
1
copyright © 2021 www.onlineprogramminglessons.com For student use only

C# Mini Lessons last update May 24,2021

From http://www.onlineprogramminglessons.com
These C# mini lessons will teach you all the C# Programming statements you need
to know, so you can write 90% of any C# Program.

Lesson 1 Input and Output
Lesson 2 Methods
Lesson 3 Classes and Inheritance
Lesson 4 Operators
Lesson 5 Programming Statements
Lesson 6 Arrays, Lists, HashSets and Dictionaries
Lesson 7 Overloading, Overriding and Interfaces
Lesson 8 Generic Interfaces and Classes
Lesson 9 Overloaded Operators
Lesson 10 File Access
Lesson 11 Polymorphism and C# Objects
Lesson 12 Recursion
Lesson 13 Delegates and Lambda Expressions
Lesson 14 LINQ
Lesson 15 Expressions and Expression Trees
Lesson 16 Events,Asynchronous methods and Threading
Lesson 17 Project

Conventions used in these lessons:

bold - headings, keywords, code
italics - code syntax
underline - important words

(open round bracket

) close round bracket

{ open curly bracket

} close curly bracket

[open square bracket

] close square bracket

http://www.onlineprogramminglessons.com/

2
copyright © 2021 www.onlineprogramminglessons.com For student use only

Let’s get started!
You first need to download Visual Studio to edit, compile and run C# programs.
Download the community version, its free.

https://www.visualstudio.com/thank-you-downloading-visual-
studio/?sku=Community&rel=15&page=defaultinstall

Once you installed and run visual studio you will get this screen.

https://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community&rel=15&page=defaultinstall%20
https://www.visualstudio.com/thank-you-downloading-visual-studio/?sku=Community&rel=15&page=defaultinstall%20

3
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 1 Input and Output

You first need to make a Project to store all your C# lesson files..
From the File menu select New Project

Select the template C# Windows Classic Desktop Console App (Net Framework)
We will use the project name csLessons. You need to change the location of the
project to the location of where your C# lesson files will be stored on your
computer. Using Windows File Explorer, make an additional folder called
cSharp that will store your csLessons project files. When you make a project in
visula studio a Solution is automatically made. Projects are contained in Solutions.
In this case the Project name and Solution name are the same.

4
copyright © 2021 www.onlineprogramminglessons.com For student use only

Press OK then select. You will get something like this:

5
copyright © 2021 www.onlineprogramminglessons.com For student use only

A default program file called Program.cs is created. You will have to rename this
file to Lesson1.cs

Right click on Program.cs in the Solution Window and rename to Lesson1.cs. You
will also need to change the class name from Program to Lesson1. You should
now have somethig like this.

All C# programs are contained in a C# Class. A class contains variables that store
information and methods that do operations on these variables. This is a big step
in programming evoulution as well as for someone just learning programming.
You will also notice that the class Lesson2 is contained in the name space
csLessons which happens to be the same name as the Project we created.

It’s now time to write your first C# Program. You will print Hello World on the
screen. In the C# Editor inside the static void Main(string[] args) statement type

6
copyright © 2021 www.onlineprogramminglessons.com For student use only

Console.WriteLine ("Hello World");

You will now have something like this:

Next you need to build your C# Lesson1.cs file so you can check for any errors,
before you can run the program file. From the Build menu select Build Solution.

7
copyright © 2021 www.onlineprogramminglessons.com For student use only

If you do get some errors, then you must correct them and then rebuild the file.
Errors are typing mistakes that can be easily corrected but may be difficult to find.
Errors are always the unexpected and the overlooked. If you do not have any
errors, then you can run your file. From the Project menu select Start Without
Debugging Hello World is now printed in the Build Output window.

8
copyright © 2021 www.onlineprogramminglessons.com For student use only

Recapping: A C# program is enclosed in a namespace. The namespace is usually
the project name. Inside the namespace are the classes. The class contains
variables that contain values and methods that contain programming statements.

The Methods contain programming statements that tell the computer what to do.
In side the Lesson1 class we a have a main method. The main method is executed
when the program first runs.

namespace csLessons
{
 class Lesson1
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World");
 }
 }
}

The main method contains the Console.WriteLine statement that prints the string
message “Hello World” on the screen. Before we proceed it is important to
understand the terminology, classes, methods, programming statements and
objects.

9
copyright © 2021 www.onlineprogramminglessons.com For student use only

data type What type of data is to be represented

Variable Stores a string or numeric value. All variables have
a data type

programming statement is an instruction containing commands to perform
a desired action, like printing a value on the screen,
get a value from the key board or calculate a
certain value.

Method contains programming statements that tell the
computer what to do and performs operations on
variables using these programming statements

Class defines values and methods

Namespace Usually the project name, that contains all the
classes

Object Computer memory allocated for a variables
defined in a class when a program runs

The next thing we need to do is get values from the keyboard. We will ask the
user to type in their name and then greet them. Type in the following statements
in the C# editor right after the Hello World statement.

 Console.Write("Please type in your name: ");
 string name = Console.ReadLine();
 Console.WriteLine("Nice to meet you " + name);

Now run your program, and enter the name "Tom”. You will get something like
this:

10
copyright © 2021 www.onlineprogramminglessons.com For student use only

11
copyright © 2021 www.onlineprogramminglessons.com For student use only

Recapping:

We first ask the user to type in their name using the Console.Write statement.

Console.Write ("Please type in your name: ");

Then we obtain the user name from the keyboard using the ReadLine method
from the Console class

string name = Console.ReadLine();

The entered name is placed in the string variable name. The Console.WriteLine
statement prints out the string message "Nice to meet you" and the name of the
user stored in the variable name.

Console.WriteLine ("Nice to meet you " + name)

Note inside the Console.WriteLine statement the string message and variable
name are joined by a ‘+’.

C# has two types of values string values and numeric values. String values are
messages enclosed in double quotes like "Hello World" where as numeric values
are numbers like 5 and 10.5 Numeric values without decimal points like 5 are
known as an int and numbers with decimal points like 10.5 are known as a float
or double. Variable’s store string or numeric values that can be used later in your
program.

We now continue our program to ask the user how old they are. Type in the
following statements at the end of your program and then run the program.

 Console.Write("How old are you? ");
 int age = Convert.ToInt32(Console.ReadLine());
 Console.WriteLine("You are " + age + " years old");

12
copyright © 2021 www.onlineprogramminglessons.com For student use only

Run the program and enter Tom for name and 24 for age, you should get
something like this.

13
copyright © 2021 www.onlineprogramminglessons.com For student use only

Recapping:

The Console.Write("How old are you? ") statement asks the user to enter their
age. The int age = Convert.ToInt32(Console.ReadLine()) statement receives a
string number from the keyboard using Console.ReadLine()) and converts the
string to a numeric int using Convert.ToInt() and then assigns the numeric int to
the variable age. The Console.WriteLine ("You are " + age + " years old");
statement is used to print out the message, the persons name and age. Again the
‘+’ operator is used to join the age numeric value to the string messages.

If you have got this far then you will be a great C# programmer soon.

Most people find Programming difficult to learn. The secret of learning program is
to figure out what you need to do and then choose the right program statement
to use.

If you want to print messages and values to the screen you use a
Console.WriteLine statement.

If you want to get values from the user, you use an Console.ReadLine() statement.

If you need a numeric value, you use an Convert.ToInt() statement to convert
String numbers to int numbers. You can also use Convert.ToFloat() statement to
convert String numbers to decimal float numbers or the Convert.ToDouble()
statement to convert string numbers to decimal double numbers.

The difference between float decimal numbers and double decimal numbers is
just accuracy.

You should concentrate on getting your programs running rather than understand
how they work. Once you get your programs running and you execute them
understanding will be come much easier. Understanding is much easier now
because you can now make an association connection to the program statement
that is running that produces the desired input or output action.

C# Data Types

14
copyright © 2021 www.onlineprogramminglessons.com For student use only

C# has many data types that can be used to represent different kinds of numbers
as follows:

Data Type Size Min value Max Value Example
byte 8 -128 127 byte x = 100;

short 16 -32768 32767 short x = 1000;

int 32 -2^31 2^31-1 int x = 10000;
long 64 -2^63 2^63-1 long x = 10000;

float 32 -1.4E-45

3.4028235E38

float f = 10.5;

double 64 -4.9E-324

4.9E-324

double d = 10.5;

decimal 128 -7.9E28 7.9E28 Decimal d = 10.5m;
bool 1 False True bool x = true;

char
(unicode)

16 '\u0000' (0) '\uffff' (65535) char x = ‘A’;

Note: C# also has unsigned data types ubyte, ushort, uint and ulong.

Data Type Size Min value Max Value Example

ubyte 8 0 256 ubyte x = 100;
ushort 16 0 65535 ushort x = 1000;

uint 32 0 2^32-1 uint x = 10000;

ulong 64 0 2^64-1 ulong x = 10000;

Lesson 1 Homework

Write a C# program that asks someone what their profession title is and what their

salary is. Their title could be a doctor, lawyer etc. Next print out the details to the

screen, what their title is and how much money they make. For the profession title

use a String variable. For the salary variable you can use float or double data type.

You will need to use the float.Parse statement to convert a String number to float

number or the double.Parse statement to convert String numbers to double

number. Call your java program Homework1.cs and class Homework1.

15
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 2 Methods

Methods allow you to group many programming statements together so that you
can reuse them repeatedly in your C# Program. Methods are analogous to
functions in other programming languages. They are called methods because they
are contained in a class and cannot be used by themselves. The most common
method is the Main method that starts a C# program, which we used previously in
Lesson 1. A class may have many methods. Each method has a dedicated purpose,
some action to perform. Methods usually are defined at the top of the program in
order as they are used. The main function is the last one because it will call all the
proceeding methods. When a method is called in a programming statement it
means it is executed. C# also has many built in methods that you can use, that
make C# programming easier to do. You already used some of them in Lesson 1,
Write, WriteLine, ReadLine. As we proceed with these lessons you will learn and
use many more methods. It is now time to add more methods to our previous
Lesson 1 program. We will make a welcome(), getName() and getAge() methods.
Make a new C# file called Lesson2.cs

Right click on csLesson project in Solution Explorer window and select Add then
New Item in the sub menu.

16
copyright © 2021 www.onlineprogramminglessons.com For student use only

Then select Class make sure it says Lesson2.cs at the bottom for the class name.

and then type in the following code.

public class Lesson2
 {

 public static void welcome()
 {
 Console.WriteLine("Hello World");
 }

 public static String enterName()
 {
 Console.Write("Please type in your name: ");
 string name = Console.ReadLine();
 return name;
 }

17
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public static int enterAge()
 {
 Console.Write("How old are you? ");
 int age = Convert.ToInt32(Console.ReadLine());
 return age;
 }

public static void printPerson(String name, int age)
 {
 Console.WriteLine("Nice to meet you " + name);
 Console.WriteLine(name + " You are " + age + " years old");
 }

 public static void Main(string[] args)
 {
 welcome();
 String name = enterName();
 int age = enterAge();
 printPerson(name, age);
 }
}

You will need to exclude the Lesson1.cs file in the Solution Explorer window. Right
click on Lesson1.cs in the Solution Explorer window and select exclude from
Project. Then build and run Lesson2.cs. You will get the same results as in Lesson1.

Methods make your program more organized and manageable to use. Methods
have three different purposes. Methods can receive values, return values, receive
and return values or receive or return nothing.

The syntax for a method is as follows:
access_modifier non-access_modifier return_datatype method_name
 (parameter_list)
Parameter list = data_type parameter_name [,data_type parameter_name]

18
copyright © 2021 www.onlineprogramminglessons.com For student use only

Access modifiers allow who can access the method. In this lesson we were
introduced to the public and private access modifiers. Non-access modifiers
indicate how the method can be used. In this lesson we have used the static non-
access modifier. Static refers to the code that is loaded when a program runs,
and available to be used right away. Methods return values using the return
statement and receive values through the parameter list. The data type specifies
what kind of data is returned or received. In Lesson 1 we were introduced to the
int, float, double and string data types.

The welcome() method just prints a statement and receives no values or returns
no value. The void data type indicates no value is returned or received.

public static void welcome()
 {
 Console.WriteLine("Hello World");
 }

The get Name() and getAge() methods both return a value using the return
statement. The getName() method returns a string value where as the getAge
method returns an int value.

public static String getName()
 {
 Console.Write("Please type in your name: ");
 string name = Console.ReadLine();
 return name;
 }

 public static int getAge()
 {
 Console.Write("How old are you? ");
 int age = Convert.ToInt32(Console.ReadLine());
 return age;
 }

19
copyright © 2021 www.onlineprogramminglessons.com For student use only

The printDetails function receive a name and age value to print out, but return’s
no value. The printDetails Method receives the name and age through the
parameter list.

public static void printDetails(String name, int age)
 {
 Console.WriteLine("Nice to meet you " + name);
 Console.WriteLine(name + " You are " + age + " years old");
 }

The name and age inside the round brackets of the printDetails method
definition statement are known as parameters and contain values to be used by
the method. The parameters just store values from the calling function and are
not the same variables that are in the calling function. Although the parameter
names and values may be same as in the calling function variable names, but they
are at different memory locations. The main purpose of the parameters is to
receive values for the methods. The main method call’s the preceding methods to
run them and store the values in variables and pass the stored variable values to
the methods. Calling a method means to execute the method. The values that are
passed to the called method from the calling method is known as arguments.

Variables inside a method are known as local variables and are known to that
method only. Name and age are local variables in the main function but are also
arguments to the printDetails method.

public static void Main(string[] args)
 {
 welcome();
 String name = getName();
 int age = getAge();
 printDetails(name, age);

 }

20
copyright © 2021 www.onlineprogramminglessons.com For student use only

The main purpose of our sample program is to gather and print out information
therefore all methods should be static. Static means the compiler will generate
the code for our class and make it readily available to be used. This is what we
want.
It’s now time to comment your program All programs need to be commented so
that the user knows what the program is about. Just by reading the comments in
your program you will know exactly what the program is supposed to do. We
have two types of comments in C#. Header comments that are at the start of a
program or a method. They start with /* and end with a */ and can span multiple
lines like this.

/*
Program to read a name and age from a user and
print the details to the screen
*/

Other comments are for one line only and explain what the current or proceeding
program statement it is to do. The one-line comment starts with a // like this:

// method to read a name from the key board are return the value

We now comment the program as follow. Please add all these comments to your
program.

/*
 Program to read a name and age from a user and print
 the details on the screen

 */

 public class Lesson2
 {
 // method to print welcome message
 public static void welcome()
 {
 Console.WriteLine("Hello World");
 }

21
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // method to read a name from the key board are return the value
 public static String enterName()
 {
 Console.Write("Please type in your name: ");
 string name = Console.ReadLine();
 return name;
 }

 // method to read an age from the key board are return the value
 public static int enterAge()
 {
 Console.Write("How old are you? ");
 int age = Convert.ToInt32(Console.ReadLine());
 return age;
 }

 // method to print out a user name and age
 public static void printPerson(String name, int age)
 {
 Console.WriteLine("Nice to meet you " + name);
 Console.WriteLine(name + " You are " + age + " years old");
 }

 // run program
 public static void Main(string[] args)
 {
 welcome();
 String name = enterName();
 int age = enterAge();
 printPerson(name, age);
 }
 }

22
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Lesson 2 Homework

Take your homework program from Lesson 1 and add methods to it.

Make methods welcome, enterTitle, enterSalary, displayInfo. Call all these

methods from the main method. Call your C# program Homework2.cs and class

Homework2.

23
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 3 Classes and Inheritance

Classes represent another level in program organization. They represent
programming units that contain variables to store values and methods to do
operations on these variables. This concept is known as Object Oriented
Programming, and is a very powerful concept. It allows programming units to be
used over again in other programs. The main benefit of a class is to store values
and do operations on them transparent from the user of the class. It is very
convenient for the programmers to use classes. They are like building blocks that
are used to create many sophisticated programs with little effort.

A class starts with the keyword class and the class name. Following the private
class definition header are the constants and variables. Constants store values
once initialized never change and variables are used to store values. Following the
variables are the constructor’s properties and methods. Constructors are used to
initialize the variables defined in the class, properties are used to access the
variables, and method are used to do operations on the variables. These
operations may include addition, incrementing values etc. The syntax for a class
definition is as follows.

class class_name
{
constant definitions
variable definitions
constructors
properties
methods
ToString method
}

We have already used a class in our previous lesson. We will now write a Person
class that has variables to store a name and age and methods to do operations on
them, like initializing retrieval, assignment and output. Make a new C# class file
called Person.cs, and type the following code into it.

24
copyright © 2021 www.onlineprogramminglessons.com For student use only

/*
Person Class to store a person's name and age
*/

// define a class Person
public class Person {
 private String name;
 private int age;

 // initialize Person
 public Person(String name, int age){

this.name = name;
this.age = age;

 }

 // return and assign name
 public String Name(){
 get { this.name;}
 set (this.name=value;}
 }

 // return and assign age
 public int Age{
 get{return this.age;}
 set {this.age = value;}
 }

 // return person info as a string
 public override string ToString() {
 string sout = "Nice to meet you " + this.name + "\n";
 sout += this.name + " You are " + this.age + " years old";
 return sout;
 }
}

25
copyright © 2021 www.onlineprogramminglessons.com For student use only

The Person class definition starts with the class key word and class name Person.
We use the public access modifier because we want others to use our class.

public class Person{

Our Person class has 2 private variables to store person name and age.

 private string name;
 private int age;

We make the variables private because we want them to be only access by our
class methods, nobody else. A class contains a Person method that initializes the
class. This Person method is also known as a constructor. The constructor has the
same name as the class.

// initialize Person
 public Person(string name, int age){
 this.name = name;
 this.age = age;
 }

The programming statements inside the constructor assign values to the
variables name and age from the parameters name and age.

 this.name = name
 this.age = age

The keyword this specifies which variables belongs to the Person class. The
parameter name and age just store values to be assigned to the Person class
variables and are not the same ones in the Person class.

C# has Properties rather than getters and setters, they basically do the same thing
but more compact. A property can do both returning and assigning depending on
the way you do it.

 // Name property

26
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // return/assign name
 public string Name
 {
 get{ return this.name; }
 set{ this.name = value; }
 }

 // Age property
 // return/assign age
 public int Age
 {
 get{ return this.age; }
 set{ this.age = value; }
 }

You will notice each properties has get and set’s. The get returns a value. The set
assigns a value. The value assigned comes from the keyword value. The this
keyword indicate the variables that are defined in the class.

All classes should have a ToString() function so that it can easily return the class
info as a string message.

// return person info as a string
 public override string ToString() {
 String sout = "Nice to meet you " + this.name + "\n";
 sout += this.name + " You are " + this.age + " years old";
 return sout;
 }

Our ToString method has the override keyword meaning it overrides the Object
class ToString method. The Object class is the super class of all Classes here all
classes come from. Override means we want our ToString method to be called not
the Object ToString method to be called. Notice we have no print statement in
our ToString() method.

27
copyright © 2021 www.onlineprogramminglessons.com For student use only

We assign information to the local variable sout and return the sout value. A local
variable is just known to the function it resides in. The sout variable uses the +
operator to join values together as a message.
Usually a class definition must not contain any input or output statements. A class
must be a reusable program unit not dependent on any input or output print
statements. The purpose of the class is to contain information that can be easily
accessed. Therefore, our main function must provide all the input and output
print statements. We will use the input and output method from our previous
program.
Make a new file called Lesson3.java and type in the following code. Exclude
Lesson2.cs from the Solution Explorer since a solution can only have one Main
method.

public class Lesson3
 {
 // method to print welcome message
 public static void welcome()
 {
 Console.WriteLine("Hello World");
 }

 // method to read a name from the key board are return the value
 public static string getName()
 {
 Console.Write("Please type in your name: ");
 String name = Console.ReadLine();
 return name;
 }

 // method to read an age from the key board are return the value
 public static int getAge()
 {
 Console.Write("How old are you? ");
 int age = Convert.ToInt32(Console.ReadLine());
 return age;
 }

28
copyright © 2021 www.onlineprogramminglessons.com For student use only

// main method to run program
 public static void Main(string[] args)
 {

 // print welcome message
 welcome();

 // get person info from keyboard
 String name = getName();
 int age = getAge();

 // make a Person object
 Person p = new Person(name, age);

 // print out person details
 Console.WriteLine(p.ToString());
 }
 }

Build and run the program, type Tom for name and 34 for age. You will get the
following output.

Notice we create the Person class with the following statement:

 Person p = new Person(name, age);

Hello World

Please type in your name: Tom

How old are you? 24

Nice to meet you Tom

Tom You are 24 years old

29
copyright © 2021 www.onlineprogramminglessons.com For student use only

This calls the Person constructor of the person class to create the person object
and initialized with the values name and age. The mechanism that allocates
memory in the computer for the variables and function code defined in the class,
is known as instantiation.

When a class is instantiated in computer memory it is known as an object. when a
class is written in a program then it is still known as a class not an object. Objects
are made from class definitions. An object is the memory allocated for the
variables defined in the class when the program runs.

The WriteLine statement calls the ToString() method to print out the Student info.

Console.WriteLine(p.toString());

You can automatically call the ToString() method just by using the Person variable

Console.WriteLine (p);

Once you got this program running, add the following to the main method of the
Lesson3 class. Make a new person called p2. Copy the values from person p using
the properties, then using the properties again assign a new name Sue and age 36
to the second person and print out the person p2 details. You should get
something like this:

If you can do this, you are almost great C# programmer!

Default constructors have no parameters and are mainly used to initialize the
variables defined in the class to default values.

Hello World

Please type in your name: Tom

How old are you? 24

Nice to meet you Tom

Tom You are 24 years old

Nice to meet you Sue

Sue You are 36 years old

30
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public Person(){
 this.name = "";
 this.age = 0;
 }

Auto properties

Auto properties combine defining variables and properties at the same time, may
be a little confusing or redundant but they can make your class quite compact.
Here are the Person class auto properties for Name and Age.

public string Name { get; set;}
public int Age { get; set;}

You use auto properties in the same way as you use properties. The only
difference is auto properties do not require instance variables.

Lesson 3 Homework Question 1:

Make a Profession class that stores somebody’s profession title and amount of

money they make. Make default and initializing constructors, getters and setters

and a ToString methods. Call your class Profession and put your class in a file

called Profession.java. Make a C# program file that has a main method that

instantiates a Profession class. The main method has additional methods to get the

professions title and amount of money that they make from the keyboard. You can

use some of the methods from Lesson2. Call your java main program file

Homework3.jcs.

INHEIRITANCE

31
copyright © 2021 www.onlineprogramminglessons.com For student use only

The beauty of classes is that they can be extended to increase their functionality.
We can make a Student class that uses the public variables and methods from the
Person class. This is known as inheritance. The Student class can only access the
non-private variables and methods from the Person class. We now have
additional access modifiers public, protected, package and private.

access modifier description example
public Access by anybody public int age;

protected Access by derived class Protected int age;
package Access by classes in project int age;

private Access by its own class only private int age;

The Student class will have an additional variable called idnum that will represent
a string student id number. Using inheritance, the student class will be able to use
the public variables and methods of the Person class. The Person class is known
as the super or base class and the Student class is known as the derived or sub
class. The Person class knows nothing about the Student class where as the
Student class knows all about the Person class.

Create a new C# file called Student.cs. Create a class called Student that inherits
from the Person class using this statement.

// define a class Student that inherits the Person class
public class Student: Person {

The colon : specifier is used to define the inheritance relationship. This means the
Student class can use the public variables and methods from the Person class.
We also need to define a student id number variable for the Student class.

 // student id number
 private string idnum;

 // default Student
 public Student(string name, int age, String idnum)

32
copyright © 2021 www.onlineprogramminglessons.com For student use only

 : base(name, age)
 {
 this.idnum = idnum;
 }

We now make a constructor that will initialize the student name, age and idnum.

 // initialize Student
 public Student(string name, int age, String idnum)
 : base(name, age)
 {
 this.idnum = idnum;
 }

The colon : operator calls the base constructor the Person class to create a
Person object and initialize the name and age variables in the Person object from
the input parameters name and age. The idnum variable is initialized in the
Student constructor.

Student ID Property

// return/assign idnum
 public string IdNum
 {
 get{ return this.idnum; }
 set{ this.idnum = value; }
 }

The last thing you need to make the ToString() method. By using the base
keyword you can call functions directly from the super Person class inside the
Student derived class. Here is the Student ToString() method

// return student info as a string
 public override string ToString() {

33
copyright © 2021 www.onlineprogramminglessons.com For student use only

 string sout = base.ToString();
 sout += " Your student id number is " + this.idnum;
 return sout;

 }

Once you got the Student class made then add programming statements to the
lessons3.cs file to obtain a student name, age and idnum. You will have to make
an additional getID() function to obtain a student id number from the key board.

Instantiate a student object and use the keyboard methods to obtained a name,
age and idnum then print out the student details. You should get something like
this:

Auto properties

Auto properties combine defining variables and properties at the same time, may
be a little confusing or redundant but they can make your class quite compact.
Here is a auto property for the Student IdNum.

public string IdNum { get; set;}

Hello World

Please type in your name: Tom

How old are you? 24

Nice to meet you Tom

Tom You are 24 years old

Nice to meet you Sue

Sue You are 36 years old

Please type in your name: Bill

How old are you? 18

What is your student ID? S1234

Nice to meet you Bill

Bill You are 18 years old Your student id number is S1234

34
copyright © 2021 www.onlineprogramminglessons.com For student use only

You use auto properties in the same way as you use properties. The only
difference is auto properties do not require instance variables.

Lesson 3 Homework Question 2:

Make a Payroll class that inherits your previous homework Profession class that

stores a boolean or a String value to indicate if a worker works full time or part

time. Use your C# main program file Homework3.cs from Question 2.

private boolean fullTime;

You will need default and initializing constructors, getters, setters and a ToString

methods. The initializing constructor would receive a profession title, salary and a

boolean indicating full time or part time, A true value would indicate full time

employment, where false value would indicate part time employment.

For the part time variable getter use:

 public boolean isFullTime();

 For the part time variable setter use:

 public void setFullTime(boolean partTime);

Store the Payroll class in a java file called Payroll.java.

In the main method of your Homework3.java program make an additional public

static boolean enterFullTime() method asking if a worker is full time or part

time, that returns a Boolean true or false value. If they enter ‘Y’ return true, if they

enter ‘N’ return false.

boolean fullTime = enterFullTime();

35
copyright © 2021 www.onlineprogramminglessons.com For student use only

Then instantiate a Payroll class object and pass this fullTime value to your Payroll

class constructor as well as the profession and salary of the worker.

Use the Payroll class ToString method to print out the workers profession, pay

amount and indicate if it is a full time or part time worker.

You can still use file Homework3.cs

36
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 4 Operators

Operators

Operators do operations on variables like addition + , subtraction – and
comparisons > etc. We now present all the C# operators with examples. Make a
new C# class file called Operators.cs. In the main method type out the examples
and use Console. WriteLine statements to print out the results. You can type in
the operation right inside the Console.WriteLine statement just like this
Console.WriteLine (3+2) or Console.WriteLine (3 > 2). Alternatively, you can use
variables instead.

int x = 3;
int y = 2;
int r = x + y;
Console.WriteLine (r);

Arithmetic Operators

Arithmetic operators are used to do operations on numbers like addition and
subtraction.

int x = 3 + 2;
Console.WriteLine (x); // would print out 5

Operator Description Example Result
+ Add two operands or unary plus 3 +2 5

- Subtract right operand from the left or unary
minus

3 - 2
 -2

1
-2

* Multiply two operands 3 * 2 6
/ Divide left operand by the right one 5 / 2 2

% Modulus - remainder of the division of left
operand by the right

5 % 2 3

37
copyright © 2021 www.onlineprogramminglessons.com For student use only

Comparison Operators

Comparison operators are used to compare values. It either returns true or false
according to the condition. True and false variables and values are known as bool.

bool b = 3 < 5;
Console.WriteLine (b); // world print out false

Operator Description Example Result

 > Greater than - true if left operand is greater
than the right

 5 > 3 true

 < Less than - true if left operand is less than
the right

 3 < 5 true

 == Equal to - true if both operands are equal 5 == 5 true

 != Not equal to - true if operands are not equal 5!= 5 true
 >= Greater than or equal to - true if left

operand is greater than or equal to the right
5 >= 3 true

 <= Less than or equal to - true if left operand is
less than or equal to the right

 5 <= 3 true

Logical Operators

Logical operators are the and, or, not bool operators.

Bool b = 3 < 5 && 2 < 6
Console.WriteLine (b); // would print out true

Operator Description Example Result

 && true if both the operands are true true && true true
 || true if either of the operands is true true || false true

 ! true if operand is false
(complements the operand)

 ! false true

38
copyright © 2021 www.onlineprogramminglessons.com For student use only

Bitwise Operators

Bitwise operators act on operands as if they were binary digits. It operates bit by
bit. Binary numbers are base 2 and contain only 0 and 1’s. Every decimal number
has a binary equivalent. Every binary number has a decimal equivalent. For
example, decimal 2 is 0010 in binary and decimal 7 is binary 0111.
In the table below: 10 = (0000 1010 in binary) 4 = (0000 0100 in binary)
Console.Writeline by itself does not print binary number just decimal numbers.

int x = 10 | 4
Console.WriteLine (b); // world print out 14

Operator Description Example Result

 & Bitwise AND 10 & 4 0 (0000 0000 in binary)

 | Bitwise OR 10 | 4 14 (0000 1110 in binary)

 ~ Bitwise NOT ~10 -11 (1111 0101 in binary)

 ^ Bitwise XOR 10 ^ 4 14 (0000 1110 in binary)

 >> Signed Bitwise right
shift

10 >> 2 2 (0000 0010 in binary)

 << Bitwise left shift 10 << 2 40 (0010 1000 in binary)

Shift operators

The shift operators multiply by powers of 2 or divide by powers of 2.
Multiplying is accomplished by shifting the bits left. Dividing by 2 is accomplished
by shifting the bits right.

int x = 10; (0000 1010 in binary)
int y = x << 2; y = 10 * 2 * 2 = 40 (0010 1000 in binary)
int z = y >> 2; z = 40 /2 /2 = 10 (0000 1010 in binary)

You can shift by any power of 2

39
copyright © 2021 www.onlineprogramminglessons.com For student use only

Multiplying by powers of 2:

x = 4;
Console.WriteLine(x); // 4
x = x << 2;
Console.WriteLine(x);’ // 16 because 4 * 2 * 2 = 16

Dividing by powers of 2:

Console.WriteLine(x); // 8
x = x >> 2;
Console.WriteLine(x); // 16 /2 / 2 = 2

 << Bitwise left shift 10 << 2 10 * 2 * 2 = 40
 (0010 1000 in binary)

>> Signed Bitwise right
shift

40 >> 2 40 /2 / 2 = 10
 (0000 1010 in binary)

Increment/Decrement Operators ++ - -

Increment operators ++ increment a variable value by 1 and decrement operators
-- decrement a value by 1.

They come in two versions, prefix increment/decrement value before
or postfix increment/decrement value after.
Prefix Increment before : y = ++x ;

x is incremented then value of y is assigned the value of x

 x y
 ------ ------
 int x = 5 5 ?
 y = ++x 6 6

40
copyright © 2021 www.onlineprogramminglessons.com For student use only

x = 5;
Console.WriteLine(x); // 5
y =++x;
Console.WriteLine(y); // 6
Console.WriteLine(x); // 6

postfix increment after y = x++

The value of y is assigned the value of x and then x is incremented

 x y
 ------ ------
 int x = 5 5 ?
 y = x++ 6 5

x = 5;
Console.WriteLine(x); // 5
y =x++;
Console.WriteLine(y); // 5
Console.WriteLine(x); // 6

prefix Decrement before y = --x

x is decremented then value of y is assigned the value of x

 x y
 ------ ------
 int x = 5 5 ?
 y = ++x 4 4

x = 5;
Console.WriteLine(x); // 5
y =--x;
Console.WriteLine(y); // 4
Console.WriteLine(x); // 4

41
copyright © 2021 www.onlineprogramminglessons.com For student use only

postfix decrement after y = x--

The value of y is assigned the value of x and then x is decremented
 x y
 ------ ------
 int x = 5 5 ?
 y = x-- 4 5

x = 5;
Console.WriteLine(x); // 5
y =x--;
Console.WriteLine(y); // 5
Console.WriteLine(x); // 4

Increment decrement operators are usually used stand alone to increment or
decrement a variable value by 1.

Assignment Operators

Assignment operators are used to assign values to variables.
x = 5 is a simple assignment operator that assigns the value 5 on the right to the
variable x on the left. There are various compound operators in C# like x += 5 that
adds a value to a variable. It is equivalent to x = x + 5.

Operator Compound Equivalent

 = x = 5 x = 5

 += x += 5 x = x + 5

 -= x -= 5 x = x – 5

 *= x *= 5 x = x * 5

 /= x /= 5 x = x / 5

 %= x %= 5 x = x % 5

&= x &= 5 x = x & 5

|= x |= 5 x = x | 5

^= x ^= 5 x = x ^ 5

>>= x >>= 5 x = x >> 5

<<= x <<= 5 x = x << 5

42
copyright © 2021 www.onlineprogramminglessons.com For student use only

String Operators

String operators operate on string objects, String objects contain string data and
are immutable meaning they cannot be changed internally.
There are many string operation’s, most of them are method calls. Here are just a
few of them:

 // declare and assign String
 string s1 = "hello";
 string s2 = "there";

// join two strings together
 string s3 = s1 + s2;
 Console.WriteLine (s3); // hello there

 // get a character from string
 char c = s3[0];
 Console.WriteLine (c); // h

 //get a sub string (start, length)
 string s4 = s3.Substring(0,5);
 Console.WriteLine (s4); // hello

 // add a character to a string
 string s5 = s3.Substring(0,5)+ 'X' + s3.Substring(5);
 Console.WriteLine (s5); // hello there

 // make string lower case
 string s6 = s5.ToLower();
 Console.WriteLine (s6); // hello there

 // make string upper case
 string s7 = s5.ToUpper();
 Console.WriteLine (s7); // HELLOXTHERE

43
copyright © 2021 www.onlineprogramminglessons.com For student use only

// test if 2 strings are equal
Console.WriteLine (s1.Equals(s2)); // false

// test if 2 strings have the same memory location
Console.WriteLine (s1 == s2); // false

// test if 2 strings are less greater or equal
// -1 = less 0 = equal 1 = greater
Console.WriteLine (s1.CompareTo(s2)); // -1

As stated earlier you should type in all the above examples and try them out in a
C# file called Lesson4.cs.

LESSON 4 HOMEWORK

1. Print out if a number is even, using just a print statement and a arithmetic

operator

2. Print out of a number is odd, using just a print statement and a arithmetic

operator

3. Swap 2 number using a temporary variable

4. Swap 2 numbers using operators + and -

5. Multiply a number by 8 using a shift operator

6. Divide a number by 8 using a shift operator

7. Using a print statement, add 2 numbers together and check if they are less

than multiplying them together

8. Using a print statement, add 2 numbers together and check if they are less

than multiplying them together and greater then multiplying them together.

44
copyright © 2021 www.onlineprogramminglessons.com For student use only

9. Using a print statement, add 2 numbers together and check if they are less

than multiplying them together or greater then multiplying them together

10. Make a string of your favourite word and replace the first letter with

another letter, hint use substring.

Example : change “hello” to “jell”

11. Make a string of your favourite word and replace the last letter with

another letter, hint use substring.

Example : change “jell” to “jelly”

12. Make a string of your favourite word and remove the middle letter, hint

use substring.

 Example : change “jelly” to “jelly”

13. Make a string of your favorite word, Split it in the middle, make the first

part lower case and the second part upper case, hint use substring.

 Example : change “jelly” to “jelly”

 14. Using substring replace the last letter with the first letter in a word

 Example : change “jelly” to “Yell”

 15. Split the word in the middle put the last part at the first and the first part

 at the last

 Example : change “Yell to “Lye”

Call your C# file homework4.cs

45
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 5 Programming Statements

Programming statements allow you to write complete C# Program. We have
already looked at simple input, print and assignment statements. We now present
you with branch and loop programming statements. Start a new C# class
lesson5.cs to test all these programming statements.

/*
Lesson5.cs
Programming statements
*/

Branch Control Statements

Branch control statements allow certain program statements to execute and
other not.

The if branch control statements contain a condition using conditional operators
from the previous lesson to direct program flow.

If (condition)
 Statement(s)

When the condition is evaluated to be true the statements belonging to the if
statement execute. An if statement is a one-way branch operation.

// if statement
x = 5;
if (x == 5)
{

 Console.WriteLine ("x is 5");
 }

x is 5

46
copyright © 2021 www.onlineprogramminglessons.com For student use only

We now add an else statement. An if-else control construct is a two-way branch
operation.

if (condition)
 statements
else
 statements

// if else statement
x = 2
if (x == 5)
{
 Console.WriteLine ("x is 5");
}
else
{

Console.WriteLine ("x is not 5");
 }

We can also have additional else if statements to make a multi-branch.

// multi if else
x = 10
if (x == 5)
{
 console. WriteLine ("x is 5");
}
else if (x < 5)
{
 console. WriteLine ("x less than 5");
}

x is not 5

I like C# Programming

47
copyright © 2021 www.onlineprogramminglessons.com For student use only

else if (x > 5)
{
 console. WriteLine ("x greater than 5");
}

Our multi branch if-else can also end with an else statement.

// multi if-else else
x = 5
if (x < 5)
{

Console.WriteLine ("x less than 5");
 }

else if (x > 5)
{
 Console.WriteLine ("x greater than 5");
}
else
{
 Console.WriteLine ("x is 5");
}

x greater than 5

x is 5

48
copyright © 2021 www.onlineprogramminglessons.com For student use only

switch statement

A switch statement is an organized if-else statement. It is a little limited since if
can only handle equals.

// switch statement
 x = 2;
 switch(x)
 {
 case 1:
 Console.WriteLine ("x is 1");
 break;
 case 2:
 Console.WriteLine ("x is 2");
 break;
 case 3:
 Console.WriteLine ("x is 3");
 break;
 default:
 Console.WriteLine ("x is " + x);
 break;
 }

nested if statements

if statements can also be nested to make complicated conditions simpler.

// nested if statement
x = 5;
if (x >= 0)
{
 if (x > 5)
 Console.WriteLine ("x greater than 5");

x is 2

49
copyright © 2021 www.onlineprogramminglessons.com For student use only

 else
 Console.WriteLine ("x less than equal 5");
}
Console.WriteLine ("I like C# Programming");

Loop Control Statements

Loop control statements allow program statements to repeat themselves.

while loop

The while loop allows you to repeat programming statements repeatedly until
some condition is satisfied. While loops are used when you do not know how
many items you have.

The while loop requires an initialized counter, a condition, program statements
and then increment or decrement a counter.

Initialize counter
while condition:

statement(s)
 increment/decrement counter

Here is a while loop you can try out that prints out the number 5 to 1 backwards.

// while loop
x = 5
while (x > 0)
{
 Console.WriteLine (x)
 x-=1

}

5

4

3

2

1

x less than equal 5

I like C# Programming

50
copyright © 2021 www.onlineprogramminglessons.com For student use only

for Loop

Another loop is the for loop. It is much more automatic then the while loop but
more difficult to use. All loops must have a counter mechanism. The for loop
needs a start count value, condition, increment/decrement counter. For loops
are used when you know how many items you have.

for (start_count_value,condition, increment/decrement_counter):
 Statement(s)

Here we have a for loop to print out values 1 to 5, try it out.

// for loop
for (int i=1;i<=5;i++)
 Console.WriteLine (i);

Here is a for loop that counts backwards using a negative increment

// for loop counting backward
for (int i=5;i>0;i--)
 Console.WriteLine (i)

Nested for loops
Nested for loops are used to print out 2 dimensional grids by row and column.

// nested for loop
for (int r=0;i<5;r++)
{
 print(r + " : ")
 for (int c =0; c < 5; c++)
 Console.WriteLine (c + " ")
 Console.WriteLine ("")
}

5

4

3

2

1

1 : 1 2 3 4 5

2 : 1 2 3 4 5

3 : 1 2 3 4 5

4 : 1 2 3 4 5

5 : 1 2 3 4 5

1

2

3

4

5

51
copyright © 2021 www.onlineprogramminglessons.com For student use only

Loops can also be used to print out characters in a string variable

// print out characters in a string
s = "Hello";
for (int i=0;i<s.Length();i++)

Console.WriteLine (s[i]);
 Console.WriteLine ("")

LESSON5 HOMEWORK

Question 1 Exam Grader

Ask someone to enter an exam mark between 0 and 100. If they enter 90 or above

printout an “A”, 80 or above print out a “B”, 70 or above print out a “C”,

60 or above print out a “D” and “F” if below 60. Hint: use if else statements.

You can visualize a grade chart like this:

Mark Range Exam Grade

90 to 100 A

80 to 89 B

70 to 79 C

60 to 69 D

0 to 59 F

Question 2 Mini Calculator

Make a mini calculator that takes two numbers and a operation like - , +, * and /.

Prompt to enter two number’s and a operation like this:

Enter first number: 3

Enter second number: 4

Enter (+, -. *. /) operation: +

Then print out the answer like this:

3 + 4 = 7

H

e

l

l

o

52
copyright © 2021 www.onlineprogramminglessons.com For student use only

Hint: use a switch statement.

Use a while or do while loop so that they can repeatedly enter many calculations.

Terminate the program when they enter a letter like ‘X’ for the first number.

Question 3 Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

 *

 * *

 * * *

 * * * *

 * * * * *

Ask the user how many rows they want.

Hint: use 2 nested for loops, start with a square of stars

Question 4 Enhanced Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

 *

 * * *

 * * * * *

 * * * * * * *

 * * * * * * * * *

Ask the user how many rows they want.

Hint: use 2 nested for loops, start with a square of stars

Question 5 Reverse a String

Reverse a String using a while loop or a for loop. You will have to put the

reversed characters in a second string, since you cannot in Java directly change the

characters in the original String.

53
copyright © 2021 www.onlineprogramminglessons.com For student use only

Question 6 Test if a number is prime

Make a function called isPrime(x) that tests if a number is print. In a loop divide
the number between 2 to number-1 (or 2 to square root of number+1. For square
root use:

 x = (int)Math.Sqrt(n);

If the number can be divided by any of the divisors then the number is not prime,
else it is prime. Print out the first 100 prime numbers.

The first 10 prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29

Question 7 Print out all factors of a number

Make a function call factors(x) that will print out all the factors of a number. The
factors of a number is all the divisors divided by the number evenly.
 Example:

The Factors of 50 are:
1
2
5
10
25
50

Question 8 Print out all prime factors of a number

Make a function call prime_factors(x) that will print out all the prime factors of a
number. The prime factors of a number is all the prime number divisors divided
by the number evenly.

Example: 12 = 2 × 2 × 3

54
copyright © 2021 www.onlineprogramminglessons.com For student use only

Following are the steps to find all prime factors.

0) Enter a number n
1) While n is divisible by 2, print 2 and integer divide n by 2
2) In a for loop from i = 3 to square root of n + 1 increment by 2

 in a while loop while n is divisible by i
 print i
 integer divide n by integer i

3) print n if it is greater than 2.

For square root use:

 x = Math.Sqrt(n);

Question 9 Make a Guessing game

Ask the user to guess a number between 1 and 100. If they guess too high tell them

"Too High". If they guess too low tell them they guess "Too Low". If they guess

correct tell them "Congratulations you are Correct! ". Keep track how many tries

they took to guess. At the end of each game ask the user if they want to play

another game. After all games have been played print out the average number of

tries for all games played. Store the sum of the tries per game and divide by the

number of games played. Play up to a maximum of 10 games.

Make a C# class called GuessingGame with a main function.

Use a constant for the maximum number to guess 100.

public static final int MAX_NUMBER = 100;

Place the constant right after you declare your class.

You will also need to generate random numbers to guess.

You can use this code to generate a random number:

Random rgen = new Random();

int number = rgen.Next(MAX_NUMBER)+ 1;

55
copyright © 2021 www.onlineprogramminglessons.com For student use only

Where MAX_NUMBER is a constant to represent the maximum number to guess

100

Also use a constant for the maximum number of tries to play 10.

public static final int MAX_TRIES = 10;

You should have functions to print a welcome message, explaining how to play the

game, generate a random number, get a guess from the keyboard, check if a guess

is correct and print out the number of tries per game and average score for all

games. The main function should just call your functions in a loop. Call your C#

file GuessingGame.cs.

Question 10 Object Oriented Guessing Game

Make a GuessGame class that store the random number to guess, and the number

of tries to guess the random number. The constructor should generate the random

number, and you should have a method to check if a guess is correct, too low or

too high. Return a 0 if they are correct a negative number id too low and a positive

number if too high. Also make a method to return the number of tries. The main

function should just handle inputs from the keyboard and printing output to the

console. The GuessGame class should not handle any input and output, and is used,

mainly to store data.

The main function would instantiate a new GuessingGame object per game.

The guessing game class should also have a static variable to store the sum of the

tries per game and the number of games.

 public static in TotalTries = 0.

 public static int NumGames = 0;

 Call your C# file with the main function GuessingGame2.cs

56
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 6 ARRAYS, HASHSETS and DICTIONARIES

Arrays store many sequential values together accessed by a common variable
name. We have one dimensional arrays and multi dimensional arrays. One
dimensional arrays are considered a single row of values having multiple columns.
You can visualize a one-dimensional array as follows.

Value1 Value2 Value3 Value4 Value5

We declare and initialize 1 dimensional array with values as follows:

int[] a = {1,2,3,4,5};

1 2 3 4 5

We access the values of the array using an index. In C# index start at 0.
To retrieve the first value we use the index 0 enclosed in square brackets as
follows:

int x = a[0];

To assign a value to a column location we also use an index and the square
brackets.

a[0] = 2;

Print number of elements in an 1 dimensional array

 int numElements = a.Length;
 Console.WriteLine(numElements); // 5

we next declare a one-dimensional array of size 5 without initializing the column
values, all values are set to 0.

int[] a2 = new int[5];

57
copyright © 2021 www.onlineprogramminglessons.com For student use only

In this situation you need to assign values separately. Array column locations are
assigned by an index starting at 0.

a2[0] = 1;
a2[1] = 2;
a2[2] = 3;
a2[3] = 4;
a2[4] = 5;

1 2 3 4 5

Array location columns are retrieved by an index

int x = a[0];
Console.WriteLine(x); // 1

The column index of a one-dimensional array can be visualized as follows.

[0] [1] [2] [3] [4]

We use for loops to print out values in array. C# does not do automatically for you.
 // print out values in a 1 dimensional array
 int[] a = {1,2,3,4,5};
 for (int i=0;i<a.Length;i++)
 Console.WriteLine (a[i] + " ");
 Console.WriteLine ("");

Two-dimensional arrays

Two-dimensional arrays have grid of rows and columns. A 3 by 4 two-dimensional
array is visualized as follows, (3 rows and 4 columns).

1 2 3 4

5 6 7 8
9 10 11 12

Here we declare and initialize a two-dimensional array with values:

1 2 3 4 5

58
copyright © 2021 www.onlineprogramminglessons.com For student use only

int [,] b = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};

Here we just declare a two-dimensional array without initializing.

int[,] b2 = new int[3,4];

We assign values to the two-dimensional array by row index 2 and column index 3.
The row index first and the column index second.

b2[2,3] = 11;

We retrieve values from the two-dimensional array also by row index 2 and
column index 3. The row index is first and the column index second.

x = b2[2,3];
Console.WriteLine(x); // 11

The row index and column index of a two-dimensional array can be visualized as
follows. The row index is first and the column index second. We have 3 rows and
4 columns.

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

Print number of rows in an 2 dimensional array

 int rows = a.GetLength(0);
 Console.WriteLine(rows); // 3

Print number of columns in an 2 dimensional array

 int columns = a.GetLength(1);
 Console.WriteLine(columns); // 4
// print out values in a two dimensional array

59
copyright © 2021 www.onlineprogramminglessons.com For student use only

 int[,] b = {{1,2,3},{4,5,6},{7,8,9}};

 for (int r=0;r < b.GetLength(0); r++)
 {
 for (int c=0;c < b.GetLength(1); c++)
 {
 Console.Write (b[r,c] + " ");
 }
 Console.WriteLine ("");
 }

We use b.GetLength(0) to get the length of the first dimensions which is 3 rows.
We use b.GetLength(1) to get the length of the second dimensions which is 3
columns.

Lists

Lists are expandable arrays. A List needs to know what type of data type it will use
so you need to specify the data type to be used inside triangle brackets <int>.

 // make an List of values
 List<int> list1 = new List<int>();
 list1.Add(1);
 list1.Add(2);
 list1.Add(3);
 list1.Add(4);
 list1.Add(5);

 Alternately you can use an initialization list:

 List<int> list1 = new List<int>{1,2,3,4,5};

C# does not print out the list as nicely as is done in other programming languages,
we must do it this awkward way.

1 2 3

4 5 6

7 8 9

1

2

3

4

5

60
copyright © 2021 www.onlineprogramminglessons.com For student use only

// Print out array list

 list1.ForEach(Console.WriteLine); // 1,2,3,4,5

// get and print the number of elements in an list
Int x = list1.Count();

Console.WriteLine (x) // 5

// Get and print a value from a list at a specified location
Console.WriteLine (list1[0]) // 1

// remove a value from a list
list1.Remove (3)
list1.ForEach(Console.WriteLine); // 1,2,4,5

// remove a list item by index
list1.RemoveAt(0)
list1.ForEach(Console.WriteLine); // [2,5]

// get index of a value in an array
int index = list1.IndexOf((5));
Console.WriteLine(index); // 1

// test if a value is in a list returns true or false
Console.WriteLine (list1.Contains(5)) // false

Printing out values from a List

For loops can also print out values from lists. We can do this 3 different ways.
Index for loop inside an index counter, foreach loop that can travel through each
item in the list using a variable value and a loop that uses an Enumerator to
traverse through the list by extracting the next value per iteration of the loop.
You need have using System.Collections.Generic; and using System.Linq; at the
top of your Lesson6.cs file.

61
copyright © 2021 www.onlineprogramminglessons.com For student use only

 There are 3 ways to print out a List using a list;

 (1) Using an for index loop:

 // using an index loop
 for (int i=0;i<list1.sCount();i++)
 Console.WriteLine (list1[i]);
 Console.WriteLine ("");

 (2) Using a foreach loop:

// use an foreach loop

 foreach(int v in list1)
 Console.WriteLine (v);
 Console.WriteLine ("");

A foreach loop uses a variable and the keyword in to traverse the list.

 (3) Using an enumeration loop

 // use an enumeration
 var e = list1.GetEnumerator();
 while(e.MoveNext())
 {
 x = e.Current;
 Console.WriteLine (x);
 }

Console.WriteLine ("");

The Enumerator obtained from the list method GetEnumerator is assigned to the
variable e. The variable e has data type var that can represent any data type. We

1

2

3

4

5

1

2

3

4

5

62
copyright © 2021 www.onlineprogramminglessons.com For student use only

use the MoveNext() to traverse through the loop and the Current property to get
the value at the current position.

HashSets

HashSets are like a List but just store unique values, there are no duplicates
allowed. Hashsets store values into an array using a calculated index which
results in faster execution time then Lists. You use a HashSet when you want to
store unique items with no duplication. A HashSet also needs to know what type
of data type it will use. The data type to be used is specified inside Triangle
brackets <int>.

 // make HashSet
 HashSet<int> set1 = new HashSet<int>();

 // add values to hash set
 set1.Add(1);
 set1.Add(2);
 set1.Add(2);
 set1.Add(3);
 set1.Add(4);
 set1.Add(4);
 set1.Add(4);
 set1.Add(4);
 set1.Add(5);

 Alternately you can use an initialization list:

 HashSet <int> set1 = new HashSet <int>{1,2,2,3,4,4,4,4,5};

C# does not print out the list as easy as other programming languages, we have to
do it this awkward way.

63
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // print out set
 Console.WriteLine(String.Join<int>(",", set1)); // 1,2,3,4,5

 // return true if set contains item

Console.WriteLine (set1.contains(5)); // true

 // remove item by value from hash set
 set1.remove(5);
 Console.WriteLine(string.Join<int>(",", set1); // 1,2,3,4

Printing out values from a HashSet using a loop

We can also use a for loop to print out the items stored in a Hash Set. Printing
values in a HashSet is more difficult since the HashSet values are not stored in
sequential memory locations. The Hash set values are not always in order. We
only use a foreach loop that can travel through each item in the list using a
variable value and a loop that uses an Enumerator to traverse through the list by
extracting the next value per iteration of the loop.

 There are 2 ways to print out a List using a list;

 (1) Using an foreach loop:

 foreach(int v in set1)
 Console.WriteLine (v);
 Console.WriteLine ("");

 (2) Using an enumeration loop

 // use an enumeration loop
 var e2 = set1.GetEnumeration();
 while(e2.MoveNext())
 {
 x = e2.Current;

1

2

3

4

5

1

2

3

4

5

64
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Console.WriteLine (x);
 }
 Console.WriteLine ("");

Using a HashSet to print out unique letters in a word.

 String s2 = "tomorrow:";
 HashSet<char> set3 = new HashSet<char>();
 foreach(char c in s2)
 {
 set3.Add(c);
 }

 foreach(char c in set3)
 {
 Console.Write(c);
 }
 Console.WriteLine("");

Dictionary’s

A Dictionary contains a key and a value. A Dictionary can have many keys and
corresponding values. Think of a Dictionary like a telephone book with the name
as the key and the telephone number as the value.

A Dictionary need to know what type of data type it will use, the data type is
specified inside Triangle brackets <string, string>. The first data type is for the key
and the second data type is for the value.

 // make empty map
 Dictionary<String, String> map1 = new Dictionary<String, String>();

 // add values to Dictionary
 map1["name"] = "Tom";
 map1["age"] = "24";
 map1["idnum"] = "S1234";

tomrw

65
copyright © 2021 www.onlineprogramminglessons.com For student use only

 alternately you can use an initialization list:

 Dictionary<String, String> map2 = new Dictionary<String, String>
 {
 { "name","Tom" },
 { "age","24" },
 { "idnum","S1234" }
 };

 // get values From a Dictionary
 Console.WriteLine (map1["name"]); // Tom
 Console.WriteLine (map1["age"]); // 24
 Console.WriteLine (map1["idnum"]); // S1234

C# does not print out the list as easy as other programming languages, we have to
do it this awkward way.

 // print out Dictionary
 map1.ToList().ForEach(m => Console.WriteLine(m.Key + ":" + m.Value));

// name:Tom
// age:24
// idnum:S1234

 // get a list of keys from the Dictionary
 List<string> keys = new List<string>(map1.Keys);

// print keys of a Dictionary

 keys.ForEach(Console.WriteLine); // name idnum age]

// get values of a Dictionary
 List<string> values = new List<string>(map1.Values);

// print values of a Dictionary
 values.ForEach(Console.WriteLine); // Tom S1234 24

66
copyright © 2021 www.onlineprogramminglessons.com For student use only

Printing out values from a Dictionary using loops

We also use for loops can to print out Dictionary. The main purpose of loops is to
print out the Dictionary in order by key or order by values.

Print out a dictionary using a for each loop.

 // print dictionary by key and value
 foreach (var kv in map1)
 {
 Console.WriteLine(kv.Key + " : " + kv.Value);
 }

Print out dictionary by keys unsorted.

 // print Dictionary by key
 foreach(String key in map1.Keys)
 {
 String value = map1.get(key);
 Console.WriteLine (key + " : " + value);
 }
 Console.WriteLine ("");

Print out dictionary by values unsorted.

// print Dictionary by value

name : Tom

age : 24

idnum : S1234

Tom : name

24 : age

S1234 : idnum

name : Tom

age : 24

idnum : S1234

67
copyright © 2021 www.onlineprogramminglessons.com For student use only

 foreach(string value in map1.values())
 {
 foreach(String key in map1.keySet())
 {
 if(map1.get(key).equals(value))
 {
 Console.WriteLine (value + " : " + key);
 }
 }
 }
 Console.WriteLine ("");

Print out dictionary sorted by key.

 // print Dictionary sorted by key
 List<string> keys = new List<string>(map1.Keys);
 keys.Sort();

 foreach(string key in keys)
 {
 string value = map1.get(key);
 Console.WriteLine (key + ":" + value);
 }
 Console.WriteLine ("");

Print HashMap sorted by value

To print a Dictionary sorted by value we first obtain a KeyValuePair list. An
KeyValuePair is an object containing both the key and value. We then sort the list
by value. We use a compare internal method that sorts the KeyValuePair objects
by values. This internal method is known as a delegate.

 // print Dictionary sorted by value
 List<KeyValuePair<string, string>> kvList = map1.ToList();

age: 24

idnum: S1234

name: tom

68
copyright © 2021 www.onlineprogramminglessons.com For student use only

 kvList.Sort(delegate
(KeyValuePair<string, string> p1, KeyValuePair<string, string> p2)

{
return p1.Value.CompareTo(p2.Value);
}

);

Lastly we print out the sorted list.

 foreach (KeyValuePair<string, string> p in kvList)
 {
 Console.WriteLine(p.Key + ":" + p.Value);
 }

Type all the above examples in your file lesson6.cs and, make sure you get the
same results.

LESSON 6 HOMEWORK

Question 1

Make an array to store 5 numbers 1 to 5.

Swap two values in an array. Print array before and after using a for loop.

Question 2

Make an array of 10 numbers 1 to 10, print out the numbers in the array,
then add up all the numbers and print out the sum.

Question 3

age: 24

idnum: S1234

name: tom

69
copyright © 2021 www.onlineprogramminglessons.com For student use only

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Ask the user of your program to enter a number in the array. Search for the
number in the array and report if it is found or not found.

Question 4

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Ask the user of your program to enter a number in the array. Search for the
number in the array and report the array index where the number was
found otherwise print -1 meaning no index found.

Question 5

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Reverse all the numbers in the array in-place using a loop. Hint: use swap
and 2 indexes i and j. Index i starts at the beginning of the array and index j
starts at the end of the array. The i’s increment and the j’s decrement.
Print out the reversed array.

Question 6

Make a 2 dimensional array of 3 rows and 3 columns. Fill the 2 dimensional
array with numbers 1 to 9. Add up the sum of all rows, and print the sum
at the end of each row. Add up the sums of all columns, and print the sums
at the end of each column. Your output should look like this.

 1 2 3 : 6
 4 5 6 : 15
 7 8 9 : 24
--- --- ---
11 15 18

Question 7

70
copyright © 2021 www.onlineprogramminglessons.com For student use only

Make an array to hold 10 numbers 1 to 10.

Generate 1000 random numbers between 1 and 10.

Keep track of the random numbers generated in your array.

Print out all the numbers and their counts from the array.

Print out the numbers with the smallest and largest count.

Print out the number of even and odd number counts.

You can make a random number like this:

int x = (int)(Math.random()*10) + 1;

Question 8

Make an List called animals of your 5 favorite animals like: cat, dog, tiger,

monkey and mouse.

Make an List called sounds of your 5 favorite animals sounds:

“meow”,”bark”,”roar”, “ee ee ee” and ”squeak squeak”

In a loop ask what sound each animal make?

EXAMPLE: What sound does a cat make?

 Using the values in the sound List, Tell them if that are right or wrong,

and keep track of the correct answers.

At the end of the program tell them their score.

Question 9

Make an List called list1 of your favorite animals like: elephant, cat and dog.

Print out the list of animals.

Ask the user of your program to type in name of one of the animal names from

your list, that they don’t like.

Remove the animal from this list and put into another list called list2.

71
copyright © 2021 www.onlineprogramminglessons.com For student use only

Then ask them to type in the name of an animal they do like. Add this name to list1

and to list2.

Then print out the animals list1 and list2

Question 10

From question5 put all the animals from animal list1 and list2 into a HashSet

called set1. Then take all the animals from list1 and list2 that are common between

them and put into another set called set2. Print out both sets.

Question 11

Make a Dictionary called map1 of your favorite animal kinds like (cat, dog, tiger).

Give each animal a name (Tom, Sally, Rudolf) . Use the animal name as the key

and the animal kind as the value.

Example: fluffy cat

Then make another Dictionary called map2 , use the animal kind (cat, dog, tiger)

as the key and the animal sound (meow,bark,roar) as the value.

Example: cat meow

Next print out the keys ((Tom, Sally, Rudolf) of the first Dictionary.

Ask the user to type in one of the animal names.

Get the animal kind ((cat, dog, tiger) from the first Dictionary map1 using the

animal name that the user typed in.

Ask the user what kind of animal it is.

If they are correct tell them they are correct

Else

Print to the screen the name of the animal and what kind of animal it is like:

Fluffy is a cat and end the program

Next ask the user what kind of sound the animal makes?

72
copyright © 2021 www.onlineprogramminglessons.com For student use only

From the second Dictionary get the sound that animal makes. If they guess the

correct sound then tell then correct or tell them what sound the animal make’s like:

Cat’s meow

 Put your code in c# file Lesson6Homework.cs

Question 12

Sentence Generator

A Sentence is composed of the following:

<article><adjective><noun><adverb><verb><article><adjective><noun>

Make an List<String> of articles like: "a", "an" and "the"

Then make an List<String> of adjectives like: "fat", "big", "small"

Then make an List<String> of nouns like: "cat", "rat", "house"

Then make an List<String> of adverbs like: "slowly", "gently", "quickly"

Then make an List<String> of verbs like "ate", "sat on", "pushed"

Make a Dictionary<String,List<String> > called words to hold all the lists:

words.Add("articles",articles);

words.Add("adjectives",adjectives);

words.Add("nouns",nouns);

 words.Add("adverbs",adverbs);

 words.Add("verbs",verbs);

Next make an array of Strings or a List<String> called keys

Containing "articles", "adjectives", "nouns", "adverbs", "verbs", "articles",

"adjectives", "nouns" which are Dictionary keys used to make a sentence:

Finally make a sentence using the Dictionary entries, using the parts of speech as

the Dictionary keys and by selecting random words from the Dictionary values.

String sentence = "";

Random random = new Random();

foreach(String key in keys)

 {

73
copyright © 2021 www.onlineprogramminglessons.com For student use only

 int r = randon.next(words[key].Count();

 sentence += words[key][r] + '' '';

 }

Then print out the sentence.

Console.WriteLine(sentence);

You should get something like this:

The big cat slowly ate the small rat

Which has picked random words from the dictionary sentence structure:

<article><adjective><noun><adverb><verb><article><adjective><noun>

You can put your code in your homework6.cs file.

74
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 7 OVERLOADING, OVERRIDING AND INTERFACES

OVERLOADING

Overloading means same method name but different parameter list signature.
When you make different constructors, this is overloading as follows:

 public Person(){
 this.name = "";
 this.age = 0;
 }

 public Person(String name, int age){
 this.name = name;
 this.age = age;

Do not confuse overriding with overloading. Overriding means same method
name and same parameter list where as Overloading means same method name
but different parameter list.

OVERRIDDING

Overriding allows you to call the methods of a derived class over the methods of
a super base class. The derived method has the same name and parameter list
signature of a super base class method. You have all ready used an overridden
method’s in your Person and Student classes the ToString method. Notice we

75
copyright © 2021 www.onlineprogramminglessons.com For student use only

have used the override keyword to indicate this method is to be override the base
class ToString method.

 public override String ToString() {
 String sout = "Nice to meet you " + this.name + "\n";
 sout += this.name + " You are " + this.age + " years old";
 return;
}

There is another important overridden method you should know about, the
Equals method. It returns true if two Objects are equal by value.

// return true if two objects equal
public bool Equals(Object obj) {
 return (this == obj);
 }

In C# when you override the Equals method you must also override the
GetHashCode method. The GetHashCode method must return a unique value for
the data store I your object. Fortunately, each value has its own hash code value
that you can use. A object is considered equal if both the equals method and
hashcode value are the same as the other object you are equating.

Here is an example GetHashCode method:

// return unique number code
 public override int GetHashCode()
 {
 return this.data.GetHashCode();
 }

Todo:

Add an equals method to your Person class to test if the Person objects are equal
by name. You will need to use the is operator to test if the obj parameter is a
Person Object.

public override bool Equals(Object obj)

76
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 if(obj is Person)
 {
 Person p = (Person) obj;
 // return if person names are equal
 return this.name.Equals(p.name);
 }
 return false;
 }

To do:

Add a GetHashCode() method to your Person class. Return the hash code of the
name of the Person.

 public override int GetHashCode()
 {
 return this.name.GetHashCode();
 }

An Equals method that takes a Person parameter

For convenience you can also make an Equals method that takes a Person instead
of an Object. This Equals method does not override the Object Equals method.
The Person Equals method is called instead of the Equals object method when a
Person object argument is supplied.

 public bool Equals(Person p)
 {
 // return true if person names are equal
 if (p != null)
 return this.name.Equals(p.name);
 else return false;
 }

Todo: Add the Equals Person method to your Person class.

The Person parameter Equals method will return true if both the names are equal.

77
copyright © 2021 www.onlineprogramminglessons.com For student use only

To do:

Make a new class file called Lesson5.cs with a main method. Make some Person
Objects with same name and some with different names. Using two Person
objects call the Person Objects Equals method. Print out the results using
Console.WriteLine();
Overriding the Equals method in a Derived class

When we override the Equals method in a derived class we can use the Equals
method of the base class to check if the base class object is also equal. We call the
Equals method from the Person base class like this:

base.Equals(s)

Although we give it a Student variable the compiler extracts the Person object
from the Student object.

Here is the Student Equals method:

 public override bool Equals(Object obj)
 {
 if(obj != null)
 {
 if (obj is Student)
 {
 Student s = (Student)obj;
 // return if person names and student id are equal
 return base.Equals(s) && this.idnum.Equals(s.idnum);
 }
 }
 return false;
 }

The Student Equals method overrides the Person Equals method and the Person
Equals method and Person Equals method overrides the Object Equals method.

Todo:

 Add the Student equals methods to your Student class.

78
copyright © 2021 www.onlineprogramminglessons.com For student use only

You also need to include a GetHashCode() method to complement the Equals
method. We will return the hashcode of the student id.

 // return unique number code
 public override int GetHashCode()
 {
 return this.name.GetHashCode();
 }
A Equals method that takes a Student parameter

For convenience you can also make an Equals method that takes a Student object
instead of an object. This Student Equals method does not override the Student
Object Equals method. The Equals Student method is called when a Student is
supplied as an argument to the Equals method.

 // return true if two students are equal
 public bool Equals(Student s)
 {
 if (s !- null)
 // return if person names are equal
 return base.Equals(s) && this.idnum.Equals(s.idnum);
 else return false;
 }

Todo: Also add this Equals method to your Student class.

The Student parameter Equals method will return true if the name and student
number s are equal.

INTERFACES

An interface just contains method declarations with no code body. Methods
without A code body is known as abstract methods. Methods without code body
are known as concrete methods. A class with abstract methods are known as an
abstract class. A class with all abstract methods are known as an interface. The
purpose of the interface is to specify what methods a class should have. The
interface also becomes the super base class for the class it implements. An
interface can represent many other classes that implement the interface. The

79
copyright © 2021 www.onlineprogramminglessons.com For student use only

abstract and public keywords are not necessary when defining an interface
because they are already understood to be there.

The syntax for an interface is as follows:

 interface interface_name

{
 method_definition_headers

}

You have already used C# classes that implement interfaces. The string class
implements the IComparable Interface having the CompareTo method as follows:

public interface IComparable
{

 int CompareTo(Object obj2);
}

The CompareTo method returns a negative number if the object value is less than
the parameter obj2, returns a positive number if the object value is greater than
the parameter obj2 value and returns 0 if the object value is equal to the
parameter obj2 value

To use the CompareTo method your class must implement the IComparable
interface by placing IComparable at the end of the class declaration separated by
a colon :

public class MyClass: IComparable

to do:

80
copyright © 2021 www.onlineprogramminglessons.com For student use only

Add a CompareTo method to your Person class, so you can compare person
names. Your Person class must now implement the IComparable interface using
the colon operator and the IComparable name as follows:

public class Person: IComparable{

Here is the CompareTo to method for the Person class. You will also need to use
the is operator to test if the obj parameter is a Person Object.
 // compare 2 person names
 public int CompareTo(object obj)
 {
 If p != null)
 {
 If (p is Person)
 {
 Person p = (Person)obj;
 return this.name.CompareTo(p.name);

}
 }
 return false;
Compare two Person objects and report if they are less than, greater than or
equal.

Adding a CompareTo method to a Derived class

When adding a CompareTo method to a derived class, we put the IComparable
declaration at the end of the class declaration separated by a comma.

 class derived_class_name: base_class_name, interface_name

When we override the CompareTo method in a derived class we can also use the
CompareTo method of the base class to help us compare the derived class. We
call the CompareTo method from the a base class like this:

base.CompareTo(s)

81
copyright © 2021 www.onlineprogramminglessons.com For student use only

Although we give it a derived class variable the compiler extracts the base class
object from it. A derived class object always has a base class object inside it.

We first add the IComparable to our Student class declaration

 public class Student : Person,IComparable{

We also need to add the new key word to the CompareTo method because it has
the same signature as the CompareTo method of the Person class.

 public new int CompareTo(object obj)

We want Student.CompareTo(object) method to hide the inherited
Person.CompareTo(object) method. The new keyword is used to hide the
Person.CompareTo(object) method. Hiding allows the Student.CompareTo(object)
method to be used over the Person.CompareTo(object) method.

Here is the Student class CompareTo method:

 // compare 2 person names
 public int CompareTo(Object obj)
 {
 If(obj != null)
 {

 Student s = (Student)obj;

 if (s is Student)
 {
 if (base.CompareTo(s) == 0)
 return this.idnum.CompareTo(s.idnum);
 else return base.CompareTo(s);
 }
 }
 return 0;
 }

In the Student is equal method we first check if the Person base class is equal, if
so we compare the student number, else we just return the person comparison

82
copyright © 2021 www.onlineprogramminglessons.com For student use only

result. Although we pass a Student variable to the Student equals method the
compiler extracts the Person object from it.

To do

Add the student CompareTo method to your Student class,
In your Lesson5.java main method, make some persons with different names.
Using the CompareTo method print out the results of comparing different and
same Person objects, using Console.WriteLine()

Making your Own Interface

ICalculator Interface

Here is an interface that defines methods that can be used in a Calculator. You
can put the Calculator interface into a file called ICalculator.cs

/*
 * ICalculator interface
 * specifies the method a Calculator should have
 */

interface ICalculator {

 double add(double a, double b);
 double sub(double a, double b);
 double mult(double a, double b);
 double divide(double a, double b);
}

83
copyright © 2021 www.onlineprogramminglessons.com For student use only

A MyCalculator class implementing the ICalculator interface is as follows:

/*
 * class MyCalculator implements Calculator interface
 * implements the methods of the Calculator interface
 */

public class MyCalculator: ICalculator{

 public double add(double a, double b){
 return a + b;
 }
 public double sub(double a, double b){
 return a - b;
 }
 public double mult(double a, double b){
 return a * b;
 }
 public double divide(double a, double b){
 return a/b;
 }
}

Add a main method to the MyCalculator.cs file. In a loop asking the user to type in
2 numbers and what operation they want, and display the results. You will have to
instantiate a MyCalculator object in your main class because the MyCalculator
class methods are not static.

ICalculator calc = new MyCalculator();

int a = 3;
int b = 5;

int result = calc.add(a,b);
Console.WriteLine(result);

84
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 7 HOMEWORK

Question 1

Add the copy constructor to your Profession class and to your derived Payroll

class from previous lesson 3. The Payroll derived class would have to pass the

Payroll object to the Profession class using the super keyword. In your main

method of Homework7.cs make a few Professions and Payrolls and print them out,

then make a copy of each one using the copy constructor.

Question 2

Add the equals and compare To methods to your Profession and Payroll class

from Lesson 3. The Profession class should compare the profession and/or salary,

and the Payroll class can compare the bonus and optionally the result from the

Profession class. In your main method of Homework7.cs make a few Profession

and Payroll’s and print them out, then check if they are equal using the equals

method and compare the objects using the compareTo method, then print out the

results.

Question 3

Make a Interface called IAnimal that has a void method sound().

interface IAnimal {

 public void sound();

}

85
copyright © 2021 www.onlineprogramminglessons.com For student use only

Put the interface in a C# file called IAnimal.java.

Make a class called Cat that implements the IAnimal interface. It has a constructor

that receives a name, a sound method that prints out “meow” and a toString()

method the prints out the name of the animal and type. Put this in a java file called

Cat.java.

Make a class called Dog that implements the IAnimal interface. It has a constructor

that receives a name, a sound method that prints out “bark” and a toString()

method the prints out the name of the animal and type. Put this in a java file called

Dog.java.

Make a class called Tiger that implements the IAnimal interface. It has a

constructor that receives a name, a sound method that prints out “roar” and a

ToString() method the prints out the name of the animal and type. Put this in a java

file called Tiger.java.

Make a class of your favorite Animal that implements the IAnimal interface. It has

a constructor that receives a name, a sound method that prints out “????” and a

ToString() method the prints out the name of the animal and type. Put this in x c#

file called Animal.cs file.

Your toString method should return the animal name what kind of animal it is like:

“I am Fluffy and I am a cat”

In your main method of Homework7.cs make the 4 four animals and print out

what each animal says by first calling the toString method and then the sound

method. You may want to put all the animals in a IAnimal array and print in a loop.

 IAnimal[] animals = new IAnimal[4];

This is possible because an interface can represent any class that implements it.

An example output is:

“I am Fluffy I am a cat”

“meow”

86
copyright © 2021 www.onlineprogramminglessons.com For student use only

Question 4

Add the compare To methods to your Profession and Payroll class from

Question2 , using the Generic Comparable interface Comparable<Profession>.

Each will receive a Profession and Payroll parameter respectively. The

Profession class should compare the profession and/or salary and the Payroll class

can compare the bonus and optionally the result from the Profession class. The

derived class Payroll must implement Comparable<Profession> not

Comparable<Payroll> to avoid a name clash.

Check if the homework 6 program still work’s the same.

87
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 8 GENERIC Interfaces and Classes

Generics allow a class to a have a specified data type when it is declared and
instantiated. A Generic class store an object class as it’s data type. The object
class is the super base class of all classes, and can represent any other class. The
object class has very few methods available to do things with, just methods like
equals, ToString() etc.

We have already used Generics with the List, HashSet and Dictionary when you
specified the data types that the List would use.

List<int> list1 = new List<int>();

This means the List will hold an int data type that allows you to use int numbers.

You define a Generic class like this:

access_modifier class_name<T>
{
 T variable name;
}

T can represent any class data type that the generic class will use.
You instantiate a generic class the same way as any other class except you must
specify the data type it will use in diamond <> brackets like this

 List<Integer> list1 = new List<Integer>();

Here is a simple Generic class you can put into a class file called TItem.java

88
copyright © 2021 www.onlineprogramminglessons.com For student use only

// Simple Generic class to hold a generic data type
public class TItem<T>
{
 private T data; // generic variable

 // construct TItem
 public TItem(T data)
 {
 this.data = data;
 }

 // Data property
 public T Data
 {
 get { return data;}
 set { data = value;}
 }

 // return a information string
 public override string ToString()
 {
 return data.ToString();
 }

}
You instantiate the TItem class like this

 TItem<int> tItem = new TItem<int>(5);

To do:

Instantiate a TItem object with a int data type and any value you like. Call the
Data property and print out the return value. Using the Data property assign a

89
copyright © 2021 www.onlineprogramminglessons.com For student use only

new value to the TItem object like 8. Call the Data property again to print out the
return value. Finally print out item with the ToString method.

Adding an Equals method to the TItem class.

We first add Equals method that takes an Object.

 // return true if equal
 public override bool Equals(Object other)
 {
 if(other != null)
 {

 if (other is TItem<T>)
 {
 return ((TItem<T>)other).data. Equals(data);
 }
 }
 return false;
 }

We also need to add a GetHashCode() method

 // return unique number code
 public override int GetHashCode()
 {
 return this.data.GetHashCode();
 }

Next we add the Generic Equals method that just takes a T data type.
 // return true if equal
 public bool Equals(T other)
 {
 return data. Equals(other);
 }

90
copyright © 2021 www.onlineprogramminglessons.com For student use only

}

Notice we have 2 equals method’s one taking an object and the other one taking
a T data type.

 // return true if equal
 public override bool Equals(Object other)
 {
 If(other != null)
 {
 if (other is TItem<T>)
 {
 TItem<T> totem = (TItem<T>)other;
 return.data.Equals(other.data);
 }
 return false;
 }

 // return true if equal
 public bool Equals(TItem<T> tItem)
 {
 If(titem != null)
 return this.data.equals(tItem.data);
 else return false;
 }

The first one overrides the Equals method of the Object class the other one just
takes a TItem object for convenience but does not override the Equals method in
the object class type. Probably the second Equals methods are more convenient
to use.

91
copyright © 2021 www.onlineprogramminglessons.com For student use only

To do:

Make two int Titem objects with same or different values Print out if the two
item objects are equal using the Equals method.
Next call the equals method with a int data type. The second Equals method that
takes a T data type should be called.
Repeat the above with different data types like Double, string even a Person.

Equals method that takes a TItem class.

We can make another equals method the receives a TItem object. This method
will just be called from a TItem object. The object Equals method will now be
called with non TItem objects.

 // compare Titem objects
 public bool Equals(TItem<T> other)
 {
 If(other != null)
 return other.Equals(other.data);
 else return false;
 }

Todo

Add the TItem Equals method too your TItem generic class. Make two int Titem
objects with same or different values. Print out if the two item objects are equal
using the Equals method.

GENERIC INTERFACES

Interfaces can also be Generic to. The IComparator interface also has generic
version

public interface IComparable<T>
{

 int CompareTo(T obj);

92
copyright © 2021 www.onlineprogramminglessons.com For student use only

}

In the class declaration we would add the T data type to the IComparable

class class_name: interface_name<T>

Adding the Generic Interface to the Person class

With the use of Generics we can add a CompareTo method to our Person class
that takes a Person rather than an Object.

 // compare 2 person names
 public int CompareTo(Person p)
 {
 If(p != null)
 return String.Compare(this.name, p.name);
 else return 0;
 }

Our Person class definition would then look like this:

 public class Person: IComparable<Person>

to do:

In your Person class and the Person type to your IComparable class declaration.
Add this CompareTo method to your Person class. Then in your Lesson6.cs file try
it out. The Person compare to method should now be called rather than the
object CompareTo method.

Adding the Generic Interface to a Derived class

93
copyright © 2021 www.onlineprogramminglessons.com For student use only

To add a Generic Interface to a Derived class we just and the <T> to the interface
name.

class derived_class_name: base_class_name, interface_name<T>

Adding the Generic Interface to the Student class

We just add the Student type to the IComparable tag.

 public class Student : Person,IComparable<Student>

Our Student Equals method will now look like this:

 // compare 2 students
 public int CompareTo(Student s)
 {
 If (s != 0)
 {
 if (base.CompareTo(s) == 0)
 return this.idnum.CompareTo(s.idnum);
 else return base.CompareTo(s);
 }
 else return 0;
 }

to do:

In your Student class and the Student type to your IComparable class declaration.
Add this CompareTo method to your Student class. Then in your Lesson6.cs file
try it out. The Student compare to method should now be called rather than the
object CompareTo method.

Generic class implementing the Comparable interface

A Generic class implementing the Comparable interface would be like this

94
copyright © 2021 www.onlineprogramminglessons.com For student use only

public class MyGenericClass<T>:Comparable<T> {

This does not work properly because the compiler does not know the data type of
T at compile time. So we need to tell the compiler in advance what data type T is
using the where keyword and a specified data type.

public class MyGenericClass <T>:IComparable<T> where T: IComparable<T>
Our CompareTo function will now look like this.

public int CompareTo(T data)
 {
 if (this.data.CompareTo(data) < 0) return -1;
 if (this.data.CompareTo(data) > 0) return -1;
 else return 0;
 }
Todo

Have your TItem class implement the IComparable interface just to compare the T
data only.

public class TItem<T>: IComparable<T> where T : IComparable<T>

 Add a CompareTo method to your TItem class that will compare T data.

 public int CompareTo(T data)
 {
 // compare the 2 data elements and return the result
 if (this.data.CompareTo(data) < 0) return -1;
 if (this.data.CompareTo(data) > 0) return -1;
 else return 0;
 }

In your Lesson7.cs file use your TItem objects to compare values. Print out the
results using Console.WriteLine statements.

If you want to compare TItem objects you can do something like this.

95
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public class TItem<T> : IComparable<TItem<T>> where T : IComparable<T>

The CompareTo method would look like this:

 public int CompareTo(TItem<T> item)
 {
 If (item != 0)
 {
 if (this.data.CompareTo(item.data) < 0) return -1;
 if (this.data.CompareTo(item.data) > 0) return -1;
 else return 0;
 }
 else return 0;

 }

Add the CompareTo method to TItem class to compare 2 TItem Objects.
In your Lesson6.cs file use your TItem objects to compare other TItem objects.
Print out the results.

GENERIC CALCULATOR

We can make our Calculator Generic too. The Generic calculator will take any data
type. We first define a Generic Calculator Interface.

/*
 * Generic ICalculator interface
 * specifies the methods a ICalculator should have
 */

public interface TICalculator<T> {

 public T add(T a, T b);
 public T sub(T a, T b);

96
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public T mult(T a, T b);
 public T divide(T a, T b);
}

We can also make our MyCalculator class to be generic and implement the
generic TICalculator interface. By making our calculator generic then we can use
any data type.

A Generic is a data type with no methods except ToString and Equals() methods.
There are no operators available like + - < > etc. The problem is the complier
does not know what a T is yet because T data type is specified at run time not
compile time. There are many solutions to this problem. Making separate int,
double char calculators etc.

We will present one that will let the compiler which method to call depending on
the generic data type specified.

We will just present the solution for the some of the methods, you will do the rest
on your own.

We have made separate add, sub, mult and divide functions for the data types we
are interested in. In run time these methods would be called over the generic
ones

 // generic calculator
 public class MyTCalculator<T> : TICalculator<T>
 {
 public int add(int a, int b)
 {
 return a + b;
 }

 public double add(double a, double b)
 {
 return a + b;
 }

 public int sub(int a, int b)
 {

97
copyright © 2021 www.onlineprogramminglessons.com For student use only

 return a - b;
 }

 public double sub(double a, double b)
 {
 return a - b;
 }

 public int mult(int a, int b)
 {
 return a * b;
 }

 public double mult(double a, double b)
 {
 return a * b;
 }

 public int divide(int a, int b)
 {
 return a / b;
 }

 public double divide(double a, double b)
 {
 return a / b;
 }

 public T add(T a, T b)
 {
 return add(a, b);
 }
 public T sub(T a, T b)
 {
 return sub(a, b);
 }
 public T mult(T a, T b)
 {
 return mult(a, b);

 }
 public T divide(T a, T b)

98
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 return divide(a, b);
 }

 }

When the calculator runs the correct method is called for the data type specified.

To do:

To run the MyTCalculator you will do something like this:

 MyTCalculator<int> tcalc = new MyTCalculator<int>();

int x = tcalc.add(3, 4);
Console.WriteLine(x);

Try running different types of numbers int and double. Add some more methods
to handle char and strings.

LESSON8 Question 1

Make generic Animal class called TAnimal that can hold any type of the animals

Cat, Dog, Tiger, etc. from Question 3 that implements the IAnimal interface also

from Question 3

public class TAnimal<T extends IAnimal> implements IAnimal

The TAnimal class should have a generic instance variable T animal and T Animal

getters and setters. We need to use <T extends IAnimal> because we want the

compiler to know that T will represent a IAnimal so we can call the sound method

from the animal instance variable. The IAnimal interface specifies the sound

method() print out a animal sound.

7

99
copyright © 2021 www.onlineprogramminglessons.com For student use only

interface IAnimal {

 public void sound();

}

In the main method of Homework 7.java make some animals and print them out

with a sound like this:

 TAnimal<Cat> cat = new TAnimal<Cat>(new Cat("Tom"));

 cat.sound();

Make an array of Generic TAnimals. When you make a Generic array you do not

specify the data type but have to suppress any warnings.

 TAnimal[] animals = new TAnimal[3];

 Put some IAnimals in the animals array. You can use the animals you made above

or make some new ones

 animals[0] = new TAnimal<Cat>(new Cat("tom"));

 animals[1] = new TAnimal<Dog>(new Dog("bill"));

 animals[2] = new TAnimal<Tiger>(new Tiger("george"));

Print out the animal and then call the sound method.

 for(int i=0;i<animals.length;i++)

 {

 System.out.println(animals[i].toString());

 animals[i].sound();

 }

You should get something like this:

“I am Fluffy I am a cat”

“meow”

LESSON 8 Question 2

100
copyright © 2021 www.onlineprogramminglessons.com For student use only

Make a generic TIAnimal interface that has an additional method called talk that

takes a Generic parameter that let’s two animals to talk to each other. TIAnimal

extends IAnimal interface from Question 5.

interface TIAnimal<T> extends IAnimal{

 public void talk(T animal2);

}

where the IAnimal interface from Question 3 is:

interface IAnimal {

 public void sound();

}

Make a generic class called TalkingTAnimal that extends TAnimal that can hold

any type of the animals Cat, Dog, Tiger, etc. from Question 3 that implements the

IAnimal interface.

public class TalkingTAnimal<T extends IAnimal> extends TAnimal<T>

 implements TIAnimal<TalkingTAnimal<T>>

<T extends IAnimal> means we want the compiler that T represents a IAnimal

so we can call the sound method from it.

extends TAnimal<T> means we want to use all the methods from the super

class TAnimal

TIAnimal<TalkingTAnimal<T>> means we want the talk method parameter to

be a TalkingTAnimal of Animal type T, so we can call the sound from it.

The TalkingTAnimal class should have a generic instance variable T animal and T

getters and setters.

The talk method just lets each animal talk to each other by each calling the sound

method(). It could say

“meow”

“ my name is Tony”

101
copyright © 2021 www.onlineprogramminglessons.com For student use only

You need to make two talk methods, one that receives a T and a the other one

receives TalkingTAnimal<T> .

The T would represent a IAnimal like Cat or Dog where as the

TalkingTAnimal<T>

would represent a TalkingAnimal that could be a Cat or Dog.

public void talk(T animal2)

 {

 sound();

 animal2.sound();

 }

 public void talk(TalkingTAnimal<T> animal2)

 {

 sound();

 animal2.sound();

In the main method of Homework 7.java make some animals and print them out

talking to each other like this:

 TalkingTAnimal<Cat> cat = new TalkingT<Cat>(new Cat("tom"));

 TalkingTAnimal<Cat> cat2= new TalkingT<Cat>(new Cat("sue"));

 cat.talk(cat2);

 cat2.talk(cat);

You should get something like this

Meow

My name is tom and I am a Cat

Meow

My name is sue and I am a Cat

102
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 9 C# OVERLOADED OPERATOR METHODS

Overloaded Operator methods let you use operators like +, -. *. / etc. for methods
in your objects. The only draw back they must be declared static. Not all
operators can be overloaded. The following table indicates which operators can
be overloaded

Operators Overloadability

+, -, !, ~, ++, --, true, false These unary operators can be overloaded.

+, -, *, /, %, &, |, ^, <<, >> These binary operators can be overloaded

==, !=, <, >, <=, >= The comparison operators can be overloaded

&&, || The conditional logical operators cannot be
overloaded, but they are evaluated using & and
|, which can be overloaded.

[] The array indexing operator cannot be
overloaded, but you can define indexers.

+=, -=, *=, /=, %=, &=, |=, ^=,
<<=, >>=

Assignment operators cannot be overloaded,
but +=, for example, is evaluated using +, which
can be overloaded.

A overloaded operator method is public and static and uses the keyword operator
and one of the above listed operators.

public static MyClass operator +(MyClass a, MyClass b)

We can make an MyArray class than stores values that can has an overloaded
operator + methods to add two MyArray objects together.

103
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // add two arrays
 public static MyArray operator +(MyArray a, MyArray b)
 {
 MyArray c = new MyArray(a.Count);

 for (int i = 0; i < a.Count; i++)
 {
 c.insert(a.items[i] + b.items[i]);
 }

 return c;
 }

Our MyArray class will look like this.

 public class MyArray
 {
 private double[] items;
 private int numItems = 0;

 // make set of size
 public MyArray(int size)
 {
 items = new double[size];
 }

 // insert item to set
 public void insert(double item)
 {
 items[numItems++] = item;
 }

 // retrieve item from set

104
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public double retrieve(int i)
 {
 return items[i];
 }

 // property to return number of items in this set
 public int Count
 {
 get
 {
 return numItems;
 }
 }

 // add two arrays
 public static MyArray operator +(MyArray a, MyArray b)
 {
 MyArray c = new MyArray(a.Count);

 for (int i = 0; i < a.Count; i++)
 {
 c.insert(a.items[i] + b.items[i]);
 }
 return c;
 }

 // print out set
 public override string ToString()
 {
 String sout = "[";
 for (int i = 0; i < numItems; i++)
 {
 sout += items[i] + " ";
 }

 sout += "]";

105
copyright © 2021 www.onlineprogramminglessons.com For student use only

 return sout;
 }
 }
}

Todo:

Put the MyArray class in a file called MyArray.cs, then in your Lesson6.cs file
inside your Main method make a small test program like this.

 public static void Main(string[] args)
 {
 MyArray a = new MyArray(5);
 a.insert(1);
 a.insert(2);
 a.insert(3);

 Console.WriteLine(a.ToString());

 MyArray b = new MyArray(5);
 b.insert(4);
 b.insert(5);
 b.insert(6);

 Console.WriteLine(b.ToString());
 MyArray c = a + b;
 Console.WriteLine(c.ToString());
 }

Your output will look like this:

[1 2 3]

[4 5 6]

[5 7 9]

106
copyright © 2021 www.onlineprogramminglessons.com For student use only

Once you got this working make operator overloaded methods for -, * and /

INDEXERS

Indexers allow your object to use index square bracket[] just like as an array. It is
assumed your object has arrays that you want to be accessed.
An indexer returns a value and uses this keyword and square brackets enclosing
an array index. The index is used to assign or retrieve values from the object’s
internal array using the get and set accessors like this:

public int this[int index]
{
 get
 {
 return a[index];
 }

 set
 {
 a[index] = value;
 }
}

We can add indexers to out MyArray class as follows:

 public double this[int index]
 {
 get
 {
 return items[index];

107
copyright © 2021 www.onlineprogramminglessons.com For student use only

 }

 set
 {
 // adjust num items
 If(numItems < index)
 numItems = index + 1;
 items[index] = value;
 }

 }
In your Lesson6.cs main function we can add some test code.

 a[0]=1;
 a[1]=2;
 a[2]=3;

 for(int i=0;i<a.Count;i++)
 {
 Console.WriteLine(a[i]);
 }

Our output would now be like this:

Todo:

Add the indexers to your myArray class and the indexer test code to your Lesson 6
main method.

Lesson9 Homework Question 1

[1 2 3]

[4 5 6]

[5 7 9]

1

2

3

108
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Make a Calculator using Operators +,-,*,/,%,^

Lesson9 Homework Question 2

 Make a generic Calculator using Operators +,-,*,/,%,^

LESSON10 File Access

File Access

C# has extensive file objects for reading and writing to file. We concentrate on the
most used. You need to have using System.IO at the top of your Lesson10.cs to
use the file stream classes. A try block is used to catch any errors like file not
found, corrupt file etc. The catch statement is used to catch the errors. When a
program encounters abnormal operation, an Exception is thrown. The try block
initiates the operation so that the catch block can catch the exception and report
the exception. Failure to include a try catch block would result in immediate
program termination.

Todo:

Make a file call Lesson10.cs to try out all the following code.
You need to have using System.IO at the top of your Lesson10.cs.

Write character to a file

The StreamWriter class is used to write characters one by one sequentially to a
file using the Write method.

// write characters to a file
 try
 {

109
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // write chars to a file
StreamWriter sw = new StreamWriter("data.txt");

 string s = "Hello";

 for (int i = 0; i < s.Length; i++)
 {
 char c = s[i];
 sw.Write(c);
 }

 sw.Write('\n');
 sw.Close();
 }

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

Read characters from a file

The StreamReader class is used to read characters one by one sequentially from a
file.

// read characters to file
try
 {
 StreamReader sr = new StreamReader("data.txt");
 int ch = sr.Read();

 while (ch != -1)
 {

110
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Console.Write((char)ch);
 ch = sr.Read(); // don’t forget to read again
 }

 sr.Close();
 }

catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

write lines to a file

The StreamWriter class is used to write lines one by one sequentially to a file.

// write lines to a file
 try
 {
 StreamWriter sw = new StreamWriter("data.txt");
 sw.WriteLine("hello");
 sw.WriteLine("goodbye");
 sw.Close();
 }

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

Read line by line from a file

Hello

goodbye

111
copyright © 2021 www.onlineprogramminglessons.com For student use only

The StreamReader class is used to read lines one by one sequentially from a file.

 try
 {
 // Open the file for read
 StreamReader sr = new StreamReader("data.txt");
 string line = sr.ReadLine();
 // for each line in file
 while (line != null)
 {
 Console.WriteLine(line);
 line = sr.ReadLine();
 }

 // close the file
 sr.Close();
 }

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

Append line to end of file

We can also write lines to the end of a file (append) using the StreamWriter class
set to append with the true argument.

 // write lines to end of a file

happy days are here again

we will see you tomorrow

hello

hello

112
copyright © 2021 www.onlineprogramminglessons.com For student use only

 try
 {
 StreamWriter sw2 = new StreamWriter("data.txt", true);
 sw2.Write("tomorrow");
 sw2.Close();
 }

catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

Todo

Read the file and print it out again.
You should get something like this:

write to a csv file

A csv file write lines to a file where all the words are separated by commas.

 // write lines to a file
 try
 {
 StreamWriter sw = new StreamWriter("data.csv");
 sw.WriteLine("Happy, days, are, here, again");
 sw.WriteLine("See, you, tomorrow");
 sw.Close();
 }

hello

goodbye

tomorrow

113
copyright © 2021 www.onlineprogramminglessons.com For student use only

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

Read a csv file.

 A csv file is a file where data is stored row by row in columns separated by
commas. The StreamReader class is used again to read lines one by one
sequentially from a file. We use the Split method from the string class to separate
each line into an array of words. Each word is called a Token.

 // read csv file
 // Open the file for read
 try
 {
 StreamReader sr = new StreamReader("data.csv");
 string line = sr.ReadLine();

 // read line one at a time
 // till the file is empty
 while (line != null)
 {
 String[] tokens = line.Split(',');

 for (int i = 0; i < tokens.Length; i++)
 {
 Console.WriteLine(tokens[i] + " ");
 }

 line = sr.ReadLine();
 }

114
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Console.WriteLine("");
 sr.Close();
 }

Output token words

Reading and Writing objects to a file

Step1: Make a book class

All objects written to a binary file must be tagged as [Serializable]

[Serializable]
public class Book

{

 public string Title{get;set;}

 public string Author{get;set};

 public Book(String title, String author)

 {

 Title = title;

 Author = author;

 }

Happy
Days
Are
Here
again
See
you
tomorrow

115
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public String toString()

 {

 return "Book " + title + " written by " + author;

 }

}

Step 2: Make book object and print out

 // read/write objects
 Book book = new Book("Alice in Wonderland", "Lewis Carroll");
 Console.WriteLine(book);

Step3: Write Book object to a binary file “book.bin”

We use the System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
method to write an object to a binary file.

 //serialize
 try
 {
 StreamWriter sw3 = new StreamWriter("book.bin");

 var bformatter = new
 System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();

 bformatter.Serialize(sw3.BaseStream, book);

 sw3.Close();
 }

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);

Book Alice in Wonderland written by Lewis Carroll

116
copyright © 2021 www.onlineprogramminglessons.com For student use only

 }

Step 4: Read book object from binary file “book.bin”

We also use the System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
method to read an object from a binary file.

 //deserialize
 try
 {
 StreamReader sr5 = new StreamReader("book.bin");

 var bformatter2 = new
 System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();

 Book book2 = (Book)bformatter2.Deserialize(sr5.BaseStream);

 sr5.Close();

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

Step 5: print out book read from binary file “book.bin”

 Console.WriteLine(book2);

LESSON 10 HOMEWORK

Question 1

Book Alice in Wonderland written by Lewis Carroll

117
copyright © 2021 www.onlineprogramminglessons.com For student use only

Write a small 5 line story to a file called “story.txt” then close the file. Then open

the story text file that has the small story in it, and count the number of letters,

words, sentences and lines. Words are separated by spaces and new lines.

Sentences are separated by periods “.” or other punctuation like “?”.

 Lines are separated by ‘\n’. Words may contain numbers and punctuation like

apple80 and don’t. Print a report to the screen: the number of letters, words,

sentences and lines. Also write the report to a file called report.txt. Open the report

file and display the report file lines to the screen. Call your cs file Homework10.cs

Question 2

Write a program that writes out another C# program to a file, then open up the file

you wrote that contains the C# program and execute it.

Algorithm:

1. Using StreamWriter write C# statement to a file called “../../question2.cs”

2. Write lines to a file with WriteLine statements like:

sw.WriteLine("using System;");
 sw.WriteLine("public class Question2”)
 sw.WriteLine("{"};
 sw.WriteLine("public static void Main(String[] args)");
 sw.WriteLine("{"};
 sw.WriteLine("Console.WriteLine(\"I like programming\")");

 sw.WriteLine("}");
 sw.WriteLine("}");

 you need to alternate between hardcoded double quotes

 and specified \" double quotes

3. close the file

4. open the Test.cs file in Visula Studio as add an existing item and run the C# file.

It should print out

I like programming

118
copyright © 2021 www.onlineprogramminglessons.com For student use only

You can put your code in your C# file Homework10.cs or make a new C# File

called Homework10Question2.cs

LESSON 11 POLYPHORISM and C# Objects

Polymorphism is another powerful concept in Object Oriented Programming.
Polymorphisms lets one super class represent many other different types of
derived classes and then execute a method for each derived class having the
same When each method executed, each method will produce a different

119
copyright © 2021 www.onlineprogramminglessons.com For student use only

behavior. We will have an Employee super class to represent different kinds of
Employees. Managers, Secretaries, Salesman and Workers derived classes.
Make a new C# file called Employee.cs You will need private variables: name,
employee ID number and salary. Make constructers, properties and ToString
method.

We make our Employee class abstract meaning it can never be instantiated. An
abstract class contains abstract methods that have no body. We will need an
abstract method to calculate the employee’s wages for the week. An abstract
method is a method, that is defined in the super class that has a method header
definition but no programming statements. The programming statements will be
defined in the derived class. This known as method overriding since it has the
same method name and identical parameter data types. We can also have
method overloading where we have same method name but different parameter
data types.

Here is our Employee super abstract class.

/*
 * Employee abstract class
 *
 */

public abstract class Employee {

 private String name;
 private String id;
 private double salary;
 public const int WEEKS_IN_YEAR = 52;

// construct Employee with name, id and salary
 public Employee(String name,String id,double salary)
 {
 this.name=name;
 this.id=id;

120
copyright © 2021 www.onlineprogramminglessons.com For student use only

 this.salary = salary;
 }

 // return/assign employee name
 public string Name
 {
 get{ return this.name; }
 set{ this.name=value; }
 }

 // return/assign employee id
 public string ID
 {
 get{ return this.id; }
 set{ this.id = value; }
 }

 // return employee yearly salary
 public double Salary
 {
 get { return this.salary; }
 set { this.salary = value; }
 }

 // calculate weekly pay
 public abstract double weeklyPay();

 // return employee info
 public override string ToString()
 {
 return name + " " + id + " $" + salary;

121
copyright © 2021 www.onlineprogramminglessons.com For student use only

 }
}

We now need to make the derived classes. You can put them in the same file as
the Employee class or in separate files. We will have 4 derived classes. Each
derived class will calculate the pay for the week differently, calculated from the
yearly salary. Each derived class will calculate the weekly pay separately as follows:

Derived class How to calculate weekly pay

Manager Divide yearly salary by number of weeks in year

Secretary Divide yearly salary by number of weeks in year plus $100
bonus

Salesman Divide yearly salary by number of weeks in year plus sales
Commission rate

Worker Divide yearly salary by number of weeks plus any overtime time
and a half

It is probably best to put each derived class in a separate file. This way it makes
thing easier these classes to use in other projects.

/*
 * Manager class
 * Manager.cs
 */

public class Manager:Employee {

 // construct Manager with name, id and salary
 public Manager(string name,string id,double salary)
 :base(name,id,salary){
 }

 // calculate weekly pay
 public override double weeklyPay()
 {

122
copyright © 2021 www.onlineprogramminglessons.com For student use only

 double pay = Salary / WEEKS_IN_YEAR;
 return pay;
 }

 // return manager info
 public override string ToString()
 {
 return "Manager " + base.ToString();
 }
}

/*
 * Secretary derived class
 * Secretary.cs
 */

public class Secretary:Employee {

 // Constants
 public const double BONUS = 100;

 // construct Secretary with name, id, salary
 public Secretary(string name,string id,double salary)
 : base(name, id, salary)
 {
 }

 // calculate weekly pay
 public override double weeklyPay()
 {
 double pay = Salary/ WEEKS_IN_YEAR + BONUS;
 return pay;
 }
 // return employee info
 public override string ToString()

123
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 return "Secretary " + base.ToString();
 }
}

/*
 * Salesman derived class
 * Salesman.cs
 */

public class Salesman:Employee {

 // Constants
 public const double COMMISSION_RATE = .25;

 // weekly sales
 private double sales;

 // construct Salesman with name, id, salary and sales
 public Salesman(string name,string id,double salary, double sales)
 : base(name, id, salary)
 {
 this.sales = sales;
 }

 // calculate weekly pay
 public override double weeklyPay()
 {
 double pay = Salary/WEEKS_IN_YEAR + sales * COMMISSION_RATE;
 return pay;
 }

 // return employee info
 public override string ToString()

124
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 return "Salesman " + base.ToString() + " Sales: " + sales;
 }
}

/*
 * Worker derived class
 * Worker.cs
 */
public class Worker:Employee {

 // Constants
 public const double OVERTIME_RATE = 1.5;
 public const int HOURS_IN_WEEK = 40;

 // hours overtime
 private int overtime;

 // construct Secretary with name, id, salary
 public Worker(string name,string id,double salary, int overtime)
 :base(name, id, salary)
 {
 this.overtime = overtime;
 }

 // calculate weekly pay
 public override double weeklyPay()
 {
 double pay_rate = Salary/ WEEKS_IN_YEAR / HOURS_IN_WEEK;
 double pay = Salary/ WEEKS_IN_YEAR
 + overtime * pay_rate * OVERTIME_RATE;
 return pay;
 }
 // return employee info
 public override string ToString()

125
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 return "Worker " + base.ToString();
 }
}

Polymorphism is like a giant else-if statement. If it is a Salesman derived class
object, then calculate weekly wage using sales and commission.

Our first step is to make an array to hold Employee derived objects.

 // make an array of employees
 Employee[] employees = new Employee[4];

Next, we will the add with the derived objects to the Array. Each derived object
gets a name, employee id, yearly salary, the salesman gets the sales for the week
and the worker get the number of over time hours for the week.

 // fill array with derived objects
 employees[0] = new Manager("Tom Smith","M1234",100000);
 employees[1] = new Secretary("Mary Smith","S5678",40000);
 employees[2] = new Salesman("Bob Smith","SM1111",20000,10000);
 employees[3] = new Worker("Joe Smith","W2222",30000,5);

Next, we loop through the array printing out the employee info and the calculated
weekly pay. Notice the weekly pay is different for each employee type, this is
what we want, automatic selection. This is polymorphism in action.

 // loop through employee array
 // print out employee info
 // calculate weekly pay.

 foreach (Employee emp in employees)

126
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 // print out employee info
 Console.WriteLine(e.ToString());

 // calculate weekly pay
 double pay = e.weeklyPay();

 // print weekly pay
 Console.WriteLine("My weekly pay is: $" + pay.ToString("c2"));
 }

To do:

Add an abstract raise method to the Employee class to give each employee

different types of raises. This method will return a double. Some could be

percentages, others can be a fixed value, how many sales or how many over time

hours worked..

In another loop in the main method give each employee a raise and them

recalculate their weekly pay and print out the results. Use a for each loop.

Abstract classes implementing interfaces

We can make an abstract class called Animal the implements a IAnimal interface.

The IAnimal interface contains the sound method, what sound a animal makes.

public interface IAnimal
 {
 string sound();
 }

The abstract Animal class will implement the IAnimal interface. The sound

method specified in the IAnimal interface will be implemented in the classes

derived from the abstract Animal class. The abstract Animal class will also have a

abstract method called getType that will return the type of Animal. The abstract

method getType() will also be implemented by the derived class of the Animal

class.
public abstract class Animal:IAnimal
 {

127
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public string Name{get;set};

 public Animal(string name)
 {
 Name = name;
 }

 public abstract string sound();

 public abstract string getType();

 public override string ToString()
 {
 return "my name is: " + name;
 }
 }

We then can make a derived Cat class that inherits the Animal class.

 public class Cat:Animal
 {
 public Cat(string name):base(name)
 {
 }

 public override string sound()
 {
 return "meow";
 }

 public override string getType()
 {
 return "cat";
 }

 public override string ToString()
 {
 return "I am a cat " + base.ToString();
 }
}

To do:

128
copyright © 2021 www.onlineprogramminglessons.com For student use only

Make derived classes Dog and Tiger, and in a main method make an array of

IAnimals interfaces and print out what animal it is what name, type of animal and

what sound it makes in a foreach loop. Put the main method in a java class called

Animals and in a file called Animals.java.

IAnimal[] animals = new IAnimal[3];

animals[0] = new Cat("Toby");

C# BUILT IN CLASSES AND OBJECTS.

C# has lots of built in objects, meaning classes already written for you that you
can use right away. We cannot cover them all, but we can cover a few of them.
We have already covered the String object , all of these object have lots of
methods, to do many different operations. The Math class is used allot for

 IAnimal

Cat

Dog

Animal

Tiger

129
copyright © 2021 www.onlineprogramminglessons.com For student use only

mathematical calculations. The Math class is not considered an Object but just a
class because all its methods are static.

Here are some of the math class common used fields and methods

Following are the fields for Math class

E − the base of the natural logarithms.
PI − the ratio of the circumference of a circle to its diameter.

Here are the Math Class methods

Method Description
static double Abs(double a) returns the absolute value of a double value.

static double Acos(double a) returns the arc cosine of a value; the returned
angle is in the range 0.0 through pi

static double Asin(double a) returns the arc sine of a value; the returned angle
is in the range -pi/2 through pi/2.

static double Atan(double a) returns the arc tangent of a value; the returned
angle is in the range -pi/2 through pi/2

static double Atan2(double y, double x) returns the angle theta from the conversion of
rectangular coordinates (x, y) to polar coordinates
(r, theta).

static double Ceil(double a) returns the smallest double value that is greater
than or equal to the argument and is equal to a
mathematical integer.

static double Cos(double a) returns the trigonometric cosine of an angle

static double Floor(double a) returns the largest double value that is less than
or equal to the argument and is equal to a
mathematical integer

static double Log(double a) returns the natural logarithm (base e) of a double
value.

static double Log10(double a) returns the base 10 logarithm of a double value

static double Max(double a, double b) returns the greater of two double values

static double Min(double a, double b)

returns the smaller of two double values

static double Pow(double a, double b) returns the value of the first argument raised to
the power of the second argument

static long Round(double a) returns the double value that is closest in value to
the argument and is equal to a mathematical

130
copyright © 2021 www.onlineprogramminglessons.com For student use only

integer

static double Sqrt(double a) returns the correctly rounded positive square root
of a double value.

static double Tan(double a) returns the trigonometric tangent of an angle

static double ToDegrees(double angrad) converts an angle measured in radians to an
approximately equivalent angle measured in
degrees

static double ToRadians(double angdeg) converts an angle measured in degrees to an
approximately equivalent angle measured in
radians.

Random Class

The Random class is also used to generate Random numbers. The Random class
has many methods to generate Random numbers. You must instantiate a Random
object before you can use it because the Random class methods are not static.

Random rgen = new Random();

You can generate double random number using the NextDouble method

double d = rgen.NextDouble();

This generates a double number between 0 and1.0 like 0.6549805947125389

You can generate integer random number using the Next method. This method
allows you to specify the upper bound -1

int r = rgen.Next(10)

Generates a random number between 0 and 9 like 7

You can also generate a random number with a lower and upper bound-1

 int r2 = rgen.Next(5,10);
 Console.WriteLine(r2);

131
copyright © 2021 www.onlineprogramminglessons.com For student use only

Generates a random number between 5 and 9 like 8

LESSON 11 HOMEWORK

Question 1

Make a book interface call IBook that has a method to calculateTotalCost to

purchase a book. Make a Abstract Book class called Book that implements the

IBook interface and has the abstract method calculateTax and calculateShipping.

A Book has a title, cost and a toString() method. Make derived classes EBook and

PaperBackBook. A EBook has no shipping cost but a PaperBackBook has a

shipping cost of $2. A EBook has 10% tax rate but a PaperBackBook has no tax.

Use constants ot variables passed to each constructor. Make a class called

Homework11 with a main method. In the main method make an array of IBook

interfaces. Populate the array with one EBook and one PaperBook. In a loop print

out the book’s detail, calculate the shipping and tax and add to the cost as final

total cost. Print out the cost, tax, shipping charges and final cost using the

calculateTotalCost method. Put every thing in one file called Homework11.cs

LESSON 12 RECURSION

When a function calls itself it is known as recursion. Recursion is analogues to a
while loop. Most while loop statements can be converted to recursion, most
recursion can also be converted back to a while loop.

 IBook

EBook

PaperBackBook

Book

132
copyright © 2021 www.onlineprogramminglessons.com For student use only

The simplest recursion is a function calling itself printing out a message.

public static void printMessage()
{
 Console.WriteLine("I like programming");
 printMessage();
}

Unfortunately this program will run forever, so you will need to stop the program
somehow while it is running.

We can add a counter n to it so it can terminate at some point.

public static void printMessage(int n)
{
 if(n > 0)
 {
 Console.WriteLine ("I like programming");
 PrintMessage(n-1);
 }
}

Now the program will print the message n times

Every time the printMessage function is called n decrements by 1
When n is 0 the recursion stops. You may place the statement
Console.WriteLine("I like programming\n") before or after the recursive call. If
you put it before than the message is printed first before each recursive call.

If you put after than the message is printed after all the recursive calls are made.
There is quite a difference in program execution.
The operation is very similar to the following while loop:

n = 5

while(n > 0)

I like programming

I like programming

I like programming

I like programming

I like programming

...

133
copyright © 2021 www.onlineprogramminglessons.com For student use only

{

 Console.WriteLine ("I like programming\n");

 n--;

}

You should now run the recursion function

You would call the function like this:

printMessage(5);

It will print I like programming 5 times.

Recursion is quite powerful, a few lines of code can do so much.

Our next example will count of numbers between 1 and n. This example may be

more difficult to understand, since recursion seems to work like magic, and

operation runs in invisible to the programmer.

public static int countn(int n)

{

 if(n == 0)

 {

 return 0;

 }

 else

 {

 return countn(n-1) + 1;

 }

}

count(5) would return 5 because 1 + 1 + 1 + 1 + 1 = 5

You can run it in a program like this:

Console.WriteLine (count(5)); // 5

I like programming

I like programming

I like programming

I like programming

I like programming

134
copyright © 2021 www.onlineprogramminglessons.com For student use only

When (n == 0) this is known as the base case. When n == 0 the recursion stops

and 0 is return to the last recursive call. Otherwise the countn function is called

and n is decremented by 1.

It works like this:

 main calls countn(5) with n = 5

 countn(5) calls countn(4) with n=4

 countn(4) calls countn(3) with n=3

 countn(3) calls countn(2) with n = 2

 countn(2) calls countn(1) with n = 1

 countn(1) calls countn(0) with n = 0

 countn(0) returns 0 to count(1) since n == 0

 countn(1) add’s 1 to the return value 0 and then returns 1 (0 + 1) to count(2)

 countn(2) add’s 1 to the return value 1 and then returns 2 (1 + 1) to count(3)

 countn(3) add’s 1 to the return value 2 and then returns 3 (2 + 1) to count(4)

 countn(4) add’s 1 to the return value 3 and then returns 4 (3 + 1) to count(5)

 countn(5) add’s 1 to the return value 4 and then returns 5 (4 + 1) to main()

 main() receives 5 from count(5) and prints out 5

The statement return countn(n-1) + 1 is used to call the function recursively and

also acts as a place holder for the value returned by the called function countn.

The returned value is then added to 1 and then returned.

The value returned from the recursive countn function is the previous value and

the 1 is the present value to be added to the previous value.

We could rewrite the recursive part as follows:

 int x = countn(n-1);

 return x + 1;

x will now receive the return value from the countn recursive function call and 1

will be added to the return value and this new value will be returned to the caller.

135
copyright © 2021 www.onlineprogramminglessons.com For student use only

If you can understand the above then you understand recursion. If you cannot then

maybe the following diagram will help you understand.

You probably don’t need to understand how recursion works right away. Sometime

you just need to accept things for now then understand later. One day it will hit

you when you are thinking about something else.

Basically recursion works like this:

For every recursive function call the parameter and local variables are stored.

Technically they are stored in temporary memory called a stack.

Every time the function returns the previous numbers that were stored are restored

and now become the current number, to be used to do a calculation. The numbers

are restored in reverse order.

Function call/ return N

call count(n-1) 5

call count(n-1) 4

count(4)

count(3)

count(2)

count(5)

count(1)

count(0)

main()

0

0 + 1 =

1

1 + 1 =

2

2 + 1 =

3

3 + 1 =

4

4 + 1 =

5

136
copyright © 2021 www.onlineprogramminglessons.com For student use only

call count(n-1) 3

call count(n-1) 2

call count(n-1) 1

count(n-1) returns 0 0

count(n-1) returns 0 + 1 1

count(n-1) returns 1 + 1 2

count(n-1) returns 2 + 1 3

count(n-1) returns 3 + 1 4

count(n-1) returns 4 + 1 5

The thing to remember about recursion is it always return’s back where it is

called. A recursive function call behaves the same way as a non-recursive function,

program execution resumes right after the recursive function call.

Here are some more recursive function examples:

// Sum of numbers between 1 to n

public static int sumn(int n)

 {

 if(n ==0)

 {

 return 0;

 }

 else

 {

 return sumn(n-1) + n;

 }

 }

sumn(5) would return 15

You can run it in a program like this:

 Console.WriteLine (sumn(5)); // 15

It works similar to countn instead of adding 1 its adds n’s.

0+1+2+3+4+5 = 15

Our counter n serves 2 purposes a recursive counter and a number to add.

137
copyright © 2021 www.onlineprogramminglessons.com For student use only

The previous value is returned from the recursive sumn function and the present

value is n. The value n is restored in reverse order that is saved in. Every time the

recursive sumn function is called it is saved. Every time the recursive sumn

function is returned n is restored in traverse order.

Main calls sumn(5)

N Call sumn(n-1) Previous present Calculated Returned value

5 Call sumn(4) (5-1)

4 Call sumn(3) (4-1)

3 Call sumn(2) (3-1)

2 Call sumn(1) (2-1)

1 Call sumn(0) (1-1)

0 Return 0

1 Return sumn(0) +1 0 1 0 + 1 1

2 Return sumn(1)+2 1 2 1+2 3

3 Return sumn(2)+3 3 3 3+3 6

4 Return sumn(3)+4 6 4 6+4 10

5 Return sumn(4)+5 10 5 10+5 15 to main

Main receives 15 from sum(5)

The sumn function just returns the value 0 when n is 0 and other times just calls

itself then adds the value n to the returned value. Basically sumn is just calling

itself and adding n to the retuned values. For each recursive call sumn(n-1) is

called first aster each recursive call the n is added and a value is returned,. N is

added in reverse order because sumn(n-1) is called first n times.

Multiply numbers 1 to n (factorial n)

We can also make a multn function which multiples n rather than adding n. This

is basically factorial n.

public static int multn(int n)

 {

138
copyright © 2021 www.onlineprogramminglessons.com For student use only

 if(n ==0)

 {

 return 1;

 }

 else

 {

 return multn(n-1) * n;

 }

 }

multn(5) would return 120

 since 1*2*3*4*5 = 120

Our base case returns 1 rather than 0 or else our result would be 0;

You can run it in a program like this:

Console.WriteLine (multn(5)); // 120

Power x
n

Another example is to calculate the power of a number x
n

In this case we need a base parameter b and an exponent parameter n.

public static int pown(int b, int n)

 {

 if(n ==0)

 {

 return 1;

 }

 else

 {

139
copyright © 2021 www.onlineprogramminglessons.com For student use only

 return pown(b,n-1) * b;

 }

 }

pown(2,3) would return 8 because 2*2*2= 8 since 2
3
=8

You can run it in a program like this:

Console.WriteLine (pown(2,3)); // 8

Every time a recursive call is made the program stores the local variables in a call

stack. Every time recursive call finishes executing, the save local variables

disappear and the previous local variables are available. These are the ones present

before the recursive function was called. These save variables may now be

used in the present calculations.

For the above example 2
3
=8 the call stack would look like this.

 n=0

 b=2 1

 n=1 n=1

 b=2 b=2 2

 n=4 n=2 n=2 n=2

 b=2 b=2 b=2 b=2 4

n=5 n=5 n=3 n=3 n=3 n=3

b=2 b=2 b=2 b=2 b=2 b=2 8

Every time the recursive function finished executing it returns a value. Each

returning value is multiplied by the base b. In the above case the returning values

are 1,2,4 and 8

The return value is the value from the previous function multiplied by b (2)

return pown(b,n-1) * b;

the function first returns 1 then 1 * b = 1* 2 = 2 then 2 * 2 = 4

and finally 4 * 2 = 8

efficient power x
n

140
copyright © 2021 www.onlineprogramminglessons.com For student use only

A more efficient version of pown can be made relying on the fact then even n can

return b * b rather than just return * b for odd n

public static int pown2(int b,int n)

 {

 if (n == 0)

 {

 return 1;

 }

 if (n % 2 == 0)

 {

 return pown2(b, n-2) * b * b;

 }

 else

 {

 return pown2(b, n-1) * b;

 }

 }

Operation is now much more efficient 1 * 2 * 4 = 8

You can run it in a program like this:

Console.WriteLine (pown2(2,3)); // 8

Summing a sequence

141
copyright © 2021 www.onlineprogramminglessons.com For student use only

Adding up all the numbers in a sequence

n (n *(n + 2))/2

0 0
1 1
2 4
3 7
4 12
5 17

 Total: 42

public static int seqn(int n)

 {

 if(n == 0)

 {

 return 0;

 }

 else

 {

 int x = (n * (n + 1))/ 2;

 Console.WriteLine (x);

 return x + seqn(n-1);

 }

 }

seqn(5) would return 35 because 0 + 1 + 4 + 7 + 12 + 17 = 42

You can run it in a program like this:

System.out.println(seqn(5)); // 42

You can print out the sequence by modifying the seqn function like this:

142
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public static int seqn2(int n)

 {

 if(n == 0)

 {

 return 0;

 }

 else

 {

 int x = (n * (n + 1))/ 2;

 Console.WriteLine (x);

 return x + seqn2(n-1);

 }

 }

You can run it in a program like this:

Console.WriteLine (seqn2(5));

You will get an output like this:

The sequence printed backwards and the final sum is 42

To do:

Try this formula: f(n-1) + 2 * (n-1)

Fibonacci sequence

Recursion is ideal to directly execute recurrence relations like Fibonacci sequence.

The Fibonacci numbers are the numbers in the following integer sequence.

17

12

7

4

1

42

143
copyright © 2021 www.onlineprogramminglessons.com For student use only

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …….

In mathematical terms, the sequence fn of Fibonacci numbers is defined by the
recurrence relation.

 fn = fn-1 + fn-2

with seed values

 f0 = 0 and f1 = 1.

A recurrence relation is an equation that defines a sequence based on a rule that

gives the next term as a function of the previous term(s).

public static int fib(int n)
 {
 if (n == 0)
 {
 return 0;
 }

 else if (n == 1)
 {
 return 1;
 }

 else
 {
 return fib(n-1) + fib(n-2);
 }
}

Notice The recursive statement is identical to the recurrence relation

fib(10) would return 55 because 21 + 34= 55

You can run it in a program like this:

Console.WriteLine (fib (10)); // 55

144
copyright © 2021 www.onlineprogramminglessons.com For student use only

Combinations

We can also calculate combinations using recursion.

Combinations are how many ways can you pick r items from a set of n distinct
elements.

Call it nCr (n choose r)

5C2 (5 choose 2) would be

 Pick two letters from set S = {A, B, C, D, E}

Answer:{A, B}, {B, C}, {B, D}, {B, E}{A, C}, {A, D}, {A, E}, {C, D}, {C, E},

{D, E}

There are 10 ways to choose 2 letters from a set of 5 letters. The combination

formula is

nCr= n! / r!(n-r)!

The Recurrence relation for calculated combinations is:

base cases:

nCn= 1

nC0= 1

recursive case:

nCr= n-1Cr + n-1Cr-1 for n > r > 0

Our recursive function for calculating combinations is:

public static int combinations(int n, int r)

{

 if (r == 0 || n == r)

 {

145
copyright © 2021 www.onlineprogramminglessons.com For student use only

 return 1;

 }

 else

 {

 return combinations(n-1, r) + combinations(n-1, r-1);

 }

}

combinations(5,2) would return 10

You can run like this:

System.out.println(combinations(5,2)); // 10

Print a string out backwards

With recursion printing out a string backwards is easy, it all depends where you put

the print statement. If you put before the recursive call then the function prints out

the characters in reverse, since n goes from n-1 to 0.If you put the print statement

after the recursive call then the characters are printed not in reverse since n goes

from 0 to n-1.

// reverse a string

public static void printReverse(String s, int n)

{

 if(n == 0)

 {

 Console.WriteLine (s.charAt(0));

 }

 else

 {

 Console.Write(s.charAt(n));

 printReverse(s, n-1);

 }

}

You would call the printReverse function like this

 string s = "hello";

 printReverse(s, s.length()-1);

olleh

146
copyright © 2021 www.onlineprogramminglessons.com For student use only

Check if a string is a palindrome

A palindrome is a word that is spelled the same forward as well as backwards:

Like "radar" and "racecar"

// return true if string is a palindrome otherwise return false

public static boolean isPalindrome(String s, int i, int j)

{

if (i >= j)

{

 return true;

 }

 else

 {

 if (s.charAt(i) != s.charAt(j))

 return false;

 else

 return isPalindrome(s,i+1, j-1);

 }

}

You would call the isPalindrome function like this:

 string s2 = "radar";

Console.WriteLine (s2 + " " + (isPalindrome(s2, 0,s2.length()-1)));

string s3 = "apple";

Console.WriteLine (s3 + " " + (isPalindrome(s3, 0,s3.length()-2)));

Radar

true

apple

false

147
copyright © 2021 www.onlineprogramminglessons.com For student use only

Permutations

Permutations are how many ways you can rearrange a group of numbers or letters.

For example for the string “ABC” the letters can be rearranges as follows:

ABC

ACB

BAC

BCA

CBA

CAB

Basically we are swapping character and then print them out

We start with ABC if we swap B and C we end up with ACB

// print permutations of string s

public static void printPermutations(char[] s, int i, int j)

{

 int k;

 char c;

 // print out permutation

 if (i == j)

 {

 Console.WriteLine (new String(s));

 }

 else

 {

 for (k = i; k <= j; k++) {

 // swap i and k

 c = s[i];

 s[i] = s[k];

 s[k] = c;

148
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // recursive call

 printPermutations(s, i + 1, j);

 // put back, swap i and k

 c = s[i];

 s[i] = s[k];

 s[k] = c;

 }

 }

}

You would call the printReverse function like this:

char[] ca = {'A','B','C'};

printPermutations(ca, 0,ca.length-1);

Combination sets

We have looked at combinations previously where we wrote a function to calculate

home many ways you can choose r letters from a set of n letters.

nCr n choose r

Combinations allow you to pick r letters from set S = {A, B, C, D, E}

 n = 5 r = 2 nCr 5C 2

Answer:{A, B}, {B, C}, {B, D}, {B, E}{A, C}, {A, D}, {A, E}, {C, D}, {C, E},

{D, E}

We are basically filing a seconded character array with all possible letters up to r.

Start with ABCDE we would choose AB then AC then AD then AE etc.

ABC

ACB

BAC

BCA

CBA

CAB

149
copyright © 2021 www.onlineprogramminglessons.com For student use only

We use a loop to traverse the letters starting at n =0, and fill the comb string.

When n = r we then print out the letters stored in the comb string

public static void printCombinations(char[] s, char[] combs,

 int start, int end, int n, int r)

{

 int i = 0;

 int j = 0;

// current combination is ready to be printed

 if (n == r)

 {

 for (j = 0; j < r; j++)

 {

 Console.Write(combs[j]);

 }

 Console.WriteLine ("");

 return;

 }

 // replace n with all possible elements.

 for (i = start; i <= end && end - i + 1 >= r - n; i++)

 {

 combs[n] = s[i];

 printCombinations(s, combs, i+1, end, n+1, r);

 }

}

You would call the printCombinations function like this:

char[] ca2 = {'A','B','C','D','E'};

char[] combs = new char[ca2.length+1] ;

int r = 2

 printCombinations(ca2, combs,0,ca2.length-1,0,r);

AB

AC

AD

AE

BC

BD

BE

CD

CE

DE

150
copyright © 2021 www.onlineprogramminglessons.com For student use only

The difference between combinations and permutations is that in a combination

you can have different lengths within the set, where as in permutations they are the

same length as the set but different arrangements.

Determinant of a matrix using recursion

In linear algebra, the determinant is a useful value that can be computed from the
elements of a square matrix. The determinant of a matrix A is denoted det(A),
detA , or |A

In the case of a 2 × 2 matrix, the formula for the determinant is:

 | a b |
 |A| = | | = ad – bc
 | c d |

For a 3 × 3 matrix A, and we want the s formula for its determinant |A| is

 | a b c | | e f | | d f | | d e | | |
 |A| = | d e f | = a | | - b | | + c | |
 | g h i | | h i | | g I | | g h |

 = aei + bgf – ceg – bdi - afh

Each determinant of a 2 × 2 matrix in this equation is called a "minor" of the
matrix A. The same sort of procedure can be used to find the determinant of a
4 × 4 matrix, the determinant of a 5 × 5 matrix, and so forth.

Our code actually follows the above formula, calculating and summing the miners.

// calculate determinant of a matrix

151
copyright © 2021 www.onlineprogramminglessons.com For student use only

public static float determinant(float matrix[][], int size)

{

 int c;

 float det=0;

 int sign=1;

 float[][] b=new float[3][3];

 int i,j;

 int m,n;

 // base case

 if(size == 1)

 {

 return (matrix[0][0]);

 }

 else

 {

 det=0;

 for(c=0; c<size; c++)

 {

 m=0;

 n=0;

 for(i=0; i<size; i++)

 {

 for(j=0; j<size; j++)

 {

 b[i][j] = 0;

 if(i!=0 && j!=c)

 {

 b[m][n] = matrix[i][j];

 if(n<(size-2))

 {

 n++;

 }

 else

 {

 n=0;

 m++;

 }

-306

152
copyright © 2021 www.onlineprogramminglessons.com For student use only

 }

 }

 }

 det = det + sign*(matrix[0][c]*determinant(b,size-1));

 sign = -1*sign; // toggle sign

 }

 }

 return (det);

}

You call and run the determinant function like this:

 float m[3][3] = {{6,1,1},{4,-2,5},{2,8,7}};

Console.WriteLine ("det = " + determinant(m,m.length));

There are many more recursive examples, too numerous to present.

If you do all the following to do questions you will be a recursive expert.

LESSON 12 HOMEWORK

Question 1

Write a recursive function int addNumbers(int[] a, int n) adds up all numbers in

an array and returns the sum.

Question 2

Write a recursive function int searchNumber(int[] a, int n, int x) that searches for

a number(x) in an array and return the index (n) of the number if found otherwise

returns -1 if not found.

Question 3

153
copyright © 2021 www.onlineprogramminglessons.com For student use only

Write a recursive function int largestNumber(int[] a, int n) that returns the

largest number in an array,

Question 4

Write a recursive function int smallestNumber(int[] a, int n) that returns the

smallest number in an array,

Question 5

Write a recursive function boolean searchDigit(int number, int x) that searches

for a digit in an positive number and return true if the number is found otherwise

returns false if not found.

Question 6

Write a recursive function called int sumDigits (int number) that adds up all the

digits in a positive number of any lengths. The recursive function receives an int

number and returns the sum of all the digits.

Question 7

Write a recursive function called void printArrayReverse(int[] a, int n) that

prints an array backwards. The recursive printArrayReverse method receives the

array and the array length – 1 prints the array in reverse. Make sure your method

prints a new line at the end

Question 8

Write a recursive function called void printArray(int a[], int n) that prints an

array. The recursive printArray method receives the array and the array length – 1

and prints the array. Make sure your method prints a new line at the end.

Question 9

154
copyright © 2021 www.onlineprogramminglessons.com For student use only

Write a recursive function called void reverseString(String s) that reverses a

string in place. The recursive reverseString method receives the string and returns

the string in reverse. No printing is allowed. You need to use the substring method

since you cannot replace individual letters in a string.

Question 10

Write a recursive function called void formatNumber(String s) that can insert

commas in a number. For example 1234567890 becomes 1,234,567,890

Question 11

Write a recursive function boolean isEven(int n) that return true if a number has

even count of digits or false if the number of digits is odd. Hint: use /10 and %2

Question 12

Write a recursive function boolean isOdd(int n) that return true if a number has

odd count of digits or false if the number of digits is even. Hint: use /10 and %2

Question 13

Write a recursive function void printBinary(int d) that would print a decimal

number as a binary number. A binary number just has digits 0 to 1.

Where as a decimal number has digits 0 to 9. The decimal number 5 would be

0101 in binary, since 1*1 + 0* 2 + 1* 4 + 0 *8 is 10. We are going right to left.

To convert a decimal number to binary You just need to take mod 2 of a digit and

then divide the number by 2

5%2 = 1 : 1

5/2 = 2

2 %2 = 0 : 0

2/2 = 1

1 %2 = 1 : 1

 1/2 = 0

 0 %2 = 0 : 0

We are done so going backwards

155
copyright © 2021 www.onlineprogramminglessons.com For student use only

5 in binary is 0 1 0 1

Question 14

Write a recursive function bool isPrime(int number, int n) that returns true if a

number is prime otherwise false.

 A prime number can only is divides evenly by itself. 2,3,5,7, are prime numbers.

You can use the mod operator % to test if a number can be divided evenly by itself.

6 %3 = 0 , so 6 can be divided evenly by 3 so 6 is not a prime number.

Algorithm:

If the number is less than 2 then it is not a prime number.

If the number is 2 then it is a prime number.

If the number can be divided evenly by n then it is not a prime number

If n reached the number then it is a prime number.

Start n with 2 and increment to the number recursively.

Examples:

 isPrime(10,2) false 10 is not a prime number

 isPrime(7,2) true 7 is a prime number

Question 15

Make a recursive function called partition(int[] a,int n) that will partition an

array in place into odd and even numbers

Example: partition([1, 2, 3, 4, 5, 6], 0)

Array before:

[1, 2, 3, 4, 5, 6]

Array After:

 [1, 3, 5, 2, 4, 6]

Use your printArray method to print out the array before and after the partition

method is called.

156
copyright © 2021 www.onlineprogramminglessons.com For student use only

Put all your functions in a cs file called Homework12.cs Test all the recursive

functions in the main function.

157
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 13 Delegates and Lambda Expressions

A delegate is a type that represents a reference to a method that includes a
parameter list and return type.

Delegates are used to call methods and pass methods as arguments to other
methods. Delegate can also be use in callback’s where one function calls another
one and in event handling when the program needs to respond to an event
generated by another section of code. Here is how you make and use a delegate:

A Delegate that receives a parameter:

Step 1: Declare a delegate

A delegate is declared with parameter data type and return data type to
represent a method that you want to refer to.

Delegate Syntax:

 public delegate return_data_type delegate_name(paramater_list);

Here we declare a delegate to represent a method that print’s out a message.

 // declare delegates
 public delegate void PrintDelegate(string message);

Step 2: Write the method to be represented by the delegate

 // function to print a message
 public static void printMessage(string message)
 {
 Console.WriteLine(message);
 }

158
copyright © 2021 www.onlineprogramminglessons.com For student use only

Step 3: Assign the method to the delegate

 // assign printMessage to delegate
 PrintDelegate dprint = printMessage;

Step 4 : Call the printMethod using the delegate

 // call printMesage function using delegate
 dprint("I Like C#");

The dprint delegate variable is actually a reference to the printMessage method.

 dprint("I Like C#");

really means:

 printMessage("I Like C#");

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13
 {
 // declare delegate to print messagw
 public delegate void PrintDelegate(string message);

 // function to print a message
 public static void printMessage(string message)
 {
 Console.WriteLine(message);
 }

 static void Main(string[] args)
 {
 // assign printMessage function to delegate
 PrintDelegate dprint = printMessage;

I Like C#

159
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // call printMesage function using delegate
 dprint("I Like C#");
 }

}
}

Here is the program flow:

A Delegate that receives and returns a squared value:

Step 1: declare delegate to square a number

 // declare square delegate
 public delegate void SquareDelegate(int x);

Step 2: write the square method to be represented by the delegate

 // function to square a value
 public static int square(int x)
 {
 return x * x
 }

Step 3: assign the method to the delegate

 Call printMessageFunction using delegate

 dprint("I Like C#");

 printMessage(string message)

 PrintDelegate(string message);

160
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // assign square to square delegate
 SquareDelegate dsquare = square;

Step4 : call square method using delegate

 // call square function using delegate
 int result = dsquare(5);

Step5: print out the results

 Console.WriteLine(result);

Here is the complete program:

using System;

namespace csLessons
{
 public class Lesson13
 {
 // declare delegates
 public delegate int SquareDelegate(int x);

 // function to square a value
 public static void square(int x)
 {
 return x * x
 }

 static void Main(string[] args)
 {

 // assign square to square delegate
 SquareDelegate dsquare = square;

25

161
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // call square function using delegate
 int result = dsquare(5);
 Console.WriteLine(x); // 25

 }

}
}

A delegate that returns true or false

Step 1: declare delegate to return true or false

 // declare equals delegate
 public delegate bool EqualsDelegate(int x);

Step 2: write the equals5 method to be represented by the delegate

 // function to check if a number equal to 5
 public static bool equals5(int x)
 {
 return x == 5;
 }

Step 3: assign the method to the delegate

// assign eqlals5 method to square delegate
 EqualsDelegate dequals = equals4;

Step4 : call square method using delegate

 // call equals5 function using delegate and print results
 bool bresult = dequals(5);

Step5: print out the results

 Console.WriteLine(bresult);

true

162
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the complete program:

using System;

namespace csLessons
{
 public class Lesson13
 {

 // declare equals delegate
 public delegate bool EqualsDelegate(int x);

 // function to check if a number equal to 5
 public static bool equals5(int x)
 {
 return x == 5;
 }

 static void Main(string[] args)
 {
 // assign eqlals5 method to square delegate

 EqualsDelegate dequals = equals4;

 // call square function using delegate
 int result = dsquare(5);
 Console.WriteLine(x); // 25

 }

}
}

Passing a delegate to a method

163
copyright © 2021 www.onlineprogramminglessons.com For student use only

Passing a delegate to a method is like passing a method to another method and
executing the method inside a method.

Step 1: Declare a delegate to represent the method you want to pass

 // declare calculate delegate
 public static delegate int CalculateDelegate(int a, int b);

Step 2: Write the method to be represented by the delegate

 // function to add two numbers
 public int add(int a, int b)

{
return a + b
}

Step 3: Write the method to receive a delegate parameter

 // function that has a delegate as a parameter and invokes delegate
 public static void calculate(CalculateDelegate d)
 {
 int result = d.Invoke(3, 4);
 Console.WriteLine(result);
 }

The Invoke method of the delegate will execute the method represented by the
delegate and pass the arguments 3 and 4 to it.

Step 4: Assign the delegate to the method to be passed

 CalculateDelegate d3 = add;

Step 5: Pass the delegate to the calculate method

 calculate(d3);

The calculate method receives the add method through the delegate. The
calculate method pass 3 and 4 to the add method. The add method adds 3 + 4 = 7
and return 7 to the calculate method which the displays the result on the screen.

164
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the program flow:

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{
// declare calculate delegate

 public delegate int CalculateDelegate(int a, int b);

 // function to add 2 numbers
 public static int add(int a, int b)

7

int add(int, int)

Delegate int CalculateDelegate(int, int)

void calculate(CalculateDelegate d)

Invoke add method

165
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 return a + b;
 }

 // function that has a delegate as a paramater
 public static void calculate(CalculateDelegate d)
 {
 int result = d.Invoke(3, 4);
 Console.WriteLine(result);
 }

 static void Main(string[] args)
 {

// assign the delegate to the method to be passed
CalculateDelegate d3 = add;

// pass the delegate to the calculate method
calculate(d3);

 }
 }

 }

Using Action delegate

The Action is a generic delegate supplied by C# for you that refers to a method
that accepts one or more arguments but returns no value. You use an Action
delegate, when you want to refer to a method that returns void.

Action delegate syntax:

 public delegate Action<TParameter>

We can assign our printMessage to Action delegate.

 // using Action delegate
 Action<String> action = printMessage;

We then call the printMessage method from the action delegate

166
copyright © 2021 www.onlineprogramminglessons.com For student use only

 action("Called from an Action delegate");

The output as follows:

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13
 {

 // function to print a message
 public static void printMessage(string message)
 {
 Console.WriteLine(message);
 }

 static void Main(string[] args)
 {

 // using Action delegate
 Action<String> action = printMessage;

 // call printMesage function using Action delegate

 action("Called from an Action delegate");

 }

}
}

Using Func delegate

Called from an Action delegate

167
copyright © 2021 www.onlineprogramminglessons.com For student use only

Func is a generic delegate supplied by C# for you, it requires zero or more input
parameters and one output parameter. The last parameter is considered to be
the output parameter.

Func delegate syntax:

 public delegate TResult Func<in T, out TResult>(T arg);

The last parameter in the angle brackets <> is considered the return type, and the
remaining parameters are considered input parameter types

Assign the square method to a Func delegate:

Step1: Assign the square method to the Func delegate

 Func<int, int> fsquare = square;

Step 2: Call the square method using the delegate and pass the argument 5

 int result = fsquare(5);

Step 3: print out the result

 Console.WriteLine(result);

Here is the Program flow:

25

int square(int)

 int Func(int)

 int result = fsquare(5)

168
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the complete program:

using System;

namespace csLessons
{
 public class Lesson13
 {

 // function to square a value
 public static void square(int x)
 {
 return x * x
 }

 static void Main(string[] args)
 {

 // assign square functionto func square delegate
 Func<int, int> fsquare = square;

 // call square function using func squate delegate
 int result = fsquare(5);
 Console.WriteLine(x); // 25

 }

}
}

169
copyright © 2021 www.onlineprogramminglessons.com For student use only

Assign the add method to the Func delegate:

Step1: Assign the add method to the Func delegate

 Func<int, int, int> fadd = add;

Step 2: Call the add methods using the delegate and pass the arguments 3 and 4

 Int result = fadd(3, 4));

Step 3: Print out the result

 Console.WriteLine(result);

Here is the Program flow:

7

int add(int, int)

 int Func(int, int)

 int result = d5(3,4)

170
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{

 // function to add 2 numbers
 public static int add(int a, int b)
 {
 return a + b;
 }

 static void Main(string[] args)
 {

Assign the add method to the Func delegate
Func<int, int, int> fadd = add;

Call the add method using the func delegate
int result = fadd(3, 4));

Print out the result
Console.WriteLine(result);

 }
}

}

Using the Predicate delegate

The Predicate delegate returns a true or false value and is usually used to search
items in a data collection.

Here is the syntax for a Predicate delegate.

 Predicate<T>

171
copyright © 2021 www.onlineprogramminglessons.com For student use only

Note: The Predicate<T> is basically equivalent to Func<T,bool>.

Here are the steps to make and use a Predicate delegate using a equals method:

Step 1: Write the equals method to be represented by the delegate

 // function to check if a number is equal to another number
 public static bool equals5(int x)
 {
 return x == 5
 }

Step 3: Assign the method to the Predicate delegate

 // assign equals5 to delegate
 Predicate<int> pred = equals5;

Step 4 : Call equals method using delegate

 // call equals5 function using delegate
 bresult = pred(5);

Step 5: Print out the result

 Console.WriteLine(bresult);

Here is the program flow:

true

bool equals(int)

 bool Pred(int)

172
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{

 // function to check if a number is equal to another number
 public static bool equals5(int x)
 {
 return x == 5
 }

 static void Main(string[] args)
 {

 // assign printMessage to delegate
 Predicate<int> pred = equals5;

// call equals5 function using delegate
 bresult = pred(5);

Print out the result

173
copyright © 2021 www.onlineprogramminglessons.com For student use only

Console.WriteLine(result);
 }

}
}

Lambda Expressions

A Lambda expression is used to create an anonymous function. An anonymous
function is a function with no name that can be created instantaneously inside
another function.

Lambda Expression syntax:

 (input-parameters) => expression

The inputs are on the left side and the program expression statement(s) are on
the right side and the lambda operator => in the middle.

 x => x * x

 input-parameter => expression

The above lambda expression really means:

 int f(int x)
 {
 return x * x;
 }

A lambda expression is just a short compact syntax to make a function with no
name to make programming easier.

using a lambda expression

To use a lambda expression you need to assign it to a delegate. We can use the
delegates from previous section.

174
copyright © 2021 www.onlineprogramminglessons.com For student use only

lambda expression to print a message

We will convert our printMessage function to a lambda expression:

 // function to print a message
 public static void printMessage(string message)
 {
 Console.WriteLine(message);
 }

Our lambda expression would be:

message => Console.WriteLine(message);

 input-parameter => expression

step 1: assign lambda expression to the PrintDelegate

 // assign lambda function to PrintDelegate
 PrintDelegate d6 = message => Console.WriteLine(message);

Step 2 : call lambda expression method using delegate that prints a message

 // call lambda function using delegate
 d6("I am a Lambda expression");

I am a Lambda expression

175
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{
 static void Main(string[] args)
 {

// assign lambda function to PrintDelegate
PrintDelegate d6 = message => Console.WriteLine(message);

// call lambda function using delegate
 d6("I am a Lambda expression");

 }
}

}

lambda expression to square a value

We will convert our square methods to a lambda expression

 // function to square a number
 public static int square(int x)
 {
 return x * x;
 }

Our lambda expression would be:

 x => x * x

176
copyright © 2021 www.onlineprogramminglessons.com For student use only

 input-parameter => expression

Step 1: assign the square lambda expression to the SquareDelegate

 // assign square lambda to delegate
 SquareDelegate dlsquare = x => x * x;

Step 2 : call square lambda expression using delegate

 // call square lambda function using delegate
 int result = dlsquare(5);

Step 3: Print out the result

 ConsoleWriteLine(result);

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{
 static void Main(string[] args)
 {

// assign printMessage to delegate

 SquareDelegate dlsquare = x => x * x;

 // call square lambda function using delegate
 int result = dlsquare(5);
 ConsoleWriteLine(result); // 25

25

177
copyright © 2021 www.onlineprogramminglessons.com For student use only

 }
}

}

lambda expression to add two numbers

We will convert our add method to a lambda expression:

 // add 2 numbers
 public static int add(int a, int b)
 {
 return a + b;
 }

Our lambda expression would be:

 (a,b) => a + b

 input-parameters => expression

Step 1: assign the add lambda expression to the CalculateDelegate

 // assign lambda add function to delegate
 CalculateDelegate dladd = (a,b) => a + b;

Step 2 : call add lambda expression using delegate

 // call lambda add function using delegate
 Int result = dladd(3,4);

Step 3: Print out the result

 ConsoleWriteLine(result);

7

178
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{
 static void Main(string[] args)
 {

 // assign lambda add function to delegate
 CalculateDelegate dladd = (a,b) => a + b;

 // call lambda add function using delegate
 int result = dladd(3,4);
 ConsoleWriteLine(result);
 }

}
}

Assigning a equals lambda expression to the EqualsDelegate:

 x => x == 5

input-parameters => expression

To run this lambda function we assign it to a EqualsDelegate delegate with 1
input value and 1 bool output value
.
Step1:

 // assign lambda equals5 function to delegate
 EqualsDelegate dlequals = x => x == 5;

179
copyright © 2021 www.onlineprogramminglessons.com For student use only

Step 2:

// call lambda equals function using delegate
 bool bresult = dlequals(5);

Step 3: Print out the result

 ConsoleWriteLine(bresult);

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{
 static void Main(string[] args)
 {

 // assign lambda add function to delegate

 EqualsDelegate dlequals = x => x == 5;

 // call lambda add function using delegate
 int result = dlequals(5);
 ConsoleWriteLine(result);
 }

}
}

Assigning lambdas to Action, Func and Pred delegates:

true

180
copyright © 2021 www.onlineprogramminglessons.com For student use only

Assigning the printMessage lambda expression to the Action delegate:

message => Console.WriteLine(message);

 input-parameter => expression

Action<string> actionl = message => Console.WriteLine(message);

 // call printMesage function using Action delegate
 Actionl ("I am a Lambda expression");

Assigning the square lambda expression to the Func delegate

 x => x * x

 input-parameter => expression

Func<int, int> flsquare = x => x * x;
int result = flsquare(5);
Console.WriteLine(result);

Assigning the add lambda expression to the Func delegate

 (a,b) => a + b

25

I am a Lambda expression

181
copyright © 2021 www.onlineprogramminglessons.com For student use only

input-parameters => expression

To run this lambda function we assign it to a Func delegate with 2 int inputs and 1
int output.

Func<int, int, int> fladd = (a,b) => a + b;
int sum = fladd(3, 4);
Console.WriteLine(sum);

Assigning the equals lambda expression to the Predicate delegate

 x => x == 5

input-parameters => expression

To run this lambda function we assign it to a Pred delegate with 1 input and 1
bool output.

Pred<int> plequals = x => x == 5;
bool bresult = plequals(5);
Console.WriteLine(bresult);

lambda Statement expressions

Lambda Statement expression may have more than 1 expression statement ,
The statements are to be enclosed by curly brackets { } and each statement ends
with a semi colon ‘; ‘. A return statement is needed if the Statement lambda

7

true

182
copyright © 2021 www.onlineprogramminglessons.com For student use only

Is suppose to return a value. Local variables must be declared with their expected
data types.

The lambda Statement expressions syntax is:

 (input-parameters) => { <sequence-of-statements> }

Here is a 2 input Statement lambda expression that return a int value.

 (a, b) => { int x = (a - b); int y = (a - b); return x*x + y*y; };

 (input-parameters) => { <sequence-of-statements> }

We assign the lambda Statement expressions to a Func delegate

Func<int, int, int> distance = (a, b) =>
 {
 int x = (a - b);
 int y = (a - b);
 return x*x + y*y;
 };

result = distance(3, 4);
Console.WriteLine(result);

Using delegate operator

2

183
copyright © 2021 www.onlineprogramminglessons.com For student use only

The delegate operator creates an anonymous method from method code that can
be converted to a delegate type.

 Delegate_type delegate_name = delegate_operator anonymous_method

 In the following example we create a anonymous method the that adds two
received values and return them.

 Func<int, int, int> sum = delegate (int a, int b) { return a + b; };

In this example we create a anonymous method that receives a number and
return true if it is within a certain range.

FindDelegate(int x) d = delegate (int n) {return n > 3 && n < 8;};

Here is an example to return a sublist of numbers from an array of numbers
within a certain range using an anonymous function and delegate operator.

Here are the steps:

Step 1: Make a Find delegate

 // declare Find delegate
 public delegate bool FindDelegate(int x);

Step 2: Make a where method that receives a array of numbers and a delegate to
compare the numbers with a range of values using the delegate and return an
array of numbers within the range.

 // where method that receives a array of numbers
 public static int[] where(int[] numbers, FindDelegate d)
 {
 int i = 0;
 List<int> results = new List<int>();
 foreach (int x in numbers)

184
copyright © 2021 www.onlineprogramminglessons.com For student use only

 if (d(x))
 {
 results.Add(x);
 i++;
 }
 return results.ToArray();
 }

The where function receives an array of numbers and a delegate and uses the
delegate to select numbers in the array by comparing the values. The selected
values are placed into a list. When all numbers have been examined the list of
number values are returned as an array.

Step 3: Make an array of numbers and call the where method with the array of
numbers and an inline delegate anonymous method.

 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // call where methods with numbers array and anonymous method
 int[] results = where(numbers, delegate (int n)
 {
 return n > 3 && n < 8;
 });

The above statement uses the delegate operator creates an anonymous method
that is converted to a delegate type as an argument to the where function.

This is equivalent to:

We first make the delegate:

FindDelegate(int x) d = delegate (int n) {return n > 3 && n < 8;};

Then call the where method with the array and delegate variable:

int[] results = where(numbers, d);

Step 4: Print out the results

 // print results

185
copyright © 2021 www.onlineprogramminglessons.com For student use only

 foreach (int n in results)
 {
 Console.Write(n + " ");
 }

 Console.WriteLine();

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{

 // declare Find delegate
 public delegate bool FindDelegate(int x);

 // where method that receives a array of numbers
 public static int[] where(int[] numbers, FindDelegate d)
 {
 int i = 0;
 List<int> results = new List<int>();
 foreach (int x in numbers)
 if (d(x))
 {
 results.Add(x);
 i++;
 }

 return results.ToArray();
 }

4 5 6 7

186
copyright © 2021 www.onlineprogramminglessons.com For student use only

 static void Main(string[] args)
 {

 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // call where methods with numbers array and anonymous method
 int[] results = where(numbers, delegate (int n)
 {
 return n > 3 && n < 8;
 });

 // print results
 foreach (int n in results)
 {
 Console.Write(n + " "); // 4 5 6 7
 }

 Console.WriteLine();
 }
 }
 }

CALLBACKS

A Callback calls another function. Delegate make good call backs. We will make a
function that will call another method using a delegate when a task is completed.

Step 1: Make call back delegate

 // make call back delegate
 public delegate void CallBackDelegate(string message);

Step 2: Make the call back method

// make call back method
 public static void CallBack(string result)

187
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 Console.WriteLine(result);
 }

This method prints out a message when the task is completed. When the task is
completed this callback method is called.

Step 3: Make start task function

// make start task method
 public static void StartNewTask(CallBackDelegate taskCompletedCallBack)
 {
 Console.WriteLine("I have started new Task.");
 taskCompletedCallBack("I have completed Task.");
 }

When this function is called it starts a task and when the task is completed the
callback function id called using the CallBackDelegate.

Step 4: Test the call back

 // method to test call back
 public static void TestCallBack()
 {
 callBackDelegate callback = CallBack;
 startNewTask(callback);
 }

The TestCallBack function assigns the callback method to a delegate that is sent to
the startNewTask method that starts a task.

Here is the output:

188
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the program flow:

Here is the complete program:

using System;
namespace csLessons
{
 public class Lesson13

{

 // make call back delegate
 public delegate void CallBackDelegate(string message);

// make call back method

 public static void CallBack(string result)

I have started new Task.

I have completed Task.

TestCallBack

 StartNewTask(callback);

StartNewTask(CallBackDelegate taskCompletedCallBack)

CallBack(message)

void CallBack(string result)

189
copyright © 2021 www.onlineprogramminglessons.com For student use only

 {
 Console.WriteLine(result);
 }

// make start task method
 public static void StartNewTask(CallBackDelegate taskCompletedCallBack)
 {
 Console.WriteLine("I have started new Task.");
 taskCompletedCallBack("I have completed Task.");
 }

 // method to test call back
 public static void TestCallBack()
 {
 callBackDelegate callback = CallBack;
 startNewTask(callback);
 }

 static void Main(string[] args)
 {

 // test callback
 TestCallBack();
 }

}
}

LESSON 13 Homework

Question 1

190
copyright © 2021 www.onlineprogramminglessons.com For student use only

Write a 2 input lambda expression that receives two inputs that return true if the
2 inputs are equal or otherwise false if they are not equal. Execute the lambda
expression in a Func delegate.

Question 2

Make a calculate method that receives two values and a func delegate.
Feed the calculate method with 2 numbers and a lambda expression that adds
two numbers. Printout the results.

Question 3

Write a lambda statement that receives a name as first name and last name
separated by a comma. Print out the first name and last name on separate lines.
Use an Action delegate to execute the lambda statement expression.

Question 4

Write a lambda expression that does not receive any parameter but prints out a
message of your choice. You can use this syntax to create a lambda expression
with no inputs:

() => lamda_expression

Question 5

Make a Student class that has a name, student number and a age.
Make a delegate called FindStudent that will return true if a Student age is
between 20 and 30 years old. Make a array of Students. Make a where method
that receives the array of students and the FindStudent delegate. The where
method will then return a list of students between 20 and 30 years old.

In your main method call the where method with an array of Student objects and
a method using the delegate operator that will return true if the students ages

191
copyright © 2021 www.onlineprogramminglessons.com For student use only

are between 20 and 30 years old. Print out the returned list of students. Run the
program, you should get something like this:

1 John 18
6 Chris 17
7 Rob 19

Question 6

Make a program that has a function called enterNumbers that receives a
CalculateDelgate that could add two numbers together and returns the result.
The enterNumbers function also receives a CallBackDelegate that receives a result
to print out a value using the call back method.

In the enterNumbers function ask the user to enter 2 numbers, then call the
CalculateDelegate to add the two numbers and return the result.
Once you have the result call the CallbackDelegate to print out the result.

In your main method call the enterNumbers with the 2 delegates, you can assign
them to functions, lambdas, or delegate functions.

Put all your Lesson13 homework in a file called Homework13.cs

192
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson14 LINQ

LINQ lets you do queries on Collections list arrays, Lists etc. LINQ stands for
Language Integrated Query. LINQ is similar to the SQL Language that is used to
query data bases. LINQ allows users to make queries on Collections instead.

LINQ has two types of syntax, LINQ Query syntax and LINQ Method syntax. We
will start with LINQ Query syntax. We can write LINQ queries for the classes that
implement IEnumerable<T> or IQueryable<T> interface.

The Enumerable class includes extension methods for the classes that implement
IEnumerable<T> interface. ALL the built-in collection classes like List implement
IEnumerable<T> interface and so we can write LINQ queries to retrieve data from
the built-in collections.

The Queryable class includes extension methods for classes that implement
IQueryable<t> interface. The IQueryable<T> interface is used to provide querying
capabilities against a specific data source where the type of the data is known. For
example, Entity Framework API implements IQueryable<T> interface to support
LINQ queries with underlaying databases such as MS SQL Server. You can do LINQ
query syntax two ways, using a lambda expression or a Conditional expression
and using a Conditional method. Both will generate the same results.

LINQ Query syntax using lambda expression

var result = from <variable> in <Collection>
<Query Operators> <lambda expression>
<select or group operator> <format result>

LINQ Query syntax using an conditional expression:

var result = from <variable> in <Collection>
<Query Operators> <variable>.Conditional(argument)
<select or group operator> <format result>
<Query Operators> are select, join etc

193
copyright © 2021 www.onlineprogramminglessons.com For student use only

Each LINQ keyword has a dedicated purpose:

Keyword Purpose

From Specifies a data source and a range variable
Variable represents each successive element in the source sequence

Collection data source

Let
store the result of an expression, such as a method call, in a
new range variable.

Where
filter out elements from the source data based on one or
more predicate expressions.

Group
produce a sequence of groups organized by a key that you
specify.

Into
Provides an identifier that can serve as a reference to the
results of a join, group or select clause.

Select produces a sequence of items of the data source

Orderby sort the results in either ascending or descending order.

Join
to associate and/or combine elements from one data source
with elements from another data source based on an
equality comparison between specified keys in each element

SELECTING

Here is our first LINQ expression to select all the numbers in an array

 var result = from <variable> in <collection> <select> <format the results>

 IEnumerable<int> result = from n in numbers select n;

 collection

194
copyright © 2021 www.onlineprogramminglessons.com For student use only

The LINQ expression will return an IEnumerable object that allows you to
enumerate over the result of the LINQ expression. The IEnumerable object has
code to iterate over the selected number results. Instead of var we use
IEnumerable<int> to specify the return data type so you know what it is. var
means any data type and is used for convenience.

using select

Our first example is to select all the numbers in an array:

// make an array of number
int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// make LINQ expression
IEnumerable<int> result = from n in numbers select n;

// execute Linq query and print out the results
foreach (var item in result)
 {
 Console.Write(item);
 }

Console.WriteLine();

This example is easy to understand:

IEnumerable<int> result = from n in numbers select n;

 item array format result

12345678910

195
copyright © 2021 www.onlineprogramminglessons.com For student use only

n is an item in the array that we want to select from the array numbers
A LINQ query must query to some kind of data sources whether it can be array,
collections, XML or other databases. After writing LINQ query, it must be
executed to get the result. The foreach loop executes the query on the data
source and gets the result and then iterates over the result set.

Using Where

Here is another example that uses a where clause that provides a condition.

 // make an array of number
 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // make LINQ expression

result = from n in numbers where n > 3 select n;

 // execute Linq query and print out the results
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

Using where with compound condition

Here is a where clause with a compound condition:

 IEnumerable<int> result = from n in numbers where n > 3 && n < 9 select n;

 item array compound condition format

45678910

196
copyright © 2021 www.onlineprogramminglessons.com For student use only

The result is formatted to include all numbers between 3 and 8.

 // make an array of number
 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // make LINQ expression
 IEnumerable<int> result = from n in numbers where n > 3 && n < 9 select n;

 // execute Linq query and print out the results

 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

Here is the complete program:

/*
 * Lesson14.cs
 * LINQ
 */

using System;
using System.Collections.Generic;
using System.Linq;

public class Lesson14
{
 static void Main(string[] args)
 {

 // array of numbers
 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // return selected numbers

45678

197
copyright © 2021 www.onlineprogramminglessons.com For student use only

 IEnumerable<int> result = from n in numbers select n;

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

 // select numbers > 3
 result = from n in numbers where n > 3 select n;

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

 // select numbers > 3 and numbers less than 9
 result = from n in numbers where n > 3 && n < 9 select n;

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

 // pause
 Console.ReadLine();
 }

}

198
copyright © 2021 www.onlineprogramminglessons.com For student use only

IEnumerable methods

The IEnumerable returned result has many methods to do operations like Count,
Min, Max, Sum, Average. These methods are called from the returned result not
on the LINQ expression part.

 // make an array of number
 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 IEnumerable<int> result = from n in numbers select n;

You can call inline on the result variable:

 int count = result.Count()

 Or you can call on the equation:

 int count = (from n in numbers select n).Count();

Using the returned result:

Here are some of them:

 Console.WriteLine("Count: " + result.Count());
 Console.WriteLine("Max: " + result.Max());
 Console.WriteLine("Min: " + result.Min());
 Console.WriteLine("Sum:" + result.Sum());
 Console.WriteLine("Average:" + result.Average());
 Console.WriteLine("Contains 7:" + result.Contains(7));

Count: 5

Max: 8

Min: 4

Sum:30

Average:6

Contains 7:True

199
copyright © 2021 www.onlineprogramminglessons.com For student use only

SORTING

Using orderby

The orderby keyword is used to sort selected items. Ascending order is the
default, the descending keyword is used to specify descending order.

 // array of unsorted numbers
 int[] numbers2 = { 10,4,3,1,6,7,8,5,2,9 };

 // sort ascending
 result = from n in numbers2 orderby n select n;

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

Using orderby descending

 // array of unsorted numbers
 int[] numbers2 = { 10,4,3,1,6,7,8,5,2,9 };

 // sort descending
 result = from n in numbers2 orderby n descending select n;

12345678910

200
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

GROUPING

The GroupBy operator returns groups of elements based on some key value. The
result of GroupBy operators is a collection of groups.

We will make a group of numbers between 4 and 8 (true) and not 4 and 8 (false)

Using group

 // array of numbers
 int[] numbers2 = { 10,4,3,1,6,7,8,5,2,9 };

 // group numbers
 var groupedResult = from n in numbers
 group n by n > 3 && n < 9;

 //iterate each group
 foreach (var group in groupedResult)
 {
 //Each group has a key False and True
 Console.WriteLine("Group: {0}", group.Key);

 // Each group has inner collection
 foreach (int n in group)
 Console.WriteLine("Number: {0}", n);
 }

10987654321

201
copyright © 2021 www.onlineprogramminglessons.com For student use only

We iterate for each group in the returned collection of groups. Then we iterate
through the groups of numbers. e use var because it is quite convenient to do.
You do not need to worry what object is being returned.

Here is the output:

The result is two groups true and false.

JOIN

The joining operators joins the two sequences (collections) and produce a result.

The Join operator joins two sequences (collections) based on a key and returns a
resulted sequence. The Join operator operates on two collections, inner
collection & outer collection. It returns a new collection that contains elements
from both the collections which satisfies specified expression. It is the same as
inner join of SQL query.

The join syntax takes 5 parameters:

public static IEnumerable<TResult> Join<TOuter, TInner, TKey, TResult>(this
IEnumerable<TOuter> outer,
 IEnumerable<TInner> inner, Func<TOuter, TKey> outerKeySelector,
 Func<TInner, TKey> innerKeySelector,
 Func<TOuter, TInner, TResult> resultSelector);

Group: False

Number: 1

Number: 2

Number: 3

Number: 9

Number: 10

Group: True

Number: 4

Number: 5

Number: 6

Number: 7

Number: 8

202
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here we will join 2 numbers arrays on common numbers:

 // numbers1
 int[] nums1 = { 1, 2, 3, 4, 5,6,7,8 };

 // numbers2
 int[] nums2 = { 3,4,5,6,7,8,9,10};

 // join common numbers
 var results = from n1 in nums1
 join n2 in nums2
 on n1 equals n2
 select n1;

 // print out selected numbers
 foreach (var item in results)
 {
 Console.Write(item + " ");
 }
 Console.WriteLine();

Here is the output:

Using a Equals Conditional expression

The Equals method returns true if the LINQ variable is equal enclosed condition is
evaluated to be true. The Equals method is called from the LINQ variable.

Here is the syntax:

var result = from <variable> in <Collection>
<Query Operators> <variable>.Condition(argument)
<select or group operator> <format result>

3 4 5 6 7 8

203
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Here is the code:

 // make an array of number
 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // print out equal numbers
 result = from s in numbers
 where s.Equals(5)
 select s;

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

Using a Contains Conditional Expression:

The Contains method returns true if the LINQ variable contains the provided value.
In our example we check if one of the fruits contain the provided letter.

 // using a Contains method
 String[] fruits = { "apple", "pear", "orange", "peach", "grape" };

 // get fruits that contain ‘r’
 IEnumerable<String> sresult = from f in fruits where f.Contains('r') select f;

 // print out selected numbers
 foreach (var item in sresult)
 {
 Console.Write(item + " ");
 }

5

204
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Console.WriteLine();

We have selected only the fruits that contain the letter ‘r’

LINQ Method Syntax

Method syntax uses extension methods included in the Enumerable or Queryable
classes.

The compiler converts query syntax into method syntax at compile time.

Here is the LINQ Method Syntax:

 IEnumerable<T> result= collection.extension_method(lambda expression);

The LINQ method syntax comprises of extension methods and Lambda
expression. Example:

 IEnumerable<int> result = numbers.Where(n => n > 3);

 Collection lambda expression

 Extension method

The Where method defined in the Enumerable class accepts a predicate delegate
as Func<int, bool>. This means you can pass any delegate function that accepts a
int object as an input parameter and returns a Boolean value. The lambda
expression works as a delegate passed in the Where clause.

pear orange grape

https://www.tutorialsteacher.com/csharp/csharp-predicate

205
copyright © 2021 www.onlineprogramminglessons.com For student use only

Note: The LINQ Method Syntax is different from the LINQ Query syntax using an
conditional expression. In the LINQ Query syntax the conditional method is part
of the lambda expression variable.

 result = from s in numbers where s.Equals(5) select s;

Where as in the LINQ Method Syntax the extension methods is attached to the
LINQ method syntax variable.

 result = numbers.Where(n => n > 3);

We have converted our query syntax to method syntax:

Select numbers > 3

 // make an array of numbers
 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // select numbers > 3
 result = numbers.Where(n => n > 3);

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

45678910

206
copyright © 2021 www.onlineprogramminglessons.com For student use only

Select numbers between 3 and 9

 // select numbers > 3 and numbers less than 9
 result = numbers.Where (n => n > 3 && n < 9);

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

OrderBy ascending

 // unsorted numbers
 int[] numbers3 = { 10, 4, 3, 1, 6, 7, 8, 5, 2, 9 };

 // sort ascending
 result = numbers3.OrderBy(n => n);

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

12345678910

45678

207
copyright © 2021 www.onlineprogramminglessons.com For student use only

OrderBy descending

 // unsorted numbers
 int[] numbers3 = { 10, 4, 3, 1, 6, 7, 8, 5, 2, 9 };

 // sort descending
 result = numbers3.OrderBy(n => -n);

 // print out selected numbers
 foreach (var item in result)
 {
 Console.Write(item);
 }

 Console.WriteLine();

GroupBy

 // make an array of numbers
 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // group by numbers
 var groupedResult = numbers.GroupBy(n => n > 3 && n < 9);

 //iterate each group
 foreach (var group in groupedResult)
 {
 //Each group has a key
 Console.WriteLine("Group: {0}", group.Key);

 foreach (int n in group) // Each group has inner collection
 Console.WriteLine("Number: {0}", n);
 }

10987654321

208
copyright © 2021 www.onlineprogramminglessons.com For student use only

Join

 // numbers1
 int[] nums1 = { 1, 2, 3, 4, 5, 6, 7, 8 };

 // numbers2
 int[] nums2 = { 3, 4, 5, 6, 7, 8, 9, 10 };

 // join common numbers
 var results = nums1.Join(nums2,
 n1 => n1,
 n2 => n2,
 (n1, n2) => n1);

 // print out selected numbers
 foreach (var item in results)
 {
 Console.Write(item + " ");
 }

 Console.WriteLine();

Here is the join output:

3 4 5 6 7 8

Group: False

Number: 1

Number: 2

Number: 3

Number: 9

Number: 10

Group: True

Number: 4

Number: 5

Number: 6

Number: 7

Number: 8

209
copyright © 2021 www.onlineprogramminglessons.com For student use only

Standard Query Operators

Standard Query Operators in LINQ are actually extension methods for the
IEnumerable<T> and IQueryable<T> types. They are defined in the
System.Linq.Enumerable and System.Linq.Queryable classes. There are over 50
standard query operators available in LINQ that provide different functionalities
like filtering, sorting, grouping, aggregation, concatenation, etc.

We can just go over a few of them.

Standard Query Operators in Query Syntax:

 var result = from n in number where n > 3 && n < 8 select n

Standard Query Operators in Method Syntax:

 var result = numbers.where(n > 3 && n < 8).ToList()

The ToList method converts the result to a List object.

Standard query operators in query syntax is converted into extension methods at
compile time. So both are same.

Standard Query Operators can be classified based on the functionality they
provide. The following table lists all the classification of Standard Query Operators:

Classification Standard Query Operators

Filtering Where, OfType

Sorting
OrderBy, OrderByDescending, ThenBy, ThenByDescending,
Reverse

Grouping GroupBy, ToLookup

Join GroupJoin, Join
Projection Select, SelectMany

Aggregation Aggregate, Average, Count, LongCount, Max, Min, Sum

210
copyright © 2021 www.onlineprogramminglessons.com For student use only

Quantifiers All, Any, Contains

Elements
ElementAt, ElementAtOrDefault, First, FirstOrDefault, Last,
LastOrDefault, Single, SingleOrDefault

Set Distinct, Except, Intersect, Union
Partitioning Skip, SkipWhile, Take, TakeWhile

Concatenation Concat
Equality SequenceEqual

Generation DefaultEmpty, Empty, Range, Repeat

Conversion AsEnumerable, AsQueryable, Cast, ToArray, ToDictionary, ToList
Filtering Where, OfType

Sorting
OrderBy, OrderByDescending, ThenBy, ThenByDescending,
Reverse

Grouping GroupBy, ToLookup
Join GroupJoin, Join

Examples using Standard Query Operators on Objects

We will first make a Person class.

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int BirthYear { get; set; }

 public override String ToString()
 {
 return FirstName + ", " + LastName + " " + BirthYear;
 }
}

Then store some Persons in a List of Persons:

 List<Person> persons = new List<Person>()
 {
 new Person()
 {
 FirstName = "Terrance",LastName = "Johnson",BirthYear = 2005
 },

211
copyright © 2021 www.onlineprogramminglessons.com For student use only

 new Person()
 {
 FirstName = "John",LastName = "Smith",BirthYear = 1966
 },
 new Person()
 {
 FirstName = "Eva",LastName = "Birch", BirthYear = 2002
 }
 }

Using Select New

Select all people born on or after 1910

 //Get the full combined name for people born in 1990 or later
 var fullNames = from p in persons
 where p.BirthYear >= 1990
 select new { p.FirstName, p.LastName };

Same example using method syntax

//Get the full combined name for people born in 1990 or later
var fullNames = persons.Where(x => x.BirthYear >= 1990)
 .Select(x => new { x.FirstName, x.LastName });

The select new clause create a new data structure. This structure is composed of
compound objects. With the select new clause, we create new objects of an
AnonymousType as the result of a query. An Anonymous type still allows you to
access the member variable.

Print out results using Anonymous type fullNames

 // print out fullnames
 foreach (var item in fullNames)
 {
 Console.WriteLine(item.FirstName + " " + item.LastName);
 }

 Terrance Johnson

Eva Birch

212
copyright © 2021 www.onlineprogramminglessons.com For student use only

Find First Element in a Collection

Return the first element in a collection.

Return the first person in the persons collection.

 var first = persons.First(); //First element in the collection

In this situation the first Person in the persons list is returned. A Person object is
returned.

Find first Element that matches a Condition

Return the first element in a collection that matches a condition

Return the first person that has birth year greater than 2001

 //First element that matches a condition
 first = persons.First(p => p.BirthYear > 2001);
 Console.WriteLine(firstWithCondition);

The First() method throws an exception if no items are found. We can have it
instead return a default value of null by using FirstOrDefault()

 //First element that matches a condition OR default value
 first = persons.FirstOrDefault(x => x.BirthYear > 2005);

The result is null because there are no birthYear greater then 2005

Terrance, Johnson 2005

Terrance, Johnson 2005

213
copyright © 2021 www.onlineprogramminglessons.com For student use only

You can also use firstOrDefault with no condition.

 //First element in collection or default value
 var firstOrDefault = users.FirstOrDefault();

Obtaining a Single Result

We can also get exactly one item using Single() or SingleOrDefault():

var singleUser = users.Single(x => x.FirstName == "John");
var singleUser = users.SingleOrDefault(x => x.LastName == "Johnson");

Both Single() and SingleOrDefault() will throw an exception if more than one item
matches the condition.

Console.WriteLine(singleUser)

Distinct

Distinct return all distinct items in a collection (unique).

 var distinct = persons.Distinct();

 foreach (var item in distinct)
 {
 Console.WriteLine(item);
 }

null

Terrance, Johnson 2005

Terrance, Johnson 2005

John, Smith 1966

Eva, Birch 2002

214
copyright © 2021 www.onlineprogramminglessons.com For student use only

Ordering Example

We can order results from a LINQ query by their properties using the methods
OrderBy() and ThenBy().

We first order by first name, if both first names are equal then we order by last
name.

Ascending Order

//Alphabetical order by first name then last name
var orderedUsers = persons.OrderBy(p => p.FirstName)
 .ThenBy(p => p.LastName);

 // print out fullnames
 foreach (var item in orderedUsers)
 {
 Console.WriteLine(item.FirstName + " " + item.LastName);
 }

Descending Order

We can specify descending order using OrderByDescending

 // Reverse alphabetical order by first name, then by last name
 var descendingOrder
 = persons.OrderByDescending(x => x.FirstName)
 .ThenByDescending(x => x.LastName);

 //We can also use the orderby and descending keywords in the query syntax:
 descendingOrder = from x in persons

Eva Birch

John Smith

Terrance Johnson

215
copyright © 2021 www.onlineprogramminglessons.com For student use only

 orderby x.BirthYear descending, x.FirstName descending
 select x;

 // print out fullnames
 foreach (var item in descendingOrder)
 {
 Console.WriteLine(item.FirstName + " " + item.LastName);
 }

Lesson14 Homework

Question 1

Use one of you classes from previous lesson and put into a list of objects.
Use the syntax query syntax to search for one of your items on the list of objects.
Then use syntax method query to search for one of your items on the list of
objects. Use the Contains extension method.

Terrance Johnson

Eva Birch

John Smith

216
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 15 Expression and Expression Trees

Review of lambda Expression

A lambda expression is a short form of a function with no name and is known as a
anonymous function.

The following is a lambda expression that adds 1 to a number.

x => x + 1

It is short form for the function:

int inc(int x)
{

 return x + 1;
}

The following lambda expression adds 2 numbers together.

(a,b) = > a + b

It Is short form for the function :

int add(int a, int b)
{
return a + b;
}

Lambdas’ need delegates to execute them.

Review of delegate

217
copyright © 2021 www.onlineprogramminglessons.com For student use only

A delegate is a data type that is used to reference a function by assigning a
function to it. You can use a delegate to execute a function using the delegate
variable. A delegate must be declared before it can be used, just like a class that
must be declared before it can be used.

Here is a delegate that can be used to reference the above add function.

// declare sum delegate
delegate int SumDelegate(int a, int b);

Here we assign the add function to our delegate.

 // assign add function to delegate
 SumDelegate sum1 = add;

Here we execute the add function using the delegate variable sum1

 // execute delegate
 int x = sum1(3, 4);
 Console.WriteLine(x);

We can also assign a lambda function to a delegate and execute it using the
delegate variable.

 // assign lambda to delegate

 SumDelegate sum2 = (a, b) => a + b;
 x = sum2(3, 4);
 Console.WriteLine(x);

Review of Func delegate

A Func delegate is a generic delegate that has zero or more input parameters and

one output parameter. The last parameter is considered as an output parameter.

Here we assigning our add function to a func delegate and execute the function

using the delegate.

// assign a function to a func delegate
 Func<int, int, int> sum3 = add;
 x = sum3(3, 4);

218
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Console.WriteLine(x);

Here we assigning a lambda function to a func delegate and execute the function

using the delegate.

 // assign a lambda to a func delegate
 Func<int, int, int> sum4 = (a, b) => a + b;
 x = sum2(3, 4);
 Console.WriteLine(x);

Assigning void functions to delegates

A void function does not return a value.
Here is a void function that prints out a message

 // print a message
 public static void printMsg(string msg)
 {
 Console.WriteLine(msg);
 }

Here is a void lambda function that prints out a message.

 msg => Console.WriteLine(msg);

Here is a delegate that represents a void function.

 // declare msg delegate
delegate void MsgDelegate(string s);

Here we assign the void function to the delegate and execute the function using
the delegate.

// assign a void function to a action delegate
MsgDelegate msg1 = printMsg;

 msg1("I like c#");

219
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here we assign a void lambda function to the delegate and execute the function
using the delegate.

 // assign a void lambda to a action delegate
 MsgDelegate msg1 = msg => Console.WriteLine(msg);
 msg4("I like c#");

Review of Action delegate

Action delegate is a generic delegate that has zero or more input parameters and

one output parameter. The Action delegate does not return a value.

Here we assign a void function to an Action delegate and execute the function
using the delegate.

 // assign a void function to a action delegate
 Action<string> msg3 = printMsg;
 msg3("I like c#");

Here we assign a void lambda function to an Action delegate and execute the
function using the delegate.

 // assign a void lambda to a action delegate
 Action<string> msg4 = msg => Console.WriteLine(msg);
 msg4("I like c#");

Expression

An Expression represents a strongly typed lambda expression.

 Expression<TDelegate>

The Expression class is located in the System.Linq.Expressions namespace. The
Expression<TDelegate> requires a delegate type Func or Action.

When a lambda Expression is assigned to the Func or Action type delegate, the

C# compiler converts the lambda expression into executable code at compile time.

220
copyright © 2021 www.onlineprogramminglessons.com For student use only

When a lambda expression is assigned to a Expression<TDelegate> type the C#

compiler converts the lambda expression into an Expression tree instead of

executable code. The express tree must be compiled into an Func or a Action

delegate in run time. Once compiled the function reference from the delegate can

be executed.

An Expression Tree stores an arithmetic expression into a tree structure made up

of nodes, The nodes may represent a mathematical operation or a value.

Here is an Expression Tree that’s adds two numbers sum = a + b

Summary:

Func<T> = lambda expression = Executable code

Expression<TDelegate> = lambda expression = Expression Tree

Here is an expression that takes a Func delegate where a lambda sum function is
assigned to it. The result is an expression tree exp1.

 Expression<Func<int, int, int>> exp1 = (a, b) => a + b;

We then compile the Expression and a Func delegate is returned.

 Func<int, int, int> sum5 = exp1.Compile();

We then execute the Func delegate and print out the result.

 x = sum5(3, 4);
 Console.WriteLine(x);

Recapping:

+

3 4

221
copyright © 2021 www.onlineprogramminglessons.com For student use only

Expression tree are expressions arranged in a tree-like data structure. Each node in an expression

tree is an expression. For example, an expression tree can be used to represent mathematical

formula x + y where x, + and y will be represented as an expression and arranged in the tree like

structure.

 Expression tree is an in-memory representation of a lambda expression. It holds the actual

elements of the query, not the result of the query.

The expression tree makes the structure of the lambda expression transparent and explicit. You

can interact with the data in the expression tree just as you can with any other data structure.

Creating an expression tree manually

The Expression class has methods to create parameters, constants and for
mathematical operations. Here are some of them:

Expression Use
Expression.Parameter(typeof(int)); int parameter
Expression.Constant(5, typeof(int)); constant expression
Expression.Add(param1, param2); Add 2 expressions
Expression.Multiply(param1, param2); Multiply 2 expressions
Expression.LessThan(parm1, param2);

Compare 2 parameters less than

Expression.GreaterThan()

Compare 2 parameters greater than

BinaryExpresion Root of Expression tree (or sub)

In the following example we will manually create the Expression tree from the
lambda expression:

 (a,b) => (a + b) * 5

+

a b

Expression.Multiply(sumTree, constant)

*

5

Expression.Add(param1, param2) Expression.Constant(5,typeof(int))

222
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // building an expression tree manually

 //defining expression (a + 5) * 5
 ParameterExpression param1 = Expression.Parameter(typeof(int),"a");
 ParameterExpression param2 = Expression.Parameter(typeof(int),"b");
 BinaryExpression sumTree = Expression.Add(param1, param2);
 ConstantExpression param3 = Expression.Constant(5,typeof(int));
 BinaryExpression productTree = Expression.Multiply(sumTree, param3);

 // create expression tree
 Expression<Func<int, int, int>> sumLambda =
 Expression.Lambda<Func<int, int, int>>(productTree, param1, param2);

 //compiling expression to create Func delegate
 Func<int, int, int> compiledSum2 = sumLambda.Compile();

 // use delegate to add two numbers
 x = compiledSum2(3, 4);

 // print result
 Console.WriteLine(productTree + " = " + x);

Todo: type in or copy/paste in the above code and run it.

Parsing Expression Tree

We can extract the individual components of the expression tree

We first get the input parameters from the above expression tree

// Decompose the expression tree.
 ParameterExpression params1 = sumLambda.Parameters[0];

Expression.Parameter(typeof(int),”b”) Expression.Parameter(typeof(int),”a”)

((a + b) * 5) = 35

223
copyright © 2021 www.onlineprogramminglessons.com For student use only

 ParameterExpression params2 = sumLambda.Parameters[1];

From the expression tree we can get the body

 BinaryExpression operation = (BinaryExpression)sumLambda.Body;

From the body we can get the left sub tree and the right constant

 BinaryExpression sum = (BinaryExpression)operation.Left;
 ConstantExpression constant = (ConstantExpression)operation.Right;

From the left sub tree we can get the a and b parameters

 ParameterExpression sumleft = (ParameterExpression)sum.Left;
 ParameterExpression sumright = (ParameterExpression)sum.Right;

We can now print out the expression tree components

 Console.WriteLine("Decomposed expression: ({0},{1}) => ({2} {3} {4}) {5} {6}",
 params1.Name,params2.Name,sumleft.Name, sum.NodeType, sumright.Name,
 operation.NodeType,constant.Value);

Todo: type in or copy/paste in the above code and run it.

Class to printout an Expression tree

The ExpressionVisitor class can traverse an Expression tree. We override the class
so we can print out the traversed tree.

 class MyExpressionVisitor : ExpressionVisitor

{
 // traverse expression tree

 protected override Expression VisitBinary(BinaryExpression node)
 {
 Console.Write("(");

 this.Visit(node.Left);

 switch (node.NodeType)
 {
 case ExpressionType.Add:
 Console.Write(" + ");
 break;

Decomposed expression: (a,b) => (a Add b) Multiply 5

224
copyright © 2021 www.onlineprogramminglessons.com For student use only

 case ExpressionType.Subtract:
 Console.Write(" - ");
 break;

 case ExpressionType.Multiply:
 Console.Write(" * ");
 break;

 case ExpressionType.Divide:
 Console.Write(" / ");
 break;
 }

 this.Visit(node.Right);

 Console.Write(")");

 return node;
 }

 // print constant value
 protected override Expression VisitConstant(ConstantExpression node)
 {
 Console.Write(node.Value);
 return node;
 }

 // print parameter name
 protected override Expression VisitParameter(ParameterExpression node)
 {
 Console.Write(node.Name);
 return node;
 }
 }

Todo:

Put the visitor class in your Lesson 15cs file.

We them make an Expression tree with our lambda equation from above

Expression<Func<int, int, int, double>> expr = (a,b) => (a + b) * 5;

We then make the MyExpressionVisitor object

MyExpressionVisitor myVisitor = new MyExpressionVisitor();

We then visit our expression tree

225
copyright © 2021 www.onlineprogramminglessons.com For student use only

myVisitor.Visit(expr.Body);
Console.WriteLine();

Here is the output:

Lesson15 Homework Question 1

Make an Expression Tree using a func delegate and a lambda that has three
parameters and divide by 3 like this, and print out the result.

(x,y,z) => ((x + y) * z) / 3.0;

Lesson15 Homework Question 2

Manually make the expression tree, and execute it.

Lesson15 Homework Question 3

Extract all the components from the expression tree and print them out

Lesson15 Homework Question 5

Visit the expression tree, and print out the nodes.

Lesson15 Homework Question 6

Repeat questions 1 to 4 with this equation

(x, y, z) => x + y > x * y

Hint use:

Expression.LessThan()

Expression.GreaterThan()

You will also need to update the MyExpressionVisitor class to handle
 less than < and greater than >

((a + b) * 5)

226
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 16 Events,Asynchronous methods and Threading

An event is a notification sent by an object to signal the occurrence of an action.

The class who raises events is called the EventGenerator.

The class who receives the event notification is called the EventReceiver

There can be multiple subscribers of a single event.

A EventGenerator raises an event (fires event) when some action occurred.

EventReceivers who are interested in getting a notification when an action occurs,
registers with the EventGenerator and handles the event when the event occurs.

In C#, an event is an encapsulated delegate. The event is dependent on the
delegate. The delegate defines the signature for the event handler method of the
EventReceiver class.

Create and Generate an Event

Register and Receive an Event Register and Receive an Event

Delegate

Event

Event Handler Event Handler

Fire Event Register Event Fire Event Register Event

227
copyright © 2021 www.onlineprogramminglessons.com For student use only

Simple Event Example

To do: Make a C# file called Lesson16.cs and enter the code for each step.

We are making a EventGenerator to send a DataEvent that contains a Name to a
EventReceiver’s event handler for display.

Declaring an Event

Step 1: Declare a delegate to represent a event

 // declare delegate to represent an event

public delegate void DataEventHandler();

Step 2: Declare a class to generate an Event

class Data

{

Step 3: Declare a variable of the delegate with event keyword.

EventGenerator EventReceiver

DataEvent

Handler

Enter Data

Fire Event

Make Event

Generator

Register Event

Request Data

228
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public event DataEventHandler dataEvent;

Step 4: make a method to generate an event

 public void enterData()
 {

Step 5: do some action: entering a name

 Console.WriteLine("Enter your Name: ");
 string name = Console.ReadLine();

step 6: generate the event stored in the delegate
 (? means if dataEvent is not null)

 dataEvent?.Invoke();
 }
 }

Step 7 Make a class to register the event and receive the event

 public class Lesson16
 {

Step 8 in a method make the data object

public static void Main(string[] args)
 {
 // make data object
 Data data = new Data();

Step 9 in the method register the event

 // register event
 data.dataEvent += processDataEvent;

Step 10 request data, and wait for data ready

 // get some data
 data.enterData();

step 11 make event handler method

229
copyright © 2021 www.onlineprogramminglessons.com For student use only

 public static void processDataEvent()
 {
 Console.WriteLine("Data Entered");
 }
}

Step 12 user enters data and the processDataEvent is called and Data Entered is
printed on the screen

Run the program an enter a name.

You should get something like this:

Here is the complete program:

Class Data

{

event DataEventHandler dataEvent;

}

void enterData()

{

Console.WriteLine("Enter your Name: ");

string name = Console.ReadLine();

dataEvent?.Invoke();
}

class Lesson16

{

}

void Main(string[] args)
{

// make data object
Data data = new Data();

// register event

data.dataEvent +=
 processDataEvent;

// get some data
data.enterData();
}

processDataEvent()
{
Console.WriteLine
("Data Entered");
}

Enter your Name:
tom
Data Entered

 // class to create an
event,store event handlers
 // and fire the event
 class Data
 {
 // make event using
delegate
 public event
EventHandler<string> dataEvent;

 // get a name and fire

230
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // declaring an Event

 // declare delegate to represent an event
 public delegate void DataEventHandler();

// class to create an event,store event handlers
// and fire the event
 class Data
 {
 // make event using delegate
 public event DataEventHandler dataEvent;

 // get a name and fire event
 public void enterData()
 {
 // get a name
 Console.WriteLine("Enter your Name: ");
 string name = Console.ReadLine();

 // fire event
 dataEvent?.Invoke();
 }
 }

 // class to register an event and receive the event
 public class Lesson16
 {

 public static void Main(string[] args)
 {

 // make data object
 Data data = new Data();

 // register event
 data.dataEvent += processDataEvent;

 // get some data
 data.enterData();
 }

231
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // data event handler
 public static void processDataEvent()
 {
 Console.WriteLine("Data Entered");
 }
 }

Using EventHandler Delegate

C# has built-in delegate types EventHandler and EventHandler<TEventArgs> for
events. Any event should need two parameters: the source of the event and
event data. Use the EventHandler delegate for all events that do not include
event data. Use EventHandler<TEventArgs> delegate for events that include data
to be sent to handlers.

We re-write our example using the EventHandler

 // class to create an event,store event handlers and fire the event
 class Data
 {
 // make event using delegate
 public event EventHandler dataEvent;

 // get a name and fire event
 public void enterData()
 {
 // get a name
 Console.WriteLine("Enter your Name: ");
 string name = Console.ReadLine();

 // fire event
 dataEvent?.Invoke(this, EventArgs.Empty);
 }
 }

 // class to register an event and receive the event
 public class Lesson16
 {
 public static void Main(string[] args)
 {
 // make data object

https://docs.microsoft.com/en-us/dotnet/api/system.eventhandler
https://docs.microsoft.com/en-us/dotnet/api/system.eventhandler

232
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Data data = new Data();

 // register event
 data.dataEvent += processDataEvent;

 // get some data
 data.enterData();
 }
 // data event handler
 public static void processDataEvent(object sender, EventArgs e)
 {
 Console.WriteLine("Data Entered");
 }
 }
}

Todo:

Type in the above code and run it
You should get something like this:

Sending and Receiving Data

We can use the EventHandler<TEventArgs> to send and receive data to the event
handler. We are using EventHandler<string> so we can send and receive a name.

We can now send the name to the eventHandler when we Invoke it.

 // fire event
 dataEvent?.Invoke(this, name);

The event handler now receives the name for display

Enter your Name:
tom
Data Entered

 // class to create an
event,store event handlers
 // and fire the event
 class Data
 {
 // make event using
delegate
 public event
EventHandler<string> dataEvent;

 // get a name and fire
event
 public void enterData()
 {
 // get a name

Console.WriteLine("Enter your
Name: ");
 string name =
Console.ReadLine();

 // fire event

dataEvent?.Invoke(this, name);
 }

233
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // data event handler
 public static void processDataEvent(object sender, string name)
 {
 Console.WriteLine("Data Entered: " + name);
 }

Here is the complete code using the using EventHandler<string> argument

 // using EventHandler delegate passing data
 // class to create an event,store event handlers
 // and fire the event
 class Data
 {
 // make event using delegate
 public event EventHandler<string> dataEvent;

 // get a name and fire event
 public void enterData()
 {
 // get a name
 Console.WriteLine("Enter your Name: ");
 string name = Console.ReadLine();

 // fire event
 dataEvent?.Invoke(this, name);
 }
 }

 // class to register an event and receive the event
 public class Lesson16
 {
 public static void Main(string[] args)
 {
 // make data object
 Data data = new Data();

 // register event
 data.dataEvent += processDataEvent;

234
copyright © 2021 www.onlineprogramminglessons.com For student use only

 // get some data
 data.enterData();
 }

 // data event handler
 public static void processDataEvent(object sender, string name)
 {
 Console.WriteLine("Data Entered: " + name);
 }
 }

Todo:

Type in the above code and run it
You should get something like this:

Custom EventArgs

We can make out own EventArgs to pass custom data through custom methods or
properties

// using custom EventHandler delegate passing data

 // custom EventArgs for Name
 public class ProcessEventArgs : EventArgs
 {
 public string Name { get; set; }

 public ProcessEventArgs(string name)
 {
 Name = name;
 }
 }

Enter your Name:
tom
Data Entered: tom

 // class to create an
event,store event handlers
 // and fire the event
 class Data
 {
 // make event using
delegate
 public event
EventHandler<string> dataEvent;

 // get a name and fire
event
 public void enterData()
 {
 // get a name

Console.WriteLine("Enter your
Name: ");
 string name =
Console.ReadLine();

 // fire event

dataEvent?.Invoke(this, name);
 }

 }

 // class to register an
event and receive the event
 public class Lesson16
 {

 public static void
Main(string[] args)

235
copyright © 2021 www.onlineprogramminglessons.com For student use only

We can now invoke the eventHandler by creating a ProcessEventArgs with a
entered Name

 // fire event
 dataEvent?.Invoke(this, new ProcessEventArgs(name));

 Now the event handler can return the name from the ProcessEventArgs object.

Here is the complete code using the ProcessEventArgs object.

 // class to create an event,store event handlers
 // and fire the event
 class Data
 {
 // make event using delegate
 public event EventHandler<ProcessEventArgs> dataEvent;

 // get a name and fire event
 public void enterData()
 {
 // get a name
 Console.WriteLine("Enter your Name: ");
 string name = Console.ReadLine();

 // fire event
 dataEvent?.Invoke(this, new ProcessEventArgs(name));
 }
 }
 // class to register an event and receive the event
 public class Lesson16
 {

 public static void Main(string[] args)
 {

 // make data object
 Data data = new Data();

 // register event

236
copyright © 2021 www.onlineprogramminglessons.com For student use only

 data.dataEvent += processDataEvent;

 // get some data
 data.enterData();
 }

 // data event handler
 public static void processDataEvent(object sender, ProcessEventArgs e)
 {
 Console.WriteLine("Data Entered: " + e.Name);
 }
 }

Todo:

Type in the above code and run it

You should get something like this:

Lesson16 Question 1

Make a program that displays the time every second on the screen. Use A delay
loop and your own Timer event.

Asynchronous programming with async and await

Asynchronous means to wait for an operation to complete

Synchronous means do not wait.

Async is a keyword to indicate a method will be asynchronous

Await keyword instructs the code to wait for an operation to complete

Enter your Name:
tom
Data Entered: tom

 // class to create an
event,store event handlers
 // and fire the event
 class Data
 {
 // make event using
delegate
 public event
EventHandler<string> dataEvent;

 // get a name and fire
event
 public void enterData()
 {
 // get a name

Console.WriteLine("Enter your
Name: ");
 string name =
Console.ReadLine();

 // fire event

dataEvent?.Invoke(this, name);
 }

 }

 // class to register an
event and receive the event
 public class Lesson16

237
copyright © 2021 www.onlineprogramminglessons.com For student use only

The await keyword provides a non-blocking way to start a task, then continue
executing other code until that task completes.

Task

A Task is a piece of code that you can execute
The Task class represents a single operation that does not return a value and that
usually executes asynchronously.

Creating a task

Step 1: make a Action delegate that prints out a message

 // make action delegate
 Action action1 = () => Console.WriteLine("Task 1");

Step2 : create a task object

The task constructor gets an action delegate.

 // make task
 Task task1 = new Task(action1);

Step 3: start task

 // start task
 task1.Start();

Step 4: wait for task to complete

 // wait for task to compete
 task1.Wait();

todo:

type in the above code and run it
you should get something like this:

Task 1

238
copyright © 2021 www.onlineprogramminglessons.com For student use only

Remove task1.wait() statement and then run again

What has happen?

Executing more than 1 task

Todo:

Make 4 actions:

 Action action1 = () => Console.WriteLine("Task 1");
 Action action2 = () => Console.WriteLine("Task 2");
 Action action3 = () => Console.WriteLine("Task 3");
 Action action4 = () => Console.WriteLine("Task 4");

Make 4 tasks:

 Task task1 = new Task(action1);
 Task task2 = new Task(action2);
 Task task3 = new Task(action3);
 Task task4 = new Task(action4);

run action using Task.Factory.StartNew(action2);

 run action 3 using Task.Run(action3);

 run action 4 synchronously using task4.RunSynchronously();

 task1.Start();
 Task task2 = Task.Factory.StartNew(action2);
 Task task3 = Task.Run(action3);
 task4.RunSynchronously();

239
copyright © 2021 www.onlineprogramminglessons.com For student use only

wait for all tasks to complete

 task1.Wait();
 task2.Wait();
 task3.Wait();
 task4.Wait();

run the program and you should get something like this:

ADDING A RANDOM TIME DELAY TO EACH TASK

We now add some random time delays to each action.

 Action action1 = () =>
 {
 Console.WriteLine("Task 1 started ");
 Thread.Sleep(3000);
 Console.WriteLine("Task 1 done ");
 };

 Action action2 = () =>
 {
 Console.WriteLine("Task 2 started ");
 Thread.Sleep(5000);
 Console.WriteLine("Task 2 done ");
 };

 Action action3 = () =>
 {
 Console.WriteLine("Task 3 started ");
 Thread.Sleep(2000);
 Console.WriteLine("Task 3 done ");
 };

 Action action4 = () =>
 {
 Console.WriteLine("Task 4 started ");

Task 4

Task 2

Task 1

Task 3

240
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Thread.Sleep(4000);
 Console.WriteLine("Task 4 done ");
 };

 Task task1 = new Task(action1);
 Task task4 = new Task(action4);

 task1.Start();
 Task task2 = Task.Factory.StartNew(action2);
 Task task3 = Task.Run(action3);
 task4.RunSynchronously();

 task1.Wait();
 task2.Wait();
 task3.Wait();
 task4.Wait();

Run the program tour should get something like this:

USING ASYNCC AND AWAIT

The async and await keywords in C# are the heart of asynchronous programming.

The await keyword provides a non-blocking way to start a task, then continue
execution when that task completes.

Task 4 started

Task 1 started

Task 2 started

Task 3 started

Task 3 done

Task 1 done

Task 4 done

Task 2 done

.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await

241
copyright © 2021 www.onlineprogramminglessons.com For student use only

There are some rules for writing the Async method:

 The method signature must have the async keyword.
 The method name should end with Async (this is not enforced, but it is a

best practice).
 The method should return Task, Task<T>, or void.

To use this method, you should wait for the result (i.e., use the await method).
Following these guidelines, when the compiler finds an await method, it starts to
execute it and will continue the execution of other tasks. When the method is
complete, the execution returns to its caller

async

The async keyword is added to the method signature to enable the usage of the
await keyword in the method. It also instructs the compiler to create a state
machine to handle asynchronicity.

The return type of an async method is always Task or Task<T>.

await

The await keyword is used to asynchronously wait for a Task or Task<T> to
complete. It pauses the execution of the current method until the asynchronous
task that’s being awaited completes. The difference from calling .Result or .Wait()
is that the await keyword sends the current thread back to the thread pool,
instead of keeping it in a blocked state.

Under the hood, it:

 creates a new Task or Task<T> object for the remainder of the async
method

 assigns this new task as a continuation to the awaited task,
 assigns the context requirement for the continuation task

242
copyright © 2021 www.onlineprogramminglessons.com For student use only

We first make two task methods that return a Task object

 // asynchronous task 1
 static async Task task1()
 {
 Console.WriteLine("task1");
 await Task.Delay(1000);
 }

 // asynchronous task 2
 static async Task task2()
 {
 Console.WriteLine("task2");
 await Task.Delay(2000);
 }

Each task has a delay

Our main method also has a async and returns a Task object and calls the 2 tasks

 // using async and await
 static async Task Main(string[] args)
 {
 await task1();
 await task2();
 }

run the above program you should get something like this:

async method returning a value

Out task methods cam also return values using Task<T>
 Our task methods now look like this:

// asynchronous task 1 returning a value
 static async Task<string> task1()
 {

task1

task2

243
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Console.WriteLine("starting task1");
 await Task.Delay(1000);
 return "task1";
 }

 // asynchronous task 2 returning a value
 static async Task<string> task2()
 {
 Console.WriteLine("starting task2");
 await Task.Delay(2000);
 return "task2";
 }

We are returning the names of the tasks

Our main method changes to return the task names and print them out.

 // using async and await
 static async Task Main(string[] args)
 {
 // retrieve task names
 string name1 = await task1();
 string name2 = await task2();

 // print out task names
 Console.WriteLine(name1);
 Console.WriteLine(name2);
 }

run the above program you should get something like this:

using async and await and lambda

starting task1

starting task2

task1

task2

.

244
copyright © 2021 www.onlineprogramminglessons.com For student use only

We can replace our methods with lambdas. We use the keyword async on the
lambda to turn the lambda into an async function. We use the func delegate
because we have 1 output but no inputs.

// using async and await and lambda
 static async Task Main(string[] args)
 {
 Func<Task<string>> func1 = async () =>
 {
 Console.WriteLine("starting task1");
 await Task.Delay(1000);
 return "task1";
 };

 Func<Task<string>> func2 = async () =>
 {
 Console.WriteLine("starting task2");
 await Task.Delay(2000);
 return "task2";
 };

 // retrieve task names
 string name1 = await func1();
 string name2 = await func2();

 // print out task names
 Console.WriteLine(name1);
 Console.WriteLine(name2);
 }

Run the above program you should get something like this:

starting task1

starting task2

task1

task2

.

245
copyright © 2021 www.onlineprogramminglessons.com For student use only

HOMEWORK 2

Create a task that uses an event to get an message from the keyboard, when the
event is called call an asynchronous methods to print out the message.

Threads

Multitasking is the simultaneous execution of multiple tasks or processes over a
certain time interval.

The operating system uses a term known as a process to execute all these
applications at the same time. A process is a part of an operating system that is
responsible for executing an application. Every program that executes on your
system is a process and to run the code inside the application a process uses a
term known as a thread.
A thread is a lightweight process, or in other words, a thread is a unit which
executes the code under the program.

Every program by default carries one thread to executes the logic of the program
and the thread is known as the Main Thread, so every program or application is
by default single-threaded model.
The single thread runs all the process present in the program in synchronizing
manner, means one after another. So, the second process waits until the first
process completes its execution, it consumes more time in processing.

246
copyright © 2021 www.onlineprogramminglessons.com For student use only

We have a class that contains two different methods, i.e. method1, method2.
Now the main thread is responsible for executing all these methods, so the main
thread executes all these methods one by one.

Without multi-threading

To do:

Put the two following methods in your cs file

 // method1
 public static void method1()
 {

 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("method 1");
 }
 }

 // method 2
 public static void method2()
 {
 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("method 2");
 }
 }

Method2

Method1

Run Program

247
copyright © 2021 www.onlineprogramminglessons.com For student use only

To do

Execute the following statements in your main method
You should get something like this:

Using threads

Threads operate tasks in parallels (actually executes each task in turns)
That appear in operating in parallel.

Threading

Not using Threads

method 1

method 1

method 1

method 1

method 1

method 2

method 2

method 2

method 2

method 2

.

Method2 Method1

Run Program

248
copyright © 2021 www.onlineprogramminglessons.com For student use only

We can make a Thread by calling the Thread class constructor with a method
name

 Thread thread1 = new Thread(method1);

Then we start the thread

 thread1.Start();

we need to wait till the thread has finished executing the program will end before
the thread completes executing

 thread1.Join();

you may need to suspend a thread and let other threads execute with the Yield
method

Thread.Yield();

 // method1

 public static void method1()
 {

 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("method 1");
 Thread.Yield();
 }

 }

Todo:

Type in the following code and run it

 // Creating and initializing threads

249
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Console.WriteLine("Using Threads");
 Thread thread1 = new Thread(method1);
 Thread thread2 = new Thread(method2);
 thread1.Start();
 thread2.Start();

 // Join thread
 thread1.Join();
 thread2.Join();

You should get something like this:

Question16 Homework Question 3

use 2 threads that receive an array. One thread will add up all the odds numbers
and a second thread will add up all the even umbers.
When both threads have finished executing add the two sums together and print
out the results.

Threading

using Threads

method 1

method 1

method 1

method 2

method 2

method 2

method 2

method 2

method 1

method 1

.

250
copyright © 2021 www.onlineprogramminglessons.com For student use only

END

251
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 17 PROJECT

Project 1 IntArray Class

Make an IntArray class to store an int values in an internal array called items.
Make a default constructor that makes an empty array. Make another constructor
that takes in the initial size of the array. Make another constructor the receives an
ordinary array. You need to copy the elements in the receiving array to your
internal array. Make another constructor that receives your IntArray. Again, you
need to copy the elements in the receiving IntArray to your internal array. Make
methods to access array elements by array index. Make operational methods to
add items to the end, insert at a certain index, and remove at a certain index.

252
copyright © 2021 www.onlineprogramminglessons.com For student use only

When adding and inserting items the internal array should just increase in size by
1. When removing items from the internal array just shift the other vales down
and set the last value to 0. Make operational method to sort the array ascending
and search for values. Use bubble sort to sort the array and use binary search to
search for items in the internal array when it is sorted. You can find the code for
bubble sort and binary search on the internet. Lastly make a toString method to
print out the array elements enclosed in square bracket’s like this: [9 4 9 3 6 4 8]
Make a TestArray class with a main method to test all the methods of your Array
class or alternately for convenience put the main method inside your IntArry class.

Project 2 Int Matrix class

Make a Matrix class that has rows and column variables and an two-dimensional
array of the specified rows and columns. Make a default constructor to make an
empty Matrix of rows and columns. Have private variable to store rows and
columns. Make another constructor the receives an ordinary two-dimensional
array. You need to copy the elements in the receiving array. Make another
constructor that receives your IntMatrix. Again, you need to copy the elements in
the receiving IntMatrix. Make setters and getters to access the matrix elements.
make a to string method that will print out the matrices. Make operational
methods to add, subtract, multiply, divide, transpose and rotate matrices by a
specified rotation.

Make a TestMatrix class with a main method to test all the methods of your
Matrix class.
Project 3 Spelling Corrector

Read in a text file with spelling mistakes, find the incorrect spelled words and
offer corrections. The user should be able to choose the correct choice from a
menu. Look for missing or extra letters or adjacent letters on the keyboard.
Download a word dictionary from the internet as to check for correct spelled
words. Use a Hash table to store the words. Store the correct spelled file.

Project 4 MathBee

253
copyright © 2021 www.onlineprogramminglessons.com For student use only

Make a Math bee for intermixed addition, subtraction, multiplication and division
single digit questions. Use random numbers 1 to 9 and use division numbers that
will divide even results. Have 10 questions and store results in a file. Keep track of
the users score.

Project 5 Quiz App

Make a quiz app with intermixed multiple choice, true and false questions.
You should have a abstract Question super class and two derived classes
MultipleChoice and TrueAndFalse. Each derived class must use the abstract
methods to do the correct operation. Store all questions in one file. Store the
results in another file indicating the quiz results.

Project 6 Phone Book App

Make a phone book app that uses a HashMap to store Phone numbers and names.
You need a Contact class to store name and phone number. You should be able
to view, add, delete, scroll up and down contacts as menu operations. Contacts
need to be displayed in alphabetically orders. Offer to lookup by name or by
phone number. Contacts should be stored in a file, read when app runs, and
saved with app finished running. Bonus, add email and address lookups as well.

Project 7 Appointment App

Make an Appointment book app that uses a HashMap to store Appointments. You
need an Appointment class to store name, description and time. You should be
able to view, add, delete, scroll up and down appointments as menu operations.
Appoints need to be displayed in chronological orders. Appointments should be
stored in a file, read when app runs, and saved with app finished running.

254
copyright © 2021 www.onlineprogramminglessons.com For student use only

Project 8 GenericArray Class

Make the IntArray class to be a Generic Matrix class TArray so that it can store
any data type. You need to instantiate generic array with a Comparable object to
hold your array T items, since the java compiler cannot make a T object for you.
You then need to type cast your created Comparable array to a T type array.

 items = (T[])new IComparable[size];

Make a TestTArray class with a main method to test all the methods of your
TArray class.

Project 9 Generic Matrix class

Make the IntMatrix class to be a Generic Matrix class TMatrix so that it can store
any data type.

Project 10 Fraction class

Make a Fraction class that stores an int numerator and denominator. Make two

constructors, a default constructor that initializes the numerator to 0 and initializes

the denominator to 1, and an initializing constructor that initializes the numerator

and denominator with user values.

Make methods add, subtract, multiply and divide, that receives two Fraction

classes and return a Fraction class result. Your empty add method may look like

this:

public Fraction add(Fraction f2)

{

 Fraction f3 new Fraction();

 return f3.

}

Make a toString method that returns a String representation of a fraction class as a

whole number like 5, when the denominator is 1 and a fraction like 2/3 when the

255
copyright © 2021 www.onlineprogramminglessons.com For student use only

denominator is not 1. Make a main or standalone Test class to test your Fraction

class.

Bonus marks:

Make a reduce method using GCD that will reduce a fraction to lowest terms. You

can make a iterative or recursive GCD private method as follows:

iterative GCD

static long gcd (long a, long b) {

 long r, i;

 while(b!=0){

 r = a % b;

 a = b;

 b = r;

 }

 return a;

}

recursive GCD

public int gcd(int a, int b) {

 if (b==0) return a;

 return gcd(b,a%b);

}

Also make a equals method and a compareTo methods to test if two fractions are

equal and to compare fractions if they are less or greater to each other. Test these

features to your testing.

Project 11 Grocery Store App

Make a Grocery Store App where Customers can purchase items. Preferred

customers get a discount. After all items have been entered a receipt is printed.

Step 1: Item class

256
copyright © 2021 www.onlineprogramminglessons.com For student use only

Make a Item class with private variables product name, quantity ordered, price and

discount Price.

If the item is not a discount item then the discount price is 0.

Make a constructor that will receive the item name, quantity, price and discount

price.

Make getters and setters for each instance variable

Make a formatted toString method that will return item name price quantity

discount price surrounded by round brackets and extension price like this:

Carrots 2 1.29 (.89) 2.58 (1.78)

Step 2: GroceryStore class

Make a GroceryStore class that will store items bought, total items bought, that

total’s the order and print out a receipt.

The Grocery Store class will store the customer’s name, and all items bought in an

ArrayList <Item> called items.

The Grocery store constructor will receive the customer name and create the

ArrayList <Item> of items.

The grocery store will have a method to add an item object called add.

The grocery store class will also print out a receipt using a method called

printReceipt.

The Grocery store class will have a getTotal method to return the total of all items.

The getTotal method can also be used to print out the receipt total.

All instance variables are private and you cannot have any getters and setters.

Step 3: DiscountStore class

The DiscountStore class inherits from the GroceryStore class.

The DiscountStore receives the CustomerName and sends the CustomerName to

the GroceryStore super class.

257
copyright © 2021 www.onlineprogramminglessons.com For student use only

If the customer is a preferred customer then the DiscountStore class is used. The

DiscountStore class will calculate discount percent, and count of discount items

and total of all items using the discount price rather than the regular price. The

discount class will override the getTotal class of the grocery store class.

The discount store class will also print a receipt showing the number of discount,

items and the discount percent obtained.

Step 4 GroceryApp class.

The GroceryApp class is the main class where the cashier enters the customer

items, bought.

The cashier will ask if the customer is a preferred customer. if it is a preferred

customer then the DiscountStore class is used else the Grocery Store class

Is used.

The cashier will enter the items bought. Once all items have been enters then the

receipt is printed out.

You will need to store a list of products in a file to simulate the entering of

products or make an array of items like this:

Item[] items = {new Item(“apples”,2,1.26,1.08)

new Item(“oranges”,2,1.26,1.08),

new Item(“carrots”,2,1.26,1.08)

new Item(“apple”,2,1.26,1.08)};

The file format will be like this

Customer name

Preferred or not preferred

Number of products

Item name, quantity, price, discount price

Example file:

Tom Smith

Preferred

3

Carrots , 2.49, 1.78, 2

258
copyright © 2021 www.onlineprogramminglessons.com For student use only

Fish,12.67, 11.89,3

 Milk 4.89.3.75, 2

In either case the items will be added to the store.

The main method will have a menu as follows:

(1) add items to Grocery store

(2) add items to Discount store

(3) print receipt

(4) exit program

END

