4.6, 7.8) << endl;

// add ints
cout << add(4, 7) << endl;

// add chars
cout << add('.!, '?') << end];

// add strings

string s1 ="hello";

string s2 = "there";

cout << add(s1, s2) << endl;

Here is the output: The template function adds all the different data types
together.

12.40

11

m
hellothere

Template classes

A template class lets you specify what data type your class will hold for its
instance variables. A template class only requires a header h file and no source
cpp file. The template class code is to be implemented after the class definition in
the .h header file.

copyright © 2021 www.onlineprogramminglessons.com For student use only

A template class is defined as follows:

template <typename T>
class class_name

{
private:
variables of datatype T

public:
constructors
getters
setters
methods
toString

}; // don’t forget the semi-colon

The template <typename T> specifies that the T is to be substituted with a data
type of your choice like char, int or double when the program runs.

There is also template <class T> where T is to represent a class data type rather
than a primitive data type like int or double.

Both can be used there is only a slight difference between them. Most people use
template <class T> mainly because they are substituting class data types.

We can convert our previous Calculator code into a template class. A template
class calculator using our previous calculator code to do arithmetic operations
add, sub, multiply and divide on 2 numbers would look like this:

template <typename T>

class TCalculator

{

public:

Tadd(T a, Th);
Tsub(Ta, Th);
Tmul(Ta, Tb);
T div(Ta, Th);

}; // don’t for get the semi colon

copyright © 2021 www.onlineprogramminglessons.com For student use only

Where T represents the data type you specify when you instantiate the object
from the template class definition.

Each template class method is implemented after the template class definition.
Each method implementation starts with

template <typename T>

The method resolution operator class name must an also include the template
date type <T> so that the method knows what a T is.

class_name<T>::method_name()
{
}

Here is the template method implementation for the add method of the template
calculator class

template <typename T>
T TCalculator<T>::add()

{

returna +b;

}

To do

Type out TCalculator class and put into a TCalculator.h file. Below the template
class definition, implement the template methods add, sub, multiply and divide.

In your Lesson12.cpp file or in a separate cpp test file called TestTCalculator.cpp.
In the main method instantiate a TCalculator object and try out all the arithmetic

operations. Use chars, ints, doubles and strings. Your main may look like this:

#include <iostream>
#include "TCalculator.h"

copyright © 2021 www.onlineprogramminglessons.com For student use only

#include <string>
using namespace std;

int main()

{

TCalculator<int> tc;
cout << tc.add(3,4) <<endl; //7

TCalculator<string> tc2;
cout << tc2.add("cat","dog") << endl; // catdog

return 0;

}

Note:

Some people put the template implementation in a separate cpp file. Many
people try to compile the template cpp file but all they do is end up with many
errors and hours of frustration. This is a bad idea, but If you do this you need to
include the cpp file at the end of the template h file like this

#include “TCalculator.cpp”

Although this works but you need to remember you cannot compile the template
cpp file, because the template h file calls it for you. Make sure you do not say
#include “TCalculator.cpp” in your TCalculator.cpp file. It is best to write your
template cpp file at the bottom of the template h file. You can also write all your
template implementation code in-line with the template definition file like this.

copyright © 2021 www.onlineprogramminglessons.com For student use only

template <typename T>
class TCalculator

{
public:

Tadd(Ta, Th)
{

returna+b;

}

Tsub(Ta, Th)
{

return a - b;

}

Tmul(Ta, Th)
{

return a * b;

}

T div(Ta, Th)
{

returna/ b;

}

}; // don’t forget the semi colon

Homework 12 Question 3

Instantiate a TCalculator template class for doubles. In a loop asking the user to
type in 2 numbers and what operation they want: + - * / and display the results.
You can use ‘X’ to exit loop.

Homework 12 Question 4

Add a accumulator instance variable to the TCalculator that will sum up all the
results of the calculator. Have methods to retrieve and clear the calculator
accumulator. In your main methods do some calculations print out the
accumulator.

copyright © 2021 www.onlineprogramminglessons.com For student use only

After all calculations have been made clear the accumulator and the print out its
value. You need to make a Constructor that initializes the accumulator to 0;

Put your code in a file called Homework12.cpp
Simple template class

We now present a simple template class called TData which just stores a data
value, and does operations on the data value like adding, subtraction and
dividing. The operands are encapsulated (enclosed) into the class by the private
variable data having specified template data type T.

The add method adds the encapsulated (enclosed) data value with an input
parameter. Here is the TData template class definition.

/*
* TData.h
* template class

*/

#ifndef TData_H
#define TData_H

template <typename T>
class TData

{

private:
T data;

public:
TData();
TData(T data);

// getters
T getData();

// setters
void setData(T data);

b

copyright © 2021 www.onlineprogramminglessons.com For student use only

Todo

Type out the template class in a C++ header file called TData.h. A TData.cpp file is
not required since the adder implementation code is to be places at the bottom
of the header file like this:

template <typename T>
TData<T>::TData()

{
}

template <typename T>
TData<T>::TData(T data)

{
this->data = data;

}

// getters
template <typename T>
T TData<T>::getData()

{

return this->data;

}

// setters
template <typename T>
void TData<T>::setA(TData data)

{

this->value = data;

}

#endif // TData_H

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can still make a TData.cpp file but you must add

#include “Tdata.cpp”
at the bottom of the TData.h file. This is not a good thing to do to have separate
template hpp and cpp fles.

todo

Type in and complete the rest of the TData implementation code. At the bottom
of your Lesson9 main function or in a separate TestTData.cpp file main function,
instantiate a TData class with different data types and print out the results.

TData<double> td(3);
cout << td.get() << endl
td.set(5);

cout << td.get() << end|;

The output is as follows: 3

Homework1l2 Question 5

Make an array of TData objects.

TData<int> tdatas[] ={TData<int>(1), TData<int>(2),TData<int>(3), TData<int>(4),TData<int>(5)};

Then make a template function that will receive an array of template data objects
and print them out in a loop

Here is the prototype for the printDatas template function:

template <typename T>
void printDatas(TData<T> datas[],int n);

where n is the number of elements in the array.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Homework 12 Question 6

Make a template array class called TArray that can take any data type that has
methods for assigning and retrieving items. The constructor should clear the
array to zero.

In a main method fill the array with numbers from 1 to 10 and print out then out.
Homework 12 Question 7

Repeat Question4 but instead use the TData template class as the data type,

Call your TData array class TDArray.

Template Interface’s

We can also make an interface that is a template. We now make our ICalculator
interface into a template ICalculator interface called TICalculator.

template <class T>

class TiCalculator

{
public:
virtual T add(T a, T b)=0;
virtual T sub(T a, T b)=0;
virtual T mul(T a, T b)=0;
virtual T div(T a, T b)=0;

b

We can now have the TCalculator implement the TICalculator interface.

#include "TICalculator.h"

template <typename T>
class TCalculator: public TICalculator<T>

{

copyright © 2021 www.onlineprogramminglessons.com For student use only

public:

Tadd(Ta, Th);
Tsub(Ta, Th);
Tmul(T a, T b);
T div(T a, T b);

b

When we specify the TICalculator interface as the base class we must specify the
data type T as well to avoid error.

class TCalculator: public TICalculator<T>

other than that the code and operation are the same.

Todo

Put the TICalculator template interface in a file called TICalculator.cpp.

have the TCalculator class implement the TICalculator interface and run your test
code. The only drawback you may have is that the string class does not have
methods subtract, multiply and divide, it only has the + operation to add two
strings together. You may have to avoid the string class for these operations.

Lesson 12 Home work
Question 8

Instantiate a TCalculator using the TICalculator interface class for any data type
you like. In a loop asking the user to type in 2 numbers and what operation they
want: + - * / and display the results. You can use ‘x’ to exit loop. Put your code in a
file called Homework11.cpp

copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 12 Home work
Question 9

Make a TCalculator using operator methods like +.=*and / so that you can use
arithmetic operations like x =a + b rather than method names like add, sub, mul
and div.
Define a operator method like:

T operator+(T x);

Use in @ main program like this:

intx =a+b;

copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 13 RECURSION

When a function calls itself it is known as recursion. Recursion is analogues to a
while loop. Most while loop statements can be converted to recursion, most

recursion can also be converted back to a while loop.

The simplest recursion is a function calling itself printing out a message.

void printMessage()
{

cout << "l like programming" << end]l;
printMessage();

Unfortunately this program will run forever, so you will need to stop the program
somehow while it is running. (Don’t worry, it will stop running when it runs out of
program space). We can add a counter n to the printMessage method so it can
terminate at some point. A recursive method has a base case to stop recursion
and a recursive case to continue recursion.

void printMessage(int n)

{
// base case stops recursion
if(n <= 0)
{

return ;

// recursive case, continues recursion
else

cout << "l like programming" << endl;
print_message(n-1);

}

| like programming
| like programming
| like programming
| like programming
| like programming

copyright © 2021 www.onlineprogramminglessons.com For student use only

Now the program will print the message n times

| like programming
| like programming
| like programming
| like programming
| like programming

Every time the print_message function is called n decrements by 1.
When n is 0 the recursion stops. You may place the statement:

cout << "l like programming" << endl;

before or after the recursive call. If you put it before than the message is printed
first before each recursive call.

If you put the print statement after the recursive call than the message is printed
after all the recursive calls are made. There is quite a difference in program
execution.

The recursive operation is very similar to the following while loop:

n=5

while(n > 0)

{
cout << “I like programming” << end];
n--;

}

You should now run the recursion function
You would call the function like this:

printMessage(5);
It will print | like programming 5 times like this:.

copyright © 2021 www.onlineprogramminglessons.com For student use only

| like programming
| like programming
| like programming
| like programming
| like programming

n starts at 5 and counts down to 0. Before each recursive call the value of n is
stored in the sequence 5,4,3,2,1. When n becomes 0 then the recursion stops.
After the recursion stops the print_message function rewinds. All the previous
stored values of n are restored in reverse order sequence 1,2,3,4,5 ending back
where it started at the value of 5.

Todo:

Print the value of n at the top of the recursive function and at the end of the
recursive function.

void printMessage(int n)
{
cout << n << endl;
// base case stops recursion
if(n <= 0)
{

return ;

// recursive case, continues recursion
else

cout << "l like programming" << end|;
print_message(n-1);

cout << n << endl;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

You will get something like this:

5
| like programming
4
| like programming
3
| like programming
2
| like programming
1
| like programming
0

ua b wWwN R

Put the print statement after the recursive call and see what happens.

Recursion is quite powerful, a few lines of code can do so much.

Our next example will count all numbers between 1 and n. It is actually counting
all the recursive loops. This example may be more difficult to understand, since
recursion seems to work like magic, and operation runs in invisible to the
programmer.

// return count
int countn(int n)

{

// base case
if(n == 0)
{

return 0;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

// recursive case
else

{

return countn(n-1) + 1;

}

count(5) would return5because1+1+1+1+1=5

Count adds 1 to the previous returned value. n is use to count how many times
we want to loop recursively.

You can run it in a program like this:
cout << count(5) << endl; // 5

When (n == 0) this is known as the base case. When n == 0 the recursion stops
and O is return to the last recursive call. Otherwise the countn function is called
and n is decremented by 1.

It works like this:

main calls countn(5) with n=5
countn(5) calls countn(4) with n=4
countn(4) calls countn(3) with n=3
countn(3) calls countn(2) with n=2
countn(2) calls countn(1) with n=1
countn(1) calls countn(0) with n=0

countn(0) returns 0 to count(1) since n ==

countn(1) adds 1 to the return value 0 and then returns 1 to count(2)
countn(2) adds 1 to the return value 1 and then returns 2 to count(3)
countn(3) adds 1 to the return value 2 and then returns 3 to count(4)
countn(4) adds 1 to the return value 3 and then returns 4 to count(5)
countn(5) adds 1 to the return value 4 and then returns 5 to main()

main() receives 5 from count(5) and prints out 5

copyright © 2021 www.onlineprogramminglessons.com For student use only

The statement return countn(n-1) + 1 is used to call the function recursively and
also acts as a place holder for the value returned by the called function.

We could rewrite the recursive part as follows:

int x = countn(n-1);
return x+1;

x will now receive the return value from the function call and 1 will be added to
the return value and this new value will be returned to the caller.

If you can understand the above then you understand recursion. If you cannot
then maybe the following diagram will help you understand.

main() <

A4 4+1 =5
count(5)

v 3+1 =4
count(4)

: 2+1=3
count(3)

v 1+1=2
count(2)

Y 0+1 =1
count(1)

! 0
count(0)

copyright © 2021 www.onlineprogramminglessons.com For student use only

You probably don’t need to understand how recursion works right away.
Sometime you just need to accept things for now then understand later. One day
it will hit you when you are thinking about something else.

Basically recursion works like this:

For every recursive function call the parameter and local variables are stored.
Technically they are stored in temporary memory called a stack.

Every time the recursive function returns the previous numbers that were stored
are restored and now become the current number, to be used to do a calculation.
The numbers are restored in reverse order. You must remember ever time a
function is called it returns and program execution continues on the next line,

Function call/ return

call count(n-1)

call count(n-1)

call count(n-1)

call count(n-1)

call count(n-1)

count(n-1) returns 0

count(n-1) returns0+ 1

count(n-1) returns 1+ 1

count(n-1) returns3+1

nidlwiN(kROolRINWwWiI~UV|Z

)
)
)
count(n-1) returns 2 +1
)
)

count(n-1) returns4 + 1

The thing to remember about recursion is it always return’s back where it is
called, This is known as rewinding. Here are some more recursive function
examples:

Sum numbers 1ton

int sumn(int n)

{
if(n ==0)
{
return O;
}

copyright © 2021 www.onlineprogramminglessons.com For student use only

else

{
return sumn(n-1) + n;
}
}

sumn(5) would return 15
You can run it in a program like this:

cout << sumn(5) << endl; // 15
It works similar to countn instead of adding 1 its adds the n’s. sumn adds all
together the previous stored n’s to the recursive function returned values as it
rewinds.

Before each recursive call the value of n is saved, When recursion stops when the
base case is reached the recursive function returns value. The first value returned
is the O from the base case, the 0 is added to the stored value of n whichis1so 0
+1=1 then this value is returned. Then the returned value 1 is then added to
the next stored value of n which is 2 so now 1 + 2 = 3. The process continues until
there is no more stored values of n available

Return value Stored nvalue |return value+n
0 1 1
1 3
3 3 6
6 4 10
10 5 15

0+1+2+3+4+5 =15
Our counter n serves 2 purposes a recursive counter and a number to add.

Multiply numbers 1 to n (factorial n)

copyright © 2021 www.onlineprogramminglessons.com For student use only

We can also make a multn function which multiples n rather than adding n. This
is basically factorial n. muln multiplies all together the previous stored numbers as
it rewinds.

int multn(int n)

{
if(n ==0)
{
return 1;
}
else
{
return multn(n-1) * n;
}
}

multn(5) would return 120
since 1*2*3*4*5 =120

Our base case returns 1 rather than 0 or else our result would be 0;

You can run itin a program like this:

cout << multn(5) << endl; // 120

Power x"
Another example is to calculate the power of a number x"

In this case we need a base parameter b and an exponent parameter n.
pown multiplies all the previous stored numbers by the base b as it rewinds.

copyright © 2021 www.onlineprogramminglessons.com For student use only

int pown(int b, int n)

{
if(n ==0)
{
return 1;
}
else
{
return pown(b,n-1) * b;
}
}

pown(2,3) would return 8 because 2*2*2=8 since 2°=8

You can run itin a program like this:

cout << pown(2,3) << endl; // 8

Every time a recursive call is made the program stores the local variables in a call
stack. Every time recursive call finishes executing, the save local variables
disappear and the previous local variables are available. These are the ones
present before the recursive function was called. These save variables may now

be used in the present calculations.

For the above example 2°=8 the call stack would look like this.

1

iy
5'35'35'35'3
N WNINNENO
ﬁ':ﬁ'ﬁb‘:lﬂ
N WININNEPR
O 3OS N
o1 n
N WINDN

copyright © 2021 www.onlineprogramminglessons.com For student use only

Every time the recursive function finished executing it returns a value. Each
returning value is multiplied by the base b. In the above case the returning values
arel1,2,4and 8

The return value is the value from the previous function multiplied by b (2)
return pown(b,n-1) * b;

the function first returns 1then 1 *b=1*2=2 then2 *2=4andfinally4*2=8

efficient power x"

A more efficient version of pown can be made relying on the fact then even n can
return b * b rather than just return * b for odd n

int pown2(int b,int n)

{
if (n==0)

{

return 1;

}

if (n %2 ==0)
{

return pown2(b, n-2) * b * b;

}

else

{

return pown2(b, n-1) * b;
}
}

Operation is now much more efficient1*2*4=8

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can run itin a program like this:

cout << pown2(2,3) << endl; // 8

Summing a sequence

Adding up all the numbers in a sequence: n*(n+2)/2

n n*n+2)/2

0+ 1 (returned value)
1

4

7

12

17

Total: 42

O pwbdheEPk o

int seqn(int n)
{
if(n == 0)
{

return 1;

}

else{

return (n * (n + 2))/ 2 + seqn(n-1);
}
}

seqn(5) would return 42 because0+1+4+7+12+17=42

copyright © 2021 www.onlineprogramminglessons.com For student use only

You can run itin a program like this:
cout << seqn(5) << endl; // 42

Note: 42 is the number of the universe and n * (n + 2))/ 2 + seqn(n-1)
Is the equation of the universe.

You can print out the sequence by modifying the seqn function like this:

int seqn2(int n)

{
if(n ==0)
{
return O;
}
else
{

intx=(n*(n+2))/2;
cout << x << endl; // print sequence
return (n * (n + 2))/ 2 + seqn2(n-1);
}
}

You can run itin a program like this:

cout << seqn2(5) << endl;

You will get an output like this: 17
12

B

42

The sequence printed backwards and the final sum is 42

copyright © 2021 www.onlineprogramminglessons.com For student use only

Fibonacci sequence

Recursion is ideal to directly execute recurrence relations like Fibonacci sequence
The Fibonacci numbers are the numbers in the following integer sequence.
0,11,2,3,5,8, 13,21, 34,55, 89, 144,

In mathematical terms, the sequence fn of Fibonacci numbers is defined by the
recurrence relation.

fn = fn—l + fn—2
with seed values

f0=0andf1=1.

A recurrence relation is an equation that defines a sequence based on a rule that
gives the next term as a function of the previous term(s).

int fib(int n)

{
if (n ==0)

{

return O;

}

elseif (n==1)

{

return 1;

}

else

{
return fib(n-1) + fib(n-2);

copyright © 2021 www.onlineprogramminglessons.com For student use only

Notice The recursive statement is identical to the recurrence relation
fib(10) would return 55 because 21 + 34=55
You can run fib in a program like this:
cout << fib (10) << endl; // 55
Combinations
We can also calculate combinations using recursion.

Combinations are how many ways can you pick r items from a set of n distinct
elements.

CallitnCr (n chooser)

5C2 (5 choose 2) would be

Pick two letters from set S={A, B, C, D, E}

Answer:{A, B}, {B, C}, {B, D}, {B, EHA, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E}

There are 10 ways to choose. 2 letters from a set of 5 letters. The combination
formula is

nCr=n!/ rl(n-r)!
The Recurrence relation for calculated combinations is:
base cases:

nCn=1

nCo0=1

recursive case:
nCr=n-1Cr+ n-1Cr-1 forn>r>0

copyright © 2021 www.onlineprogramminglessons.com For student use only

Our recursive function for calculating combinations is:

int combinations(int n, int r)

{
if(r==0]]| n==r)
{
return 1;
}
else
{
return combinations(n-1, r) + combinations(n-1, r-1);
}
}

combinations(5,2) would return 10
You can run combinations like this:

cout << combinations(5,2) << endl; // 10
Print a string out backwards

With recursion printing out a string backwards is easy, it all depends where you
put the print statement. If you put before the recursive call then the function
prints out the characters in reverse. Since n goes from n-1 to 0.If you put the
print statement after the recursive call then the characters are printed not
reverse since n goes from Oton.

// reverse a string
void print_reverse(string s, int n)

{
if(n==0)
{
cout << end|;
}

copyright © 2021 www.onlineprogramminglessons.com For student use only

else

{
cout << s[n-1];
print_reverse(s, n-1);
}
}

You would call the print_reverse function like this

string s = "hello"; olleh
print_reverse(s, s.length());

Check if a string is a palindrome

A palindrome is a word that is spelled the same forward as well as backwards:
Like "radar" and "racecar"

// return true if string is a palindrome otherwise return false
bool is_palindrome(string s, inti, intj)

{

if (i >=j)
return true;
else

{
if (s[i] !=s[jl)
return false;
else
return is_palindrome(s,i+1, j-1);

You would call the is_palindrome function like this:

string s2 = "radar";
cout << s2 << endl << (is_palindrome(s2, 0,s2.length()-1)) << end];

copyright © 2021 www.onlineprogramminglessons.com For student use only

Radar

string s3 = "apple";
cout << s3 << endl << (is_palindrome(s3, 0,s3.length()-2)) << end|;

apple
0

Permutations

Permutations are how many ways you can rearrange a group of numbers or
letters. For example for the string “ABC” the letters can be rearranges as follows:

ABC
ACB
BAC
BCA
CBA
CAB

Basically we are swapping character and then print them out
We start with ABC if we swap B and C we end up with ACB

// print permutations of string s
void print_permutations(string s, inti, int j)
{

int k;

char c;

copyright © 2021 www.onlineprogramminglessons.com For student use only

// print out permutation

if (i ==j)
{
cout << s << endl;
}
else
{

for (k = i; k <=j; k++) {

// swap i and k
c = s[i];

s[i] = s[k];

s[k] =c¢;

// recursive call
print_permutations(s, i + 1, j);

// put back, swap i and k
c = s[i];

s[i] = s[k];

s[k] =c;

You would call the print_permutations function like this:

print_permutations(s4, 0,s4.length()-1); ’B*,fﬁ
BCA
CBA
CAB

Combination sets

We have looked at combinations previously where we wrote a function to
calculate home many ways you can choose r letters from a set of n letters.

copyright © 2021 www.onlineprogramminglessons.com For student use only

nCr nchooser
Combinations allow you to pick r letters from set S={A, B, C, D, E}
n=5r =2 nCr 5C2
Answer:{A, B}, {B, C}, {B, D}, {B, EH{A, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E}
We are basically filing a seconded character array with all possible letters up to r.

Start with ABCDE we would choose AB then AC then AD then AE etc.
We use a loop to traverse the letters starting at n =0, and fill the comb string.
When n =r we then print out the letters stored in the comb string.

void print_combinations(string s, char combs|],
int start, int end, int n, intr)
{
inti=0;
intj=0;

// current combination is ready to be printed
if (n==r)
{
for(j=0;j<r;j++)
cout <<combslj];
cout << end|;
return;

}

// replace n with all possible elements.
for (i=start;i<=end && end - i+ 1>=r-n; i++)
{
combs[n] = s[i];
print_combinations(s, combs, i+1, end, n+1, r);
}
}

copyright © 2021 www.onlineprogramminglessons.com For student use only

You would call the print_combinations function like this: | o
AC

string s5 = "ABCDE"; AD
char combs[5+1] = {0}; QE
print_combinations(s5, combs,0,s5.length()-1,0,2); BD
BE

CD

The difference between combinations and permutations is that in a combination
you can have different lengths in the set where as in permutations they are the
same length in the set.

Determinant of a matrix using recursion.

In linear algebra, the determinant is a useful value that can be computed from the
elements of a square matrix. The determinant of a matrix A is denoted det(A),
detA, or |A

In the case of a 2 x 2 matrix, the formula for the determinant is:

la b
|A| = | | =ad-bc
|c d|

For a 3 x 3 matrix A, and we want the s formula for its determinant |A| is

|a b c| | e f| | d f| | d e
Al =|d ef | =a| | -b | | +c| |
lg hi| | hi | lg || |g h|

= aei + bgf — ceg — bdi - afh

copyright © 2021 www.onlineprogramminglessons.com For student use only

Each determinant of a 2 x 2 matrix in this equation is called a "minor" of the
matrix A. The same sort of procedure can be used to find the determinant of a
4 x 4 matrix, the determinant of a 5 x 5 matrix, and so forth.

Our code actually follows the above formula, calculating and summing the miners.

// calculate determinant of a matrix
float determinent(float matrix[3][3], int size)
{

intc;

float det=0;

int sign=1;

float b[3][3];

inti,j;

int m,n;

// base case
if(size == 1)
{
return (matrix[0][0]);
}
else
{
det=0;
for(c=0; c<size; c++)
{
m=0;
n=0;
for(i=0; i<size; i++)
{
for(j=0; j<size; j++)
{
b[illil = 0;
if(i'=0 && j!=c)
{
b[m][n] = matrix[il[j];
if(n<(size-2))
{
n++;

}

copyright © 2021 www.onlineprogramminglessons.com For student use only

else
{
n=0;
m++;
}
}
}
}
det = det + sign*(matrix[0][c]*determinent(b,size-1));
sign = -1*sign; // toggle sign
}
}

return (det);

}

You call and run the determinant function like this: 306

float m[3][3] = {{6,1,1},{4,-2,5},{2,8,7}};

cout << "det =" << determinent(m,3) << endI;

There are many more recursive examples, too numerous to present.
If you do all the following to do questions you will be a recursive expert.

LESSON 13 HOMEWORK
Question 1

Print out an array using recursion.
int printArray(int a[],int n);
Question 2

Add up all numbers in an array using recursion.
int add(int a[],int n);

copyright © 2021 www.onlineprogramminglessons.com For student use only

Question 3
Print out even numbers in an array using recursion.
void printEven(int a[],int n);

Question 4
Print out odd numbers in an array using recursion.
void printOdd(int a[],int n);

Question 5
Print out an array backwards using recursion.
void printBackwards(int a[], int n);

Question 6
return largest number in an array using recursion
int largest(int a[],int n);

Question 7
return smallest number in an array using recursion
int smallest(int a[],int n);

Question 8

Write a recursive function called void reverse_string(char s[], int n) that reverses
a char string in place. The recursive string receives the char string and outputs the
string in reverse. No printing is allowed.

Question 9

Write a recursive function called void reverse_string(string s, int n) that reverses
a sting in place. The recursive string receives the string and outputs the string in
reverse. No printing is allowed. You need to use substr since you cannot replace
individual letters in a string.

Question 10

Write a recursive function called bool is_palindrome2(string s) that receives just
a string parameter and returns true if the string is a palindrome. You will need to
use substr to reduce the string as you test the first and last letters.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Question 11

Write a recursive function int search_number(int a[], Int n, int x) that searched
for a number in an array and returns the index of the number if found otherwise
returns -1 if not found.

Question 12

Write a recursive function bool search_digit(int d, int x) that searches for a digit
inside a number and return true of the number if found otherwise returns false if
not found.

Question 13

Write a recursive function called int sum_digits (int d) that adds up all the digits
in a number of any lengths. The recursive function receives an int numbers and
returns the sum of all the digits.

Question 14
Write a recursive function called void format_number(char* s, int n) that can
insert commas in a number. For example 1234567890 becomes 1,234,567,890

Question 15
Write a recursive function bool is_even(int n) that return true if a number has
even count of digits or false if the number of digits is odd.

Question 15
Write a recursive function bool is_odd(int n) that return true if a number has odd
count of digits or false if the number of digits is odd.

Question 16

Write a recursive function void print_binary(int d) that would print a decimal
number as a binary number. A binary number just has digits 0 to 1.

Where a decimal number has digits 0 to 9. The decimal number 5 would be 0101
in binary, since 1*1+ 0* 2+ 1*4 + 0 *8is 10. We are going right to left.

copyright © 2021 www.onlineprogramminglessons.com For student use only

To convert a decimal number to binary You just need to take mod 2 of a digit and
then divide the number by 2

5%2=1 €1
5/2=2
2%2=0 €0
2/2=1
1%2=1 €1
1/2 =0
0%2=0 €0

We are done so going backwards
S5inbinaryis0101

Question 17

Write a recursive function bool is_prime(int x, int n) that returns true if a
number is prime otherwise false. Where x is the number and n is the recursive
counter the x — 1.

A prime number can only is divides evenly by itself. 2,3,5,7, are prime numbers.
You can use the mod operator % to test if a number can be divided evenly by
itself. 4 %2 =0 4 can be divided evenly by 2 so there for 4 is not a prime number.

Put all your functions in a cpp file called Lesson13.c Include a main function that
tests all the recursive functions.

PROJECTS
Project 1 IntArray Class

Make an IntArray class to store a int values in an internal array called items. Make
a default constructor that makes an empty array. Make another constructor that
takes in the initial size of the array. Make another constructor the receives an
ordinary array. You need to copy the elements in the receiving array to your
internal array. Make another constructor that receives your IntArray. Again, you
need to copy the elements in the receiving IntArray to your internal array. Make

copyright © 2021 www.onlineprogramminglessons.com For student use only

methods to access array elements by array index. Make operational methods to
add items to the end, insert at a certain index, and remove at a certain index.
When adding and inserting items the internal array should just increase in size by
1. When removing items from the internal array just shift the other vales down
and set the last value to 0. Make operational method to sort the array ascending
and search for values. Use bubble sort to sort the array and use binary search to
search for items in the internal array when it is sorted. You can find the code for
bubble sort and binary search on the internet. Lastly make a toString method to
print out the array elements enclosed in square bracket’s like this: [9493 64 8]
Make a TestArray class with a main method to test all the methods of your Array
class or alternately for convenience put the main method inside your IntArry
class.

Project 2 Int Matrix class

Make a Matrix class that has rows and column variables and an two-dimensional
array of the specified rows and columns. Make a default constructor to make an
empty Matrix of rows and columns. Have private variable to store rows and
columns. Make another constructor the receives an ordinary two-dimensional
aray. You need to copy the elements in the receiving array. Make another
constructor that receives your IntMatrix. Again, you need to copy the elements in
the receiving IntMatrix. Make setters and getters to access the matrix elements.
make a to string method that will print oy the matrices Make operational
methods to add, subtract, multiply, divide, transpose and rotate matrices by a
specified rotation. Use operator functions for convenience.

Make a TestMatrix class with a main method to test all the methods of your
Matrix class

Project 3 Spelling Corrector

Read in a text file with spelling mistakes, find the incorrect spelled words and
offer corrections. The user should be able to choose the correct choice from a
menu. Look for missing or extra letters or adjacent letters on the keyboard.
Download a word dictionary from the internet as to check for correct spelled
words. Use a vector or set to store the words. Store the correct spelled file.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Project 4 MathBee

Make a Math bee for intermixed addition, subtraction, multiplication and division
single digit questions. Use random numbers 1 to 9 and use division numbers that
will divide even results. Have 10 questions and store results in a file. Keep track of
the users score. You studied how to make random numbers in the C mini

lessons. In C++ you need to use the following include statements:

#include<cstdlib>
#include<ctime>

// seed random number generator
srand((unsigned int)time(0))

// get random number 1 to 10
int x = (rand() % 10) + 1;

Project 5 Quiz App

Make a quiz app with intermixed multiple choice, true and false questions.
You should have a abstract Question super class and two derived classes
MultiipleChoice and TrueAndFalse. Each derived class must use the abstract
methods to do the correct operation. Store all questions in one file. Store the
results in another file indicating the quiz results.

Project 6 Phone Book App

Make a phone book app that uses a map to store phone numbers, emails and
names. You need an Contact class to store name, phone number and email. Make
a toString() method or use friend functions for printing out contact info. Make
copy constructor , assignment and equal operators. You should be able to add,
view, search and remove contacts and exit as menu operations. Contacts need to
be displayed in alphabetically orders by name. Offer to lookup contacts by name
or by phone number. Contacts should be stored in a file, read when app runs, and
saved with app finish running. Bonus: add a menu option to view contacts sorted
by phone numbers or by emails.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Project 7 Appointment App

Make an Appointment book app that uses a map to store Appointments. You
need an Appointment class to store name, description and time. You should be
able to view, add, delete, and scroll up and down appointments as menu
operations. Appoints need to be displayed in chronological orders. Appointments
should be stored in a file, read when app runs, and saved with app finished
running.

Project 8 template Array Class

Make the IntArray class to be a template Array class TArray so that it can store
any data type.

Make a TestTArray class with a main method to test all the methods of your
TArray class.

Project 9 template Matrix class

Make the IntMatrix class to be a template Matrix class TMatrix so that it can store
any data type. Use operator functions for convenience.

Make a TestTMatrix class with a main method to test all the methods of your
TMatrix class.

Project 10 template Arithmetic Classes

Make Generic Add, Sub, Mult and Divide template classes so each has a
overloaded method to do arithmetic operations on any data type. Have an
template abstract super class called Operations to represent all the Operation
classes. Incorporate the classes in your template Calculator of Lesson 6. Rename
you template calculator to TCalculator2. Use operator functions for convenience.

Project 11 Grocery Store App

Make a Grocery Store App where Customers can purchase items. Preferred
customers get a discount. After all items have been entered a receipt is printed.

copyright © 2021 www.onlineprogramminglessons.com For student use only

Step 1: Item class

Make a Item class with private variables product name, quantity ordered, price
and discountPrice.

If the item is not a discount item then the discount price is O.

Make a constructor that will receive the item name, quantity, price and discount
price.

Make getters and setters for each instance variable

Make a formatted toString method that will return item name price quantity
discount price surrounded by round brackets and extension price like this:

Carrots 2 1.29 (.89) 2.58 (1.78)
Step 2: GroceryStore class

Make a GroceryStore class that will store items bought, total items bought, that
total’s the order and print out a receipt.

The Grocery Store class will store the customer’s name, and all items bought in an
vector <Item> called items.

The Grocery store constructor will receive the customer name and create the
vector <ltem> of items.

The grocery store will have a method to add an item object called add.

The grocery store class will also print out a receipt using a method called
printReceipt.

The Grocery store class will have a getTotal method to return the total of all
items. The getTotal method can also be used to print out the receipt total.

All instance variables are private and you cannot have any getters and setters.
Step 3: DiscountStore class
The DiscountStore class inherits from the GroceryStore class.

The DiscountStore receives the CustomerName and sends the CustomerName to
the GroceryStore super class.

copyright © 2021 www.onlineprogramminglessons.com For student use only

If the customer is a preferred customer then the DiscountStore class is used.
The DiscountStore class will calculate discount percent, and count of discount
items and total of all items using the discount price rather than the regular price.
The discount class will override the getTotal class of the grocery store class.

The discount store class will also print a receipt showing the number of discount,
items and the discount percent obtained.

Step 4 GroceryApp class.

The GroceryApp class is the main class where the cashier enters the customer
items, bought.

The cashier will ask if the customer is a preferred customer. if it is a preferred
customer then the DiscountStore class is used else the Grocery Store class

Is used.

The cashier will enter the items bought. Once all items have been enters then
the receipt is printed out.

You will need to store a list of products in a file to simulate the entering of
products or make an array of items like this:

Item items][] = {Item(“apples”,2,1.26,1.08)
ltem(“oranges”,2,1.26,1.08),
ltem(“carrots”,2,1.26,1.08)
ltem(“apple”,2,1.26,1.08)};

The file format will be like this

Customer name

Preferred or not preferred

Number of products

Iltem name, quantity, price, discount price

Example file:
Tom Smith
Preferred

3

copyright © 2021 www.onlineprogramminglessons.com For student use only

Carrots, 2.49,1.78, 2

Fish,12.67,11.89,3

Milk 4.89.3.75, 2

In either case the items will be added to the store.

The main method will have a menu as follows:
(1) add items to Grocery store
(2) add items to Discount store

(3) print receipt
(4) exit program

END

copyright © 2021 www.onlineprogramminglessons.com For student use only

