
1
copyright © 2020 www.onlineprogramminglessons.com For student use only

Java Mini Lessons Last Update: Apr 19, 2021

From http://www.onlineprogramminglessons.com
These Java mini lessons will teach you all the Java Programming statements you
need to know, so you can write 90% of any Java Program.

Lesson 1 Input and Output
Lesson 2 Methods
Lesson 3 Classes and Inheritance
Lesson 4 Operators
Lesson 5 Programming Statements
Lesson 6 Arrays, ArrayList, Lists, Sets and Maps
Lesson 7 Overloading, Interfaces and Generics
Lesson 8 Enhanced Loops, Iterators, Comparators and Anonymous Functions
Lesson 9 File Access
Lesson10 Abstract Classes, Polymorphism and Java Objects
Lesson 11 Recursion
Lesson 12 Regular Expressions
Lesson 13 Java Project

Conventions used in these lessons:

bold - headings, keywords, code

italics - code syntax

underline - important words

(open round bracket
) close round bracket

{ open curly bracket
} close curly bracket

[open square bracket
] close square bracket

http://www.onlineprogramminglessons.com/

2
copyright © 2020 www.onlineprogramminglessons.com For student use only

Let’s get started!
You first need a Java compiler/interpreter to run Java Programs and a Java IDE to
edit, compile and run Java programs automatically. A Java IDE makes Java
development much easier. There are many Java IDE’s available, some are very
complicated to use. In these lessons we will use a simple and powerful one called
JCreator.

You first need to download the Java JDK or SE compiler/interpreter that is used to
compile and run java programs manually.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html

Next download the Java IDE JCreator (or Java IDE of your choice)

http://www.jcreator.org/download.htm

Unfortunately, you need to wait till they send the downloads details to you, but
fortunately you can find third party downloads on the internet that let you
download right away. Download the free light version.

Once you install Java and JCreator, run the JCreator, you will get this screen:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.jcreator.org/download.htm

3
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson 1 Input and Output

Input refers getting a value from the keyboard or a file and output refers writing a
value on the computer screen or storing a value in a file.

Before we start it is best to store all your Java lesson programs in a file. But you
first need to make a Project to store all our Java lesson files in. We will use the
project name JavaLessons. Make a folder in your computer called JavaLessons.
Using JCreator or your IDE You need to change the location of the project to the
location where your java lesson files will be stored on your computer. It is best to
store all your java Lesson programs in a folder so you can easily find them.

From the File Menu select File New.

Program

Keyboard

Computer Screen

4
copyright © 2020 www.onlineprogramminglessons.com For student use only

Then select Java Classes then Java Class

Press ‘Next’ then type in the java file name Lesson1.java

5
copyright © 2020 www.onlineprogramminglessons.com For student use only

The editor window appears where you can type in Java programming statements.
JCreator automatically writes the Lesson1 starter code for you.

6
copyright © 2020 www.onlineprogramminglessons.com For student use only

All Java programs are contained in a Java Class. A class contains variables that
store information and methods that do operations (calculations) on these
variables. Methods contain programming statements telling the computer what
to do. A class is a big step in programming evoulution as well as for someone just
learning programming. It’s now time to write your first Java Program. You will
print “Hello World” on the screen. In the Java Editor near the bottom of the
Lesson1.java type in:

public static void main(String[] args) {
 System.out.println("Hello World");
 }

You should have this now in your editor window:

public class Lesson1 {
public static void main(String[] args) {
 System.out.println("Welcome to my Program");
 }
}

Next you need to build your Java Lesson1.java file, to compile it and check for any
errors. You may first need to tell JCreator where the Java JDK is. Press the ‘Set up

7
copyright © 2020 www.onlineprogramminglessons.com For student use only

JDK’ button. This screen will appear automatically just before you build it.

Browse where your Java is located on your computer.

From the Build menu select Build file.

8
copyright © 2020 www.onlineprogramminglessons.com For student use only

If you get some errors, then you must correct them and then rebuild the file.
Errors are typing mistakes that can be easily corrected but may be difficult to find.
Errors are always the unexpected and the overlooked. If you do not have any
errors, then you can run your file. From the Run menu select Run File. “Hello
World” is now printed in the Build Output window. Always use Run File to run
your opened file.

9
copyright © 2020 www.onlineprogramminglessons.com For student use only

Recapping: In a Java program methods are enclosed in a class. A class definition
starts with a access modifier like public the keyword class followed by the class
name. The opening curly bracket ‘{‘ means start the class.

public class Lesson1 {

The methods of the class are written between the curly brackets{ } of the class
definition. Methods contain the programming statements that tell the computer
what to do. Inside the Lesson1 class we a have a main method. The main method
is executed when the program first runs.

10
copyright © 2020 www.onlineprogramminglessons.com For student use only

public static void main(String[] args) {

 System.out.println("Hello World");
 }

The main method contains the System.out.println statement that prints the
message “Hello World” on the screen.
}

The closing curly bracket ‘}’means end the class. Before we proceed it is
important to understand the terminology: classes, methods, programming
statements and objects and static.

data type What type of data is to be represented
variable Stores a string or numeric value. All variables have a data type

programming
statement

is an instruction containing commands to perform a desired
action, like printing a value on the screen, get a value from the
key board or calculate a certain value?

method contain programming statements that tell the computer what
to do and performs operations on variables

class Contains values and methods

object Computer Memory allocated for variables defined in a class
static Permanent code or value that can be used right away

The next thing we need to do is get values from the keyboard. We will ask the
user to type in their name and then greet them. Type in the following statements
in the Java editor right after the Hello World statement.

 System.out.println("Welcome to my Program");
 Scanner kybd = new Scanner(System.in);
 System.out.print("Please type in your name: ");
 String name = kybd.nextLine();
 System.out.println("Nice to meet you " + name);

You will also need to put this statement on top of the public class Lesson1
statement, it tells the java compiler where the Scanner is.

11
copyright © 2020 www.onlineprogramminglessons.com For student use only

import java.util.Scanner;

The Scanner is used to read values from the keyboard.

Your complete program should now be like this:

import java.util.Scanner;

public class Lesson1 {

 public static void main(String[] args) {

 System.out.println("Welcome to my Program");
 Scanner kybd = new Scanner(System.in);
 System.out.print("Please type in your name: ");
 String name = kybd.nextLine();
 System.out.println("Nice to meet you " + name);
 }
}

 Now run your program, and enter the name “Tom”. You will get something like
this:

12
copyright © 2020 www.onlineprogramminglessons.com For student use only

Recapping: We need to make our own keyboard reader from the Scanner class
called kybd.

Scanner kybd = new Scanner(System.in);

We also needed to tell the Java Compiler where the keyboard Scanner code is to
be found. We had to place the following statement near the top of the Java file.

import java.util.Scanner;

We first ask the user to type in their name using the System.out.print statement.

System.out.print("Please type in your name: ");

Then we obtain the user name from the keyboard using the nextLine method
from keyboard reader.

String name = kybd.nextLine();

The entered name is placed in the String variable name.

13
copyright © 2020 www.onlineprogramminglessons.com For student use only

The System.out.println statement prints out the string message "Nice to meet
you" and the name of the user stored in the variable name.

System.out.println("Nice to meet you " + name)

Note inside the System.out.println statement the string message and variable
name are joined by a ‘+’.

Java has two types of values String values and numeric values. String values are
messages enclosed in double quotes like "Hello World" where as numeric values
are numbers like 5 and 10.5 Numeric values without decimal points like 5 are
known as an int and numbers with decimal points like 10.5 are known as a float
or double. Variable’s store string or numeric values that can be used later in your
program.

We now continue our program ask the user how old they are. Type in the
following statements at the end of your program.

 System.out.print("How old are you? ");
 int age = Integer.parseInt(kybd.nextLine());
 System.out.println("You are " + age + " years old");

Your complete program should be something like this:

import java.util.Scanner;

public class Lesson1 {

 public static void main(String[] args) {

 System.out.println("I like Java Programming");
 Scanner kybd = new Scanner(System.in);
 System.out.print("Please type in your name: ");
 String name = kybd.nextLine();
 System.out.println("Nice to meet you " + name);
 System.out.print("How old are you? ");

14
copyright © 2020 www.onlineprogramminglessons.com For student use only

 int age = Integer.parseInt(kybd.nextLine());
 System.out.println("You are " + age + " years old");
 }
}

Run the program and enter Tom for name and 24 for age, you should get
something like this.

15
copyright © 2020 www.onlineprogramminglessons.com For student use only

Recapping: The System.out.print("How old are you? ") statement asks the user
to enter their age. The int age = Integer.parseInt(kybd.nextLine()) statement
receives a string number from the keyboard using kybd.nextLine() and converts
the string to a numeric int using Integer.parseInt and then assigns the numeric int
to the variable age. The System.out.println("You are " + age + " years old");
statement is used to print out the message, the persons name and age. Again the
+ operator is used to join the age numeric value to the string messages.

If you have got this far then you will be a great Java programmer soon.

Most people find Programming difficult to learn. The secret of learning program is
to figure out what you need to do and then choose the right program statement
to use. If you want to print messages and values to the screen you use a
System.out.println statement. If you want to get values from the user, you use an
kybd.nextLine() statement. If you need a numeric value, you use an
Integer.parseInt statement to convert String numbers to int numbers or
Float.parseFloat statement to convert String numbers to decimal float numbers
or the Double.parseDouble statement to convert String numbers to decimal
double. numbers. The difference between float decimal numbers and double
decimal numbers is just accuracy.

You should concentrate on getting your programs running rather than understand
how they work. Once you get your programs running and you execute them
understanding will be come much easier. Understanding is much easier now
because you can now make an association connection to the program statement
that is running, that produces the desired input or output action.

Java Data Types

Programming is all about storing values in a computer memory location and doing
operations on them like adding two numbers together. The values to store are
classified into data types. Data types specify what kind of data a memory location
will hold. Each memory location is represented by a variable name like x. When
we declare a variable name we must also specify the data type so the Java
complier knows what king of data the variable name represents.

16
copyright © 2020 www.onlineprogramminglessons.com For student use only

int x;
data_type variable_name;

When you declare a variable it is best to give it a default value, this is known as
initialization.

int x = 0;
data_type variable_name = initialized_value;

Java has many data types that can be used to represent many different kinds of
numbers as follows: All data types in Java are signed meaning positive and
negative numbers. Each different data type has a range of values it can represent.
Smaller size data types can store smaller numbers, whereas larger size data types
can store larger numbers. The size of the data type is determined by the number
of bits the memory location holds. Bits is a memory storage unit having values 0
or 1. Bits are grouped together in a data type size to represent a number. The bit
pattern 00000101 represents the value 5 and has a bit size of 8 representing a
Byte data type.

Data Type Size
(bits)

Min value Max Value Example

byte 8 -128 127 byte x = 100;

short 16 -32768 32767 short x = 1000;

int 32 -2^31 2^31-1 int x = 10000;

long 64 -2^63 2^63-1 long x = 10000;

float 32 1.4E-45 3.40282E38 float f = 10.5;

double 64 4.9E-324 4.9E-324 double d = 10.5;

boolean 1 false True boolean x = true;

char (unicode) 16 '\u0000' (0) '\uffff' (65535) char x = ‘A’;

Unicode can represent many different characters

17
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson 1 Homework

Write a Java program that asks someone what their profession title is and what
their salary is. Their title could be a doctor, lawyer etc. Next print out the details
to the screen, what their title is and how much money they make. For the
profession title use a String variable. For the salary variable you can use float or
double data type. You will need to use the Float.parseFloat statement to convert
a String number to float number or the Double.parseDouble statement to
convert String numbers to double number. Call your java program
Homework1.java and class Homework1.

JAVA PROGRAM FORMAT

declare class

variables shared between functions

main function

Calculation section

Input section

Output Section

local variables

functions

18
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson 2 Methods

Methods allow you to group many programming statements together so that you
can reuse them repeatedly in your Java Program. Methods are analogous to
functions in other programming languages. They are called methods because they
are contained in a class and cannot be used independently by themselves. The
most common method is the main method that starts a Java program, which we
have used previously in Lesson 1. A class may have many methods. Each method
has a dedicated purpose, some action to perform. Methods usually are defined at
the top of the class in order as they are used. The main method is the last one
because it will call all the proceeding methods. When a method is called in a
programming statement, it means, it is executed. Java also has many built in
methods that you can use, that make Java programming easier to do. You already
used some of them in lesson 1: print, println, nextLine. As we proceed with these
lessons you will learn and use many more methods. It is now time to add more
methods to our previous lesson 1 program. We will make a welcome, enterName,
enterAge and displayInfo methods. Make a new java file called Lesson2.java and
then type in the following code.

import java.util.Scanner;

public class Lesson2 {

 private static Scanner kybd = new Scanner(System.in);

 public static void welcome(){

System.out.println("Hello World")
}

 public static String enterName(){
System.out.print("Please type in your name: ")
String name = kybd.nextLine();
return name;
}

19
copyright © 2020 www.onlineprogramminglessons.com For student use only

public static int enterAge(){
System.out.print("How old are you? ");
int age = Integer.parseInt(kybd.nextLine());
return age;
}

public static void displayInfo(String name, int age){
System.out.println("Nice to meet you " + name);
System.out.println (name + " You are " + age + " years old");
}

 public static void main(String[] args) {
 welcome();
 String name = getName();
 int age = getAge();
 displayInfo(name, age);
 }

}

Methods make your program more organized and manageable to use. Methods
have many different purposes. Methods can receive values, return values, receive
and return values or receive or return nothing. A method definition is as follows:

access_modifier non-access_modifier return_datatype method_name (parameter_list)

parameter list = data_type parameter_name [,data_type parameter_name]

Access modifiers allow who can access the method. In this lesson we were
introduced to the public and private access modifiers. Non-access modifiers
indicate how the method can be used. In this lesson we used the static non-
access modifier. Static is permanent code or value is placed directly in computer
memory when the program is loaded and is readily available to be used. Methods
return values using the return statement and receive values through the
parameter list. The data type specifies what kind of data is returned or received.
In this lesson we were introduced to the int, float, double and String data types.
String is user data type and is actually a class.

20
copyright © 2020 www.onlineprogramminglessons.com For student use only

A class allows you to make you own data types. In this situation the String class
has been predefined for you so that you can use it right away. The welcome
method just prints a statement and receives no values or returns no value. The
void data type indicates no value is returned or received.

public static void welcome(){
 System.out.println("Hello World");
 }

The get Name() and getAge() methods both return a value using the return
statement. The getName() method returns a String value where as the enterAge
method returns a int value.

 public static String enterName(){

System.out.print("Please type in your name: ");
String name = kybd.nextLine();
return name;
}

 public static int enterAge(){
System.out.print("How old are you? ");
int age = Integer.parseInt(kybd.nextLine());
return age;
}

The displayInfo function receives a name and age value to print out, but return’s
no value. The displayInfo method receives the name and age through the
parameter list.

 public static void displayInfo(String name, int age){
 System.out.println("Nice to meet you " + name);
 System.out.println (name + " You are " + age + " years old");
 }

21
copyright © 2020 www.onlineprogramminglessons.com For student use only

The name and age inside the round brackets of the displayInfo method definition
statement are known as parameters and contain values to be used by the
method. The parameters just store values from the calling function and are not
the same variables that are in the calling function. Although the parameter
names and values may be same as in the calling function variable names, but they
are different memory locations. The main purpose of the parameters is to receive
values for the methods. The main method call’s the preceding methods to run
them and store the values in variables and pass the stored variable values to the
methods. Calling a method means to execute the method. The values that are
passed to the called method from the calling method is known as arguments.

Variables inside a method are known as local variables and are known to that
method only. Name and age are local variables in the main function but are also
arguments to the displayInfo method.

public static void main(String[] args) {
 welcome();
 String name = getName();
 int age = getAge();
 printDetails(name, age);
 }

Our class conveniently store the variable to our keyboard reader.

 private static Scanner kybd = new Scanner(System.in);

This is one of the features of a class to store variable that can be used by its own
methods. If not for this feature each method will have to have its own keyboard
which would be a waste of code. Duplication of code is to be avoided in
programming. There are additional things you need to know about this sample
program We have used the keywords public and private. If we have code to be
used by others we use the access modifier public. For variables and methods to
be used only by our class, we use the access modifier private. The other
important concept in the key word static. Static means code that can be used
right away with creating an object first. It is also said to be at the class level not at
the object level. A static variable can be shared between many class objects.

22
copyright © 2020 www.onlineprogramminglessons.com For student use only

The static variable is just created once and will have the same value in each
object. There is lots on controversy how Java programs are to be written. The rule
I use is a class is just used once or does not have any non-reusable variables, then
all methods and variables should be static else it should be a object.
In our sample program the main purpose of our sample program is to gather and
print out information therefore all variables and methods should be static. Static
means the compiler will generate the memory for the variable’s and code for our
class and make it readily available to be used. This is what we want.

It’s now time to comment you program All programs need to be commented so
that the user knows what the program is about. Just by reading the comments in
your program you will know exactly what the program is supposed to do. We
have two types of comments in Java. Header comments that are at the start of a
program or a method. They start with /* and end with a */ and can span multiple
lines like this.

/*
Program to read a name and age from a user and
print the details to the screen
*/

Other comments are for one line only and explain what the current or proceeding
program statement it is to do. The one-line comment starts with a // like this:

// method to read a name from the key board are return the value

We now comment the program as follow. Please add all the following comments
to your program.

23
copyright © 2020 www.onlineprogramminglessons.com For student use only

/*
 Program to read a name and age from a user and print
 the details on the screen
*/
import java.util.Scanner;

public class Lesson2 {
 // make keyboard reader

 private static Scanner kybd = new Scanner(System.in);

// method to print a welcome message
 public static void welcome(){

 System.out.println("Hello World");
 }

 // method to read a name from the key board are return the value
 public static String enterName(){
 System.out.print("Please type in your name: ");
 String name = kybd.nextLine();
 return name;
 }

 // method to read an age from the key board are return the value
public static int enterAge(){

 System.out.print("How old are you? ");
 int age = Integer.parseInt(kybd.nextLine());
 return age;
 }

 // method to print out a user name and age

public static void displayInfo(String name, int age){
 System.out.println("Nice to meet you " + name);
 System.out.println (name + " You are " + age + " years old");
 }

 // main method to run program
 public static void main(String[] args) {
 welcome();
 String name = getName();
 int age = getAge();
 displayInfo(name, age);
 }

}

24
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson 2 Homework

Take your homework program from Lesson 1 and add methods to it.
Make methods welcome, enterTitle, enterSalary, displayInfo. Call all these
methods from the main method. Call your java program Homework2.java and
class Homework2.

25
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 3 CLASSES

Classes represent another level in program organization. They represent
programming units that contain variables to store values and methods to do
operations on these variables. This concept is known as Object Oriented
Programming, and is a very powerful concept. It allows these programming units
to be used over again in other programs. The main benefit of a class is to store
values and do operations on them transparent from the user of the class. It is very
convenient for the programmers to use classes. They are like building blocks that
are used to create many sophisticated programs with little effort.

A class starts with the keyword class and the class name. The class uses another
keyword this that indicates which variables and functions belong to this class. We
have already used a class in our previous lessons. We will now write a Person
class that has variables to store a name and age and methods to do operations on
them. Like initializing retrieval, assignment and output. Make a new Java class file
called Person.java, and type the following code into it.

/*
Person Class to store a person's name and age
A main function to read a name and age from a user and print
the details on the screen using the Person class
*/

// define a class Person
public class Person {
 private String name;
 private int age;

 // default constructor
 Public Person()
 {
 this.name = "";
 this.age = 0;
 }

26
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // initialize Person
 public Person(String name, int age){

this.name = name;
this.age = age;

 }

 // return name
 public String getName(){
 return this.name;
 }

 // return age
 public int getAge(){
 return this.age;
 }

 // assign name
 public void setName(String name){
 this.name = name;
 }

 // assign age
 public void setAge(int age){
 this.age = age;
 }

 // return person info as a string
 public String toString() {
 String sout = "Nice to meet you " + this.name + "\n";
 sout += this.name + " You are " + this.age + " years old";
 return sout;
 }
}

27
copyright © 2020 www.onlineprogramminglessons.com For student use only

The Person class definition starts with the class key word and class name Person.
We use the public access modifies because we want others to use our class.

public class Person{

Our Person class has 2 private variables to store person name and age.

 private String name;
 private int age;

We make the variables private because we want them to be only access by our
class methods, nobody else. A class contains a Person method that initializes the
class. This Person methods are known as a constructor. The constructor has the
same name as the class. There are many variations of a constructor. A
constructor with no parameters is known as a default constructor. It is called a
default constructor because the variables defined in the class will be assigned
default values.

// default constructor
Public Person ()
{
 this.name = "";
 this.age = 0;

}

Another constructor is known as an initializing constructor, because it assigns
values to the variables defined in the class.

// initialize Person
 public Person(String name, int age){
 this.name = name;
 this.age = age;
 }

28
copyright © 2020 www.onlineprogramminglessons.com For student use only

The programming statements inside the constructor assign values to the
variables name and age from the parameters name and age.

 this.name = name
 this.age = age

The keyword this specifies which variables belongs to the Person class. The
parameter name and age just store values to be assigned to the Person class
variables and are not the same ones in the Person class.

The get functions also known as getters and just return values of the variables
stored in the Person class. Again, you notice the this keyword.

 // return name
 public String getName(){
 return this.name;
 }

 // return age
 public int getAge(){
 return this.age
 }

We also have set functions known as setters or mutators that allow the user of
the class to assign new values to the Person class variables.

 // assign name
 public void setName(String name);
 this.name = name;
 }

 // assign age
 public void setAge(int age);
 this.age = age
 }

29
copyright © 2020 www.onlineprogramminglessons.com For student use only

You will notice each method have a parameter to assign the name or age value.
Again, the this keyword distinguishes the person variables from the parameters
since they both have the same names.

All classes should have a toString() function so that it can easily return the class
info as a string message.

// return person info as a string
 public String toString() {
 String sout = "Nice to meet you " + this.name + "\n";
 sout += this.name + " You are " + this.age + " years old";
 return sout;
 }

Notice we have no print statement in our toString() method. We assign
information to the local variable sout and return’s the sout value. A local variable
is just known to the function it resides in. The sout variable uses the + operator to
join values together as a message value. This class definition must not contain any
input or output statements. A class must be a reusable program unit not
dependent on any input or output print statements. The purpose of the class is to
contain information that can be easily accessed. Therefore, our main function
must provide all the input and output print statements. We will use the input and
output method from our previous program.

Make a new file called Lesson3.java and type in the following code:

import java.util.Scanner;

public class Lesson3 {

// make keyboard reader
private static Scanner kybd = new Scanner(System.in);

// method to print a welcome message
public static void welcome(){
 System.out.println("Hello World");
}

30
copyright © 2020 www.onlineprogramminglessons.com For student use only

// method to read a name from the key board are return the value
public static String enterName(){
 System.out.print("Please type in your name: ");
 String name = kybd.nextLine();
 return name;
 }

// method to read an age from the key board are return the value
public static int enterAge(){

 System.out.print("How old are you? ");
 int age = Integer.parseInt(kybd.nextLine());
 return age;
 }

 // main method to run program
 public static void main(String[] args) {

 // print welcome message

 welcome();

 // get person info from keyboard
 String name = enterName();
 int age = enterAge();
 // make a Person object
 Person p = new Person(name, age);

 // print out person details
 System.out.println(p.toString());
 }
}

Notice we create the Person object with the following statement:

 Person p = new Person(name, age);

This calls the Person constructor of the person class to create the person object
and initialized with the values name and age. The mechanism that allocates
memory in the computer for the variables and method’s defined in the class, is
known as instantiation.

31
copyright © 2020 www.onlineprogramminglessons.com For student use only

When a class is instantiated in computer memory it is known as an object. when a
class is written in a program then it is still known as a class not an object.
Objects are made from class definitions, Just the same way many house objects
are built from house drawing plans. The print statement calls toString() method
to print out the Person information details.

System.out.println(p.toString());

You can automatically call the toString() method just by using the Person variable

System.out.println(p);

Run the Lesson3.java program. You will get the same output as the previous
Lesson2 program. You should get something like this:

Lesson 3 Homework Question 1:

Make a Profession class that stores somebody’s profession title and amount of
money they make. Make default and initializing constructors, getters and setters
and a toString methods. Call your class Profession and put your class in a file
called Profession.java. Make a java program file that has a main method that
instantiates a Profession class. The main method has additional methods to get
the professions title and amount of money that they make from the keyboard.
You can use some of the methods from Lesson2. Call your java main program file
Homework3.java.

Hello World
Please type in your name: Tom
How old are you? 24
Nice to meet you Tom
Tom You are 24 years old

32
copyright © 2020 www.onlineprogramminglessons.com For student use only

INHERITANCE

The beauty of classes is that they can be extended to increase their functionality.
We can make a Student class that uses the public variables and methods from the
Person class. This is known as inheritance.
The Student class can only access the non-private variables and methods from the
Person class. We have additional access modifiers public, protected, package and
private.

access modifier Description example
Public Access by anybody public int age;

Protected Access by derived class Protected int age;

Package Access by classes in project int age;
Private Access by its own class only private int age;

A Student class will have an additional variable called idnum that will represent a
string student id number. Using inheritance, the student class will be able to use
the public variables and functions of the Person class. The Person class is known
as the super class and the Student class is known as the derived class. The Person
class knows nothing about the Student class where as the Student class knows all
about the Person class.

Create a new Java file called Student.java. Create a class called Student that
inherits from the Person class using this statement.

// define a class Student that inherits the Person class
public class Student extends Person {

The extend keyword is used to define the inheritance relationship. This means the
Student class can use the public variables and methods from the Person class.
We need to define a student id number variable for the Student class.

 // student id number
 private String idnum;

33
copyright © 2020 www.onlineprogramminglessons.com For student use only

Now make a default constructor that will initialize the variable in the classes to
default values.

 // initialize Student to default values
 public Student(){
 super();
 this.idnum = "";
 }

We call the super() method that calls the default constructor of the Person class.
This way the variables defined in the Person class also gets initialized to default
values.

Now make a constructor that will initialize the student name, age and idnum.

 // initialize Student
 public Student(String name, int age, String idnum)
 super(name, age);
 this.idnum = idnum;
 }

The super method calls the constructor of the Person class to create a Person
object and transfer the name and age values from the parameters name and age.
The idnum is initialized in the Student constructor.

The getID and setID getters and setters would be like this:.

 // return idnum
 public String getID(){
 return this.idnum;
 }

 // assign idnum
 public void setID(String idnum){
 this.idnum = idnum;
 }

34
copyright © 2020 www.onlineprogramminglessons.com For student use only

The last thing you need to make the toString() method. By using the super()
method you can call functions directly from the super Person class inside the
Student derived class. Here is the Student toString() method

// return student info as a string
 public String toString() {
 String sout = super.toString() + "\n";
 sout += " Your student id number is " + this.idnum;
 return sout;

 }

Once you got the Student class made then add programming statements to the
Lessons3.java file to obtain a student name, age and idnum. You will have to
make an additional getID() function to obtain a student id number from the key
board. Make a student object and use the obtained name, age and idnum values
from the methods of the Lesson3 class, then print out the student details. You
should get something like this:

Next use the getter methods to obtain the name and age from Person object p
and assign the name and age to the Student object s using the setter methods.
Give the student object a new id using the id setter method. Print out the student
object.

Lesson 3 Homework Question 2:

Make a Payroll class that inherits your previous homework Profession class that

stores a boolean or a String value to indicate if a worker works full time or part

time. Use your java main program file Homework3.java from Question 2.

Hello World
Please type in your name: Tom
How old are you? 24
Nice to meet you Tom
Tom You are 24 years old
Please type in your name: Bill
How old are you? 18
What is your student ID? S1234
Nice to meet you Bill
Bill You are 18 years old Your student id number is S1234

35
copyright © 2020 www.onlineprogramminglessons.com For student use only

private boolean fullTime;

You will need default and initializing constructors, getters, setters and a toString

methods. The initializing constructor would receive a profession title, salary and a

boolean indicating full time or part time, A true value would indicate full time

employment, where false value would indicate part time employment.

For the part time variable getter use:

 public boolean isFullTime();

 For the part time variable setter use:

 public void setFullTime(boolean partTime);

Store the Payroll class in a java file called Payroll.java.

In the main method of your Homework3.java program make an additional public
static boolean enterFullTime() method asking if a worker is full time or part time,

that returns a Boolean true or false value. If they enter ‘Y’ return true, if they enter

‘N’ return false.

boolean fullTime = enterFullTime();

Then instantiate a Payroll class object and pass this fullTime value to your Payroll

class constructor as well as the profession and salary of the worker.

Use the Payroll class toString method to print out the workers profession, pay

amount and indicate if it is a full time or part time worker.

You can still use file Homework3.java.

36
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson 4 Operators

Operators

Operators do operations on variables like addition + , subtraction – and
comparisons > etc. We now present all the Java operators with examples. Make a
java class with a main method called Lesson4.java and try each operator example
one by one. Type in the examples then run the program to see what it does.

Unary Operators

Unary operator act upon a single variable, adds or subtracts a number from 0.

int x = -5; // x = 0 - 5
int y= +5; // x = 0 + 5

System.out.println("-5 =" + x);
System.out.println("+5 =" + y);

Operator Description Example Result

+ Adds a number to 0 int x = +5; 5
- Subtracts a number from 0 int y= -5 -5

Arithmetic Operators

Arithmetic operators are used to do operations on numbers like addition and
subtraction.

You can type in the operation right inside the System.out.println() statement just
like this System.out.println(3+2) or System.out.println(3 > 2). Alternatively, you
can use variables instead.

 //arithmetic operators

int x = 5;
int y = 2
System.out.println(x + "+" + y + "=" + (x + y));

37
copyright © 2020 www.onlineprogramminglessons.com For student use only

Operator Description Example Result

+ Add two operands 5 +2 7
- Subtract right operand from the left 5 – 2 3

* Multiply two operands 5 * 2 6
/ Divide left operand by the right one 5 / 2 2

% Modulus - remainder of the division of left
operand by the right

5 % 2 3

Note: * and / have precedence over + and -

Comparison Operators

Comparison operators are used to compare values. Compound operators and
values are known as conditions. It either returns true or false according to the
condition. True and false variables and values are known as Boolean values.

Operator Description Example Result

 > Greater than - true if left operand is greater
than the right

 5 > 3 true

 < Less than - true if left operand is less than
the right

 5 < 3 false

 == Equal to - true if both operands are equal 5 == 5 true
 != Not equal to - true if operands are not equal 5!= 5 true

 >= Greater than or equal to - true if left
operand is greater than or equal to the right

5 >= 3 true

 <= Less than or equal to - true if left operand is
less than or equal to the right

 5 <= 3 true

x = 5;
y = 3;
System.out.println(x + ">" + y + "=" + (x > y)); // 5 > 3 = true

38
copyright © 2020 www.onlineprogramminglessons.com For student use only

Logical Operators

Logical operators are the and, or, not boolean operators.

Operator Description Example Result
 && true if both the operands are true true && true true

 || true if either of the operands is true true || false true

 ! true if operand is false
(complements the operand)

 ! false true

Logical operators only work on true and false values.

System.out.println(true && true); // prints true

boolean bx = false;
boolean by= true;

System.out.println(x + "&&" + y + "=" + (x && y)); // false && true = false
System.out.println(x + "||" + y + "=" + (x || y)); // false || true = true

System.out.println("!" + y + "=" + (! y)); // ! true = false

&& means both must be true to be true
|| means either can bw true to be true
! means opposite

Compound Conditions

Logical operators are combined with Conditional operators to give true or false
result values.

condition logical operator condition

where as a condition is:

value conditional operator value

39
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here at some examples you can try out:

int x = 5;
int y = 3
System.out.println(x > y && x < y); // prints out true
System.out.println(x > y || x < y); // prints out true

Note: || has precedence over && precedence means what is done first.

 System.out.println((x > y && x < y) || (x < y && x != y));

Use brackets to force precedence, the operations inside the round brackets are
performed first.

Todo:

Make your own compound conditions

Bitwise Operators

Bitwise operators act on operands as if they were binary digits. It operates bit by
bit. Binary numbers are base 2 and contain only 0 and 1’s. Every decimal number
has a binary equivalent. Every binary number has a decimal equivalent. For
example, decimal 2 is 0010 in binary and decimal 7 is binary 0111.
In the table below: 10 = (0000 1010 in binary) 4 = (0000 0100 in binary)

Operator Description Example Result

 & Bitwise AND 10 & 4 0 (0000 0000 in binary)
 | Bitwise OR 10 | 4 14 (0000 1110 in binary)

 ^ Bitwise XOR 10 ^ 4 14 (0000 1110 in binary)
 ~ Bitwise NOT

(flip bits)
~10 -11 (1111 0101 in binary)

System.out.println(10 | 4); // prints out 14

System.out.println(Integer.toString(10 | 4), 2) // prints binary 1110

40
copyright © 2020 www.onlineprogramminglessons.com For student use only

You may want to use variables values like 0 and 1 instead like this:
x = 0
y = 1
System.out.println(x & y); // 0

Using 0 and 1’s rather than numbers make the bitwise operations easier to
understand:

AND & OR | XOR ^ Complement ~

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1&1 =1

0 | 0 = 0
0 | 1 = 1
1 | 0 = 1
1 |1 =1

0 ^ 0 = 0
0 ^ 1 = 1
1 ^ 0 = 1
1 ^1 =0

~0 = 1
~1=0

For complement:
 (you need to use &1 just to get last bit. example: x = ~x & 1)

Shift Operators

Multiply and divide by powers of 2

 << left shift 10 << 2 40 (0010 1000 in binary)

>> signed right shift 10 >> 2 2 (0000 0010 in binary)
 >>> unsigned right shift 10 >>> 2 2 (0000 0010 in binary)

int x = 5;
System.out.println("x = " + x); // 5

// left shift operator
x = x << 3; // multiplies by powers of 2
System.out.println("x = " + x); // 40 because 5 * 2 * 2 * 2 = 40 (5 * 8) = 40

41
copyright © 2020 www.onlineprogramminglessons.com For student use only

// right shift operator
x = x >> 5; // divides by powers of 2
System.out.println("x = " + x); // 5 because 40 / 2 / 2 / 2 = 5 (40/8) = 5

Increment/Decrement Operators ++ - -

Increment operators ++ increment a variable value by 1 and decrement operators
-- decrement a value by 1.

They come in two versions, prefix increment/decrement value before or postfix
increment/decrement value after.

Prefix Increment before ++x

x is incremented then value of y is assigned the value of x

// pre increment operator
int x = 5;
System.out.println("x = " + x);
Int y = ++x;
System.out.println("x = " + x + " y = " + y); // x = 5 y = 5

 x y
 ------ ------
 int x = 5 5 ?
 y = ++x 6 6

x increments first then y get’s the value of x

post increment after x++

The value of y is assigned the value of x and then x is incremented

42
copyright © 2020 www.onlineprogramminglessons.com For student use only

// post increment operator
int x = 5;
System.out.println("x = " + x);
Int y = ++x;
System.out.println("x = " + x + " y = " + y); // x = 6 y = 5

 x y
 ------ ------
 int x = 5 5 ?
 y = x++ 6 5

y get’s the value of x first then x increments

prefix Decrement before --x

x is decremented then value of y is assigned the value of x

// pre decrement operator
int x = 5;
System.out.println("x = " + x);
Int y = --x;
System.out.println("x = " + x + " y = " + y); // x = 4 y = 4

 x y
 ------ ------
 int x = 5 5 ?
 y = ++x 4 4

x decrements first then y get’s the value of x

postfix decrement after y = x--

The value of y is assigned the value of x and then x is decremented

43
copyright © 2020 www.onlineprogramminglessons.com For student use only

// post decrement operator
int x = 5;
System.out.println("x = " + x);
Int y = x--;
System.out.println("x = " + x + " y = " + y); // x = 4 y = 5

 x y
 ------ ------
 int x = 5 5 ?
 y = x-- 4 5

y get’s the value of x first then x decrements

Increment decrement operators are usually used stand alone to increment or
decrement a variable value by 1 using:
x++;
x--;

Assignment Operators

Assignment operators are used to assign values to variables.
x = 5 is a simple assignment operator that assigns the value 5 on the right to the
variable a on the left. There are various compound operators in Java like x += 5
that adds to the variable and later assigns the same. It is equivalent to x = x + 5.

x=5;
System.out.println("x = " + x);
x += 5; // 10
System.out.println("x += 5 = " + x);

Operator Assignment Equivalent Result
 = x = 5 x = 5 5

 += x += 5 x = x + 5 10
 -= x -= 5 x = x – 5 5

 *= x *= 5 x = x * 5 25

 /= x /= 5 x = x / 5 5
 %= x %= 5 x = x % 5 0

44
copyright © 2020 www.onlineprogramminglessons.com For student use only

&= x &= 5 x = x & 5 0

|= x |= 5 x = x | 5 5
^= x ^= 1 x = x ^ 5 4

<<= x <<= 5 x = x << 2 16
>>= x >>= 5 x = x >> 2 4

String Operators

String operators operate on String objects, String objects contain string data and
are immutable meaning they cannot be changed internally.

There are many string operation’s, most of them are method calls. Here are just a
few of them:

 // declare and assign String
 String s1 = "hello";
 String s2 = "goodbye";

 // join two strings together
 String s3 = s1 + s2;
 System.out.println(s3); // hellogoodbye

 // print out length of string
 int len = s3.length();
 System.out.println(len); // 10

 // get a character from string
 char c = s3.charAt(0);
 System.out.println(c); // h

 //get a first 5 characters sub string index 0 to 5-1
 String s4 = s3.substring(0,5);
 System.out.println (s4); // hello

 // print out characters from index 5
 String s4 = s3.substring(5);
 System.out.println (s4); // there

45
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // add a character to a string
 String s5 = s3.substring(0,5)+ 'X' + s3.substring(5);
 System.out.println (s5); // helloXthere

 // make string lower case
 String s6 = s5.toLowerCase();
 System.out.println (s6); // helloxthere

 // make string upper case
 String s7 = s5.toUpperCase();
 System.out.println (s7); // HELLOXTHERE

// test if 2 strings are equal
System.out.println(s1.equals(s2)); // false

// test if 2 strings are equal but ignore case
System.out.println(s1.equalsIgnoreCase(s2)); // false

// test if 2 strings have the same memory location
System.out.println(s1 == s2)); // true

S2 = new String("there"); // make new memory location
System.out.println(s1 == s2)); // false

// test if 2 strings are less greater or equal
// -1 = less 0 = equal 1 = greater
System.out.println(s1.compareTo(s2)); // -1

Primitive data types

Primitive data types in java are char, int, long, float, double and boolean.
Primitive data types just store values in memory but have no methods to do
operations and just rely on operators like +,-,*,/,&.| etc. To do operations on
values using methods every primitive data type in Java has a corresponding class,
there are called Wrapper classes because thy wrap a primitive data type inside it.

46
copyright © 2020 www.onlineprogramminglessons.com For student use only

Example int has the corresponding wrapper class Integer. These corresponding
class are mainly used to do conversions from a numeric value to String and a
String to a numeric value.
To convert from a string to a int

Int x = Integer.parseInt("1234")

To convert from a int to a string we use the valueOf method from the String class.

String s = String.valueOf(x)

Here are all the primitive data types and corresponding wrapper classes.

Primitive
data type

Corresponding class Conversion from string

char Character "A".charAt(0);
short Short Short.parseShort("12")

int Integer Integer.parseInt("1234")
float Float Float.parseFloat("10.5")

double Double Double.parseDouble("10.765")
boolean Boolean Boolean.parseBoolean(true)

In your Lesson4.java file try out all the primitive data types and see how they
work. Convert strings to primitive data types and the primitive data types back to
strings, like this:

 int i = Integer.parseInt("1234");
 System.out.println(String.valueOf(i));

These wrapper classes have their own constructors to take in primitive values and
an Equals method to compare values for equality

Integer I1 = new Integer(5)
Integer i2 = new Integer(10)
System.out.println(i1.equals(i2)) // false

47
copyright © 2020 www.onlineprogramminglessons.com For student use only

There is also a compareTo method to compare values. If value is less then returns
a negative number, if greater return a positive number and if equals returns a 0.

System.out.println(i.compareTo(i2)); // -1 less than
System.out.println(i2.compareTo(i)); // 1 greater than
System.out.println(i.compareTo(i)); // 0 equal

These classes also do automatic conversions for you, this is called boxing. You can
concert a primitive to its class and a class back to its primitive.

 Integer i3 = 5;
 System.out.println(i3); // 5
 int x3 = i3;

System.out.println(x3); // 5

LESSON 4 HOMEWORK

1. Print out if a number is even, using just a print statement and a arithmetic

operator

2. Print out of a number is odd, using just a print statement and a arithmetic

operator

3. Swap 2 number using a temporary variable

4. Swap 2 numbers using operators + and -

5. Multiply a number by 8 using a shift operator

6. Divide a number by 8 using a shift operator

7. Using a print statement, add 2 numbers together and check if they are less

than multiplying them together

48
copyright © 2020 www.onlineprogramminglessons.com For student use only

8. Using a print statement, add 2 numbers together and check if they are less

than multiplying them together and greater then multiplying them together.

9. Using a print statement, add 2 numbers together and check if they are less

than multiplying them together or greater then multiplying them together

10. Make a string of your favourite word and replace the first letter with

another letter, hint use substring.

Example : change “hello” to “jello”

11. Make a string of your favourite word and replace the last letter with

another letter, hint use substring.

Example : change “jello” to “jelly”

12. Make a string of your favourite word and remove the middle letter, hint

use substring.

 Example : change “jelly” to “jely”

13. Make a string of your favourite word, Split it in the middle, make the first

part lower case and the second part upper case, hint use substring.

 Example : change “jely” to “jeLY”

 14. Using substring replace the last letter with the first letter in a word

 Example : change “jeLY” to “YeLj”

 15. Split the word in the middle put the last part at the first and the first part

 at the last

 Example : change “YeLj to “LjYe”

Call your Java file homework4.java

49
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 5 PROGRAMMING STATEMENTS

Programming statements allow you to write complete Java Program. We have
already looked at simple input, print and assignment statements. We now present
you with branch and loop programming statements. Start a new Java class
Lesson5.java to test all these programming statements.

Branch Control Statements

Branch control statements allow certain program statements to execute and
other not.

if statement

The if branch control statements use conditional operators from the previous
lesson to direct program flow.

If (condition)
 Statement(s)

When the condition is evaluated to be true the statements belonging to the if
statement execute. An if statement is a one-way branch operation.

// if statement
x = 5;
if (x == 5)
{

 System.out.println("x is 5");
 }

x is 5
I like Java Programming

50
copyright © 2020 www.onlineprogramminglessons.com For student use only

else-if statement

We now add an else statement to our if statement. An if-else control construct is
a two-way branch operation.

If (condition)
 statements
else
 statements
// if – else statement
x = 2;
if (x == 5)
{

System.out.println ("x is 5");
 }

else
{

System.out.println ("x is not 5");
 }

We can also have extra else if statements to make a multi-branch.

// multi if else
x = 10;
if (x == 5)
 System.out.println ("x is 5");
else if (x < 5)
 System.out.println ("x less than 5");
else if (x > 5)
 System.out.println ("x greater than 5");
System.out.println ("I like Java Programming")

x is not 5
I like Java Programming

x greater than 5
I like Java Programming

51
copyright © 2020 www.onlineprogramminglessons.com For student use only

Our multi branch if-else can also end with an else statement.

// multi if-else else
x = 5;
if (x < 5)

System.out.println ("x less than 5");
else if (x > 5)
 System.out.println("x greater than 5");

else
 System.out.println("x is 5");
System.out.println("I like Java Programming");

nested if statements

if statements can also be nested to make complicated conditions simpler.

// nested if statement
x = 5;
if (x >= 0)
{
 if (x > 5)
 System.out.println ("x greater than 5");
 else
 System.out.println ("x less than equal 5");
}

To do:
Add an else if statement to the inner if statement
Add an else statement to the first if statement.

x is 5
I like Java Programming

x less than equal 5
I like Java Programming

52
copyright © 2020 www.onlineprogramminglessons.com For student use only

switch statement

A switch statement is an organized if-else statement. It is a little limited since if
can only handle equal values. Switch statements work on char, int, float and
String.

 // switch statement
 x = 2;
 switch(x)
 {
 case 1:
 System.out.println("x is 1");
 break;
 case 2:
 System.out.println("x is 2");
 Break;
 case 3:
 System.out.println("x is 3");
 break;
 default:
 System.out.println("x is " + x);
 break;
 }

The break statements are optional, their purpose is to stop execution to the next
case statement. Take them out and see what happens.

Loop Control Statements

Loop control statements allow program statements to repeat themselves.

x is 2

53
copyright © 2020 www.onlineprogramminglessons.com For student use only

while loop

The while loop allows you to repeat programming statements repeatedly until
some condition is satisfied. While loops are used when you do not know how
many items you have.

The while loop requires an initialized counter, a condition, program statements
and then increment or decrement a counter.

Initialize counter
while condition:

statement(s)
 increment/decrement counter

Here is a while loop you can try out that prints out the number 0 to 4

// while loop
x = 0;
while (x <5)
{
 System.out.println(x);
 x++;
}

To do

Change the above while loop to print out the numbers 1 to 5.
Make a while loop that prints out numbers 5 to 1 backwards.

do loop

The do loop also known as a do-while loop allows you to repeat programming
statements repeatedly until some condition is satisfied. The condition is at the
end of the loop, so the programming statements execute at least once.

0
1
2
3
4

54
copyright © 2020 www.onlineprogramminglessons.com For student use only

The do loop requires an initialized counter, program statements, increment or
decrement a counter and finally a condition.

Initialize counter
do{

statement(s)
 increment/decrement counter

}
while condition;

When the condition is false the loop execution exits. do loops are used when you
want to execute a loop statement at least once and also when you do not know
how many items you have.

Here is a do loop you can try out that prints out the number 0 to 4

// do loop
x = 0;
do
{
 System.out.println(x);
 x++;
} while (x <5);

To do

Change the above do loop to print out the numbers 1 to 5.
Make a do loop that prints out numbers 5 to 1 backwards.

for Loop

A for loop, is much more automatic then the while loop but more difficult to use.
All loops must have counter mechanism. The for loop needs a start value, end
condition, step value. For loops are used when you know how many items you
have.

0
1
2
3
4

55
copyright © 2020 www.onlineprogramminglessons.com For student use only

for (start_value,end_condition, increment):
 statement(s)

Here we have a for loop to print out values 0 to 4

Note: We declare an index variable int i=0 inside the for loop for convenience.
The index variable I is only knows inside the for loop.

// for loop
for (int i=0;i<5;i++)
{

System.out.println (i);
 }

To do

Change the above for loop to print out the numbers 1 to 5.

Make a for loop that prints out numbers 5 to 1 backwards

Skill Testing Questions:

What loop do you use when you do not know how many items you have?
while loop

What loop do you use when you know how many items you have?
for loop

What loop do you use that execute the lop statements at least once?
do loop

0
1
2
3
4

56
copyright © 2020 www.onlineprogramminglessons.com For student use only

Nested for loops

Nested for loops are used to print out values by rows and columns.

// nested for loop
for (int r=0;r<5;r++)
{
 System.out.println(r + " : ");
 for (int c =0; c < 5; c++)
 System.out.print(c + " ")
 System.out.println ("")
}

Loops can also be used to print out characters in a string variable. We use the
length method of the String class to get the length of the string. We use the
charAt method from the String class to get each individual character from the
string accessed by index.

// print out characters in a string
s = "Hello";
for (int i=0;i<s.length();i++)

System.out.println(s.charAt(i));
 System.out.println("");

To do:
Print string backwards using the for loop

LESSON5 HOMEWORK

Exam Grader

Ask someone to enter an exam mark between 0 and 100. If they enter 90 or
above printout an “A”, 80 or above print out a “B”, 70 or above print out a “C”,
60 or above print out a “D” and “F” if below 60. Hint: use if else statements.

0 : 0 1 2 3 4
1 : 0 1 2 3 4
2 : 0 1 2 3 4
3 : 0 1 2 3 4
4 : 0 1 2 3 4

H
e
l
l
o

57
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can visualize a grade chart like this:

Mark Range Exam Grade

90 to 100 A
80 to 89 B

70 to 79 C
60 to 69 D

0 to 59 F

Mini Calculator

Make a mini calculator that takes two numbers and a operation like - , +, * and /.
Prompt to enter two number’s and a operation like this:

Enter first number: 3
Enter second number: 4
Enter (+, -. *. /) operation: +

Then print out the answer like this:
3 + 4 = 7

Hint: use a switch statement.
Use a while or do while loop so that they can repeatedly enter many calculations.
Terminate the program when they enter a letter like ‘X’ for the first number.

Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

 *
 * *
 * * *
 * * * *
 * * * * *

Ask the user how many rows they want.
Hint: use 2 nested for loops, start with a square of stars

58
copyright © 2020 www.onlineprogramminglessons.com For student use only

Enhanced Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

 *
 * * *
 * * * * *
 * * * * * * *
 * * * * * * * * *

Ask the user how many rows they want.

Hint: use 2 nested for loops, start with a square of stars

Reverse a String

Reverse a String using a while loop or a for loop. You will have to put the
reversed characters in a second string, since you cannot in Java directly change
the characters in the original String.

Test if a number is prime

Make a function called isPrime(x) that tests if a number is print. In a loop divide
the number between 2 to number-1 (or 2 to square root of number+1. For square
root use:

 x = (int)Math.sqrt(n);

If the number can be divided by any of the divisors then the number is not prime,
else it is prime. Print out the first 100 prime numbers.

The first 10 prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29

Print out all factors of a number

Make a function call factors(x) that will print out all the factors of a number. The
factors of a number is all the divisors divided by the number evenly.

59
copyright © 2020 www.onlineprogramminglessons.com For student use only

 Example:

The Factors of 50 are:
1
2
5
10
25
50

Print out all prime factors of a number

Make a function call prime_factors(x) that will print out all the prime factors of a
number. The prime factors of a number is all the prime number divisors divided
by the number evenly.

Example: 12 = 2 × 2 × 3

Following are the steps to find all prime factors.

0) Enter a number n
1) While n is divisible by 2, print 2 and integer divide n by 2
2) In a for loop from i = 3 to square root of n + 1 increment by 2

 in a while loop while n is divisible by i
 print i
 integer divide n by integer i

3) print n if it is greater than 2.

For square root use:

 x = Math.sqrt(n);

60
copyright © 2020 www.onlineprogramminglessons.com For student use only

Make a Guessing game

Ask the user to guess a number between 1 and 100. If they guess too high tell
them "Too High". If they guess too low tell them they guess "Too Low". If they
guess correct tell them "Congratulations you are Correct! ". Keep track how
many tries they took to guess. At the end of each game ask the user if they want
to play another game. After all games have been played print out the average
number of tries for all games played. Store the sum of the tries per game and
divide by the number of games played. Play up to a maximum of 10 games.

Make a java class called GuessingGame with a main function.

Use a constant for the maximum number to guess 100.

public static final int MAX_NUMBER = 100;

Place the constant right after you declare your class.

You will also need to generate random numbers to guess.
You can use this code to generate a random number:

Random rgen = new Random();
int number = rgen.nextInt(MAX_NUMBER)+ 1;

Where MAX_NUMBER is a constant to represent the maximum number to guess
100

You will also need to includes this at the top of your program:

 import java.util.Random;

to use the random number generator.

Also use a constant for the maximum number of tries to play 10.

public static final int MAX_TRIES = 10;

61
copyright © 2020 www.onlineprogramminglessons.com For student use only

You should have functions to print a welcome message, explaining how to play
the game, generate a random number, get a guess from the keyboard, check if a
guess is correct and print out the number of tries per game and average score for
all games. The main function should just call your functions in a loop. Call your
java file GuessingGame.java.

Object Oriented Guessing Game

Make a GuessGame class that store the random number to guess, and the
number of tries to guess the random number. The constructor should generate
the random number, and you should have a method to check if a guess is correct,
too low or too high. Return a 0 if they are correct a negative number id too low
and a positive number if too high. Also make a method to return the number of
tries. The main function should just handle inputs from the keyboard and printing
output to the console. The GuessGame class should not handle any input and
output, and is used, mainly to store data.

The main function would instantiate a new GuessingGame object per game.
The guessing game class should also have a static variable to store the sum of the
tries per game and the number of games.

 public static in TotalTries = 0.
 public static int NumGames = 0;

 Call your java file with the main function GuessingGame2.java

62
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON6 ARRAY, ARRAYLIST, LISTS, SETS and MAPS

ARRAYS

Arrays store many sequential values together. We have one dimensional arrays
and multi dimensional arrays. One dimensional arrays are considered a single row
of values having multiple column elements. You can visualize a one-dimensional
array as follows.

Value1 Value2 Value3 Value4 Value5

We declare and initialize 1 dimensional array as follows

int[] a = {1,2,3,4,5};

1 2 3 4 5

To get the length of an array you use the length public variable of the array.

int length = a.length;
 System.out.length(length);

Arrays locations are retrieved by an index

int x = a[0];
System.out.println(x);

We use for loops to print out values in array. Java does not print arrays
automatically for you. We use the length variable from the array to get the
length of the array and the square brackets and index [index] to retrieve a value
at a specified index.

 // print out array
 for (int i=0;i<a.length;i++)
 System.out.print (a[i] + " ");
 System.out.println("");

1

5

1 2 3 4 5

63
copyright © 2020 www.onlineprogramminglessons.com For student use only

We also use the square brackets [index] and index to assign a new value at an
array index

 a[0] = 8;

We again print out array to see new value:

 // print out array
 for (int i=0;i<a.length;i++)
 System.out.print (a[i] + " ");
 System.out.println("");

Allocating memory for a 1 dimensional array

We use new keyword, the data type and a specified size to allocate memory for
a one dimensional array . Here we allocate a one dimensional array with 5
elements.

int[] a2 = new int[5];

In Java all allocated array elements values are initialized to value 0.
In this situation you need to assign values separately.

Arrays locations are assigned by an index. All indexes start at 0. Here we assign
the numbers 1 to 5 to the array using indexes 0 to 4.

a2[0] = 1;

Specify size
of array

Specify which
element index
to access

8 2 3 4 5

64
copyright © 2020 www.onlineprogramminglessons.com For student use only

a2[1] = 2;
a2[2] = 3;
a2[3] = 4;
a2[4] = 5;

1 2 3 4 5

Print out array again

 // print out array
 for (int i=0;i<a.length;i++)
 System.out.print (a[i] + " ");
 System.out.println("");

To do

Allocate and initialize a 1 dimensional array of size 5. Use a for loop to initialize
and print out the values of the 1 dimensional array.
Use a formula like a[i] = i*2 + 4 to assign values to the array.

Two-dimensional arrays

Two-dimensional arrays are a grid of rows and columns. A 3 by 3 two-dimensional
array is visualized as follows. The rows are horizontal and the columns are
vertical.

1 2 3
4 5 6

7 8 9

Here we declare and initialize a two-dimensional array with the that were
displayed in the grid.

int [][] b = {{1,2,3},{4,5,6},{7,8,9}};

Each row has columns values enclosed in curly {} brackets like {1,2,3}.

1 2 3 4 5

65
copyright © 2020 www.onlineprogramminglessons.com For student use only

We use the length method of the two-dimensional array to get the number of
rows.

int rows = n.length;
System.out.println(rows); # 3

We use the length method of a specified row to get how many columns are in
that row

int columns = b[i].length
System.out.println(columns); # 3

The row index and column index of a two-dimensional array can be visualized as
follows. The row index is first and the column index second. All indexes start at 0.

[0][0] [0][1] [0][2]
[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

We retrieve values from the two-dimensional array by the row index and column
index. The row index is specified first and the column index is specified second.

 value = array_name [row index][column index];

x = b2[1][2];
System.out.println(x);

We print the values of a two- dimensional
array using nested for loops. The outer for loop prints out the rows the inner for
loop prints out the columns.

6

66
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here we print out the two dimensional array using two nested for loops.

 for (int r=0;r < b.length; r++)
 {
 for (int c=0;c < b[r].length; c++)
 {
 System.out.println(b[r][c] + " ");
 }
 System.out.println("");
 }

We assign values to the two-dimensional array by using row and column indexes.
The row index is specified first and the column index is specified second.

array_name [row index][column index] = value;

Here we assign the number 11 to the array using row index 1 and column index 2.

b2[1][2] = 11;

Here we again print out the two dimensional array using two nested for loops.

 for (int r=0;r < b.length; r++)
 {
 for (int c=0;c < b[r].length; c++)
 {
 System.out.println(b[r][c] + " ");
 }
 System.out.println("");
 }

1 2 3
4 5 11
7 8 9

Which row
column

Which row
index

1 2 3
4 5 6
7 8 9

67
copyright © 2020 www.onlineprogramminglessons.com For student use only

There may be instances when the number of columns are different for each row.

 // different column sizes
 int[][] b = {{1,2,3},{4,5,6,7},{8,9}};

to do:

Print out this two dimensional in nested for loops to see the different row
lengths.

Allocating memory for a 2 dimensional array

We use new keyword the data type and the specified rows and columns to
allocate memory for a two-dimensional array. Hare we allocate a two dimensional
array with 3 rows and 3 columns with default values of 0.

int[][] b2 = new int[3][3];

To do

Allocate and initialize a 2 dimensional array of size 3 row and 3 columns. Use a for
loop to initialize and print out the values of the 2 dimensional array.
Use a formula like a[i][j] = i*2 + 4 * j;

LESSON 6 HOMEWORK Part1

Question 1

Make an array to store 5 numbers 1 to 5.
Swap two values in an array. Print array before and after using a for loop.

Number of
columns

Number of
rows

68
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 2

Make an array of 10 numbers 1 to 10, print out the numbers in the array,
then add up all the numbers and print out the sum.

Question 3

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Ask the user of your program to enter a number in the array. Search for the
number in the array and report if it is found or not found.

Question 4

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Ask the user of your program to enter a number in the array. Search for the
number in the array and report the array index where the number was
found otherwise print -1 meaning no index found.

Question 5

Make an array of 10 numbers 1 to 10, print out the numbers in the array.
Reverse all the numbers in the array in-place using a loop. Hint: use swap
and 2 indexes i and j. Index i starts at the beginning of the array and index j
starts at the end of the array. The i’s increment and the j’s decrement.
Print out the reversed array.

Question 6

Make a 2 dimensional array of 3 rows and 3 columns. Fill the 2 dimensional
array with numbers 1 to 9. Add up the sum of all rows, and print the sum
at the end of each row. Add up the sums of all columns, and print the sums
at the end of each column. Your output should look like this.

69
copyright © 2020 www.onlineprogramminglessons.com For student use only

 1 2 3 : 6
 4 5 6 : 15
 7 8 9 : 24
--- --- ---
11 15 18

Question 7

Make an array to hold 10 numbers 1 to 10.
Generate 1000 random numbers between 1 and 10.
Keep track of the random numbers generated in your array.
Print out all the numbers and their counts from the array.
Print out the numbers with the smallest and largest count.
Print out the number of even and odd number counts.
You can make a random number like this:

int x = (int)(Math.random()*10) + 1;

Put all answers in a java file called Homework6.java

ARRAYLISTS

ArrayLists are expandable arrays. They are a little awkward to use but convenient.
An ArrayList needs to know what type of data type it will use by specify the data
type to be used inside diamond brackets <Integer>. The data type must be a
object. We use the Integer class to represent the primitive int data type, You need
to put the following import statements at the top of your Lesson4.java file so that
the Java compiler knows about ArrayList.

import java.util.ArrayList;

// To create an empty array list
ArrayList<Integer> list1 = new ArrayList<Integer>();

70
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // Add a value to a ArrayList
 list1.add(1);
 list1.add(2);
 list1.add(3);

 list1.add(4);
 list1.add(5);

// Print out array list

 System.out.println (list1) // [1,2,3,4,5];

When you use the ArrayList variable inside the System.out.println statement it is
actually calling the ArrayList toString() method.

 System.out.println (list1.toString())

 Get the number of elements in an ArrayList

Int x = list1.size();

System.out.println (x);

Get a value from the ArrayList at a specified location

x = list1.get(0);
System.out.println (x) ;

[1, 2, 3, 4, 5]

5

1

71
copyright © 2020 www.onlineprogramminglessons.com For student use only

Remove a ArrayList from a list

list1.remove (new Integer(3));
System.out.println (list1) ;

We have to use a Integer object to remove the value because the ArrayList stores
Integer objects not primitive data type int.

 Remove an item by index

list1.remove(0);
System.out.println (list1);

This remove method remove’s a value at a specified index, not by value.
Note: It is a little confusing to have the same name method remove to remove by
value or remove by Index.

Test if a value is in a ArrayList using the contains method. The contains method
returns true or false

System.out.println (list1.contains(7)) // false

Set a value at a specified index

list1.set(2,8);
System.out.println (list1) ;

Index 2 (4) gets the new value 8

[1, 2, 4, 5]

[2, 4, 5]

[8, 4, 5]

72
copyright © 2020 www.onlineprogramminglessons.com For student use only

Check if a value is in an ArrayList

boolean bin = list1.contains(4);
System.out.println (list1) ;

HASHSETS

HashSets are like ArrayLists but store values internally by a calculated index. They
only store unique values, no duplicates are allowed. To keep track of values in a
HashSet, each value is stored in a calculated location. A HashSet need to know
what type of data type it will use by specify the data type to be used inside
triangle brackets <Integer>. You need to put the following import statements at
the top of your Lesson4.java file so that the Java compiler knows about HashSet.

import java.util.HashSet;

make hashset

HashSet<Integer> set1 = new HashSet<Integer>();

 add value to hash set

set1.add(5);

try to add duplicate value to hash set

set1.add(5);

try to add another duplicate value to hash set

set1.add(5);

true

73
copyright © 2020 www.onlineprogramminglessons.com For student use only

print out hash set

System.out.println(set1);

Print out hash set size

 System.out.println(set1.size());

Check if the set contains a certain value using the contains method. The contains
method returns true if the set contains the item.

System.out.println(set1.contains(5));

remove a item by value from hash set

set1.remove(5);
 System.out.println(set1);

Union of two sets using addAll function

Set<Integer> s3 = new Set<Integer> ();
s3.add(1);
s3.add(2);
s3.add(3);

Set<Integer> s4= new Set<Integer> ();
s4.add(5);
s4.add(6);
s4.add(7);

[5]

[]

true

1

74
copyright © 2020 www.onlineprogramminglessons.com For student use only

s3.addAll(s4);
System.out.println(s3);

Intersection of two sets using retainAll() function

Set<Integer> s3 = new Set<Integer> ();
s3.add(1);
s3.add(2);
s3.add(3);

Set<Integer> s4= new Set<Integer> ();
s4.add(5);
s4.add(2);
s4.add(3);

s3.retainAll(s4);
System.out.println(s3);

set of letters

Put all letters from a string into a set, and print out the set, and discover a new
word.

String s2 = "tomorrow";
System.out.println(s2);
HashSet<Character> set2 = new HashSet<Character>();
for (int i=0;i< s2.length();i++)

 set2.add(s2.charAt(i));

 System.out.println(set2);

[1,2,3,4,5,6]

[2,3]

75
copyright © 2020 www.onlineprogramminglessons.com For student use only

Try lots of different word, don’t stop until a new word is found.

HASHMAP

A HashMap associates a key with a value. A HashMap can have many keys and
corresponding values. Think of a HashMap like a telephone book with the name
as the key and the telephone number as the value. HashMap are analogous to
Dictionaries in other programming languages. Values in a hash map are stored in
a calculated location based on the key.

A HashMap needs to know what type of data type it will use, the data type is
specified inside triangle brackets <String, String>. The first data type is for the key
and the second data type is for the value.

You need to put the following import statements at the top of your Lesson4.java
file so that the Java compiler knows about the HashMap.

import java.util.HashMap;

make empty map

 HashMap<String,String> map1 = new HashMap<String,String>();

add key and values to HashMap

map1.put("name","Tom");
 map1.put("email","tom@mail.com");
 map1.put("phone","123-4567");

print out HashMap

 System.out.println(map1);

tomorrow
[r, t, w, m, o]

76
copyright © 2020 www.onlineprogramminglessons.com For student use only

Print out number of entries in HashMap

System.out.println(map1.size())

Get values From a HashMap for key and printout values.

 System.out.println(map1.get("name"));
 System.out.println(map1.get("email"));
 System.out.println(map1.get("phone"));

Print out keys and value pairs from a HashMap using entrySet

System.out.println(map1.entrySet());

Print keys of a HashMap using keySet

System.out.println(map1.keySet());

[name=Tom, email=tom@mail.com, phone=123-4567]

Tom
tom@mail.com
123-4567

[name=Tom, email=tom@mail.com, phone=123-4567]

3

77
copyright © 2020 www.onlineprogramminglessons.com For student use only

print values of a HashMap using values

System.out.println(map1.values());

Test if a hash map contains a key

System.out.println(map1.containsKey(“name")) ;

 Test if a hash map contains value

 System.out.println(map1.containsValue("Tom")) ;

Type all the above examples in your file lesson6.java and, make sure you get the
same results.

[name,email, phone]

[Tom, tom@mail.com, 123-4567]

true

true

78
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 6 HOMEWORK Part2

Question 7

Make an ArrayList called animals of your 5 favorite animals like: cat, dog, tiger,
monkey and mouse.

Make an ArrayList called sounds of your 5 favorite animals sounds:
“meow”,”bark”,”roar”, “ee ee ee” and ”squeak squeak”

In a loop ask what sound each animal make?

EXAMPLE: What sound does a cat make?

 Using the values in the sound ArrayList, Tell them if that are right or wrong,
and keep track of the correct answers.
At the end of the program tell them their score.

Question 8

Make an ArrayList called list1 of your favorite animals like: elephant, cat and
dog. Print out the list of animals.

Ask the user of your program to type in name of one of the animal names from
your list, that they don’t like.

Remove the animal from this list and put into another list called list2.

Then ask them to type in the name of an animal they do like. Add this name to
list1 and to list2.

Then print out the animals list1 and list2

79
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 9

From question5 put all the animals from animal list1 and list2 into a set called
set1. Then take all the animals from list1 and list2 that are common between
them and put into another set called set2. Print out both sets.

Question 10

Make a HashMap map1 of your favorite animal kinds like (cat, dog, tiger). Give
each animal a name (Tom, Sally, Rudolf) . Use the animal name as the key and
the animal kind as the value.
Example: fluffy cat
Then make another HashMap map2 , use the animal kind (cat, dog, tiger). as the
key and the animal sound (meow,bark,roar) as the value.
Example: cat meow

Use the same animal kind’s that were in the first HashMap.
Print out the keys ((Tom, Sally, Rudolf) of the first HashMap.
Ask the user to type in one of the animal names.
Get the animal kind ((cat, dog, tiger) from the first HashMap map1.

Print to the screen the name of the animal and what kind of animal it is like:
Fluffy is a cat

Ask the user what kind of sound a cat makes?
From the second HashMap get the sound that animal makes. If they guess the
correct sound then tell then correct or tell them out what sound animal make’s
like: Cat’s meow

 Put your code in the same file Homework6.java

80
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 7 OVERLOADING , OVERRIDING, INTERFACES AND GENERICS

Overloading

Overloading lets you have methods with the same name but has different
parameter lists. Do not confuse overloading with overriding with. Overriding
means same method name but same parameter list. Overloading means same
method name but different parameter list signature. When you make different
constructors all with different parameters this is overloading as follows:

// default constructor
 public Person(){
 this.name = "";
 this.age = 0;
 }

// initializing constructor
 public Person(String name, int age){
 this.name = name;
 this.age = age;

}

The default constructor initialize to default values, the initializing constructor
initializes to values passed to it,

copy constructor

A copy constructor copies the values from an existing object. The copy
constructor initializes variables from a another known same class object and in
our case would be another Person object.

 // copy constructor
 public Person(Person p){
 this.name = p.name;
 this.age = p.age;

}

81
copyright © 2020 www.onlineprogramminglessons.com For student use only

copy constructor for a derived class.

In this situation the derived copy constructor passes the derived object to the
super class by calling the super keyword. The derived object contains a super class
object internally.

 // derived class copy constructor

public Student(Student s){
 super(s);

 this.studentID = s.studentID;
 }

Todo:

Add the copy constructor to your Person class and to your derived Student class
from previous lessons. The Student derived class would have to pass the Student
to the Person class using the super keyword.

Overriding

Overriding allows you to call the methods of a derived class over the methods of
a super class. The derived method has the same name and parameter list
signature of a super class method. You have all ready used an overridden
method’s in your Person and Student classes the toString method.

 // return Person info as a string
 public String toString() {
 String sout = "Nice to meet you " + this.name + "\n";
 sout += this.name + " You are " + this.age + " years old";
 return;
 }

82
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // return Student info as a string
 public String toString() {

 String sout = super.toString() + "\n";
 sout += " Your student id number is " + this.idnum;
 return sout;
}

There is another important overridden method you should know about, the
equals method. It returns true if two Objects are equal either by same memory
location or optionally by value.

Object class equals method:

// compare two objects having the same memory address
public boolean equals(Object obj) {
 return (this == obj);

}

Right now it just compare’s the address of two objects. You can overload it to
compare if two object values are equal instead. We will make an equals method
for the Person class to test if two Person objects have the same name and age..
We need to use the instanceof operator to test if the obj parameter is a Person
Object. Inside the if statement we compare if two person objects names and ages
are equal.

83
copyright © 2020 www.onlineprogramminglessons.com For student use only

Person class equals method:

public boolean equals(Object obj)

{
 If obj != null)
 {

 if(obj instanceof Person)
 {
 Person p = (Person) obj;

 // return if person name and age are equal
 return name.equals(p.name) && age == p.age
 }
 }
 return false;

}

To do

Add an equals method to your Person class to test if two person names are equal.

Equals method with the class name as a parameter

For convenience you can also make an equals method that takes a Person
parameter instead of an Object parameter. This equals method does not override
the Object equals method, it is just for convenience only.

 equals method using Person parameter:

 public boolean equals(Person p)
 {
 If(p != null)
 // return if person names are equal
 return name.equals(p.name) && age == p.agel
 else return false;

}

84
copyright © 2020 www.onlineprogramminglessons.com For student use only

This is a very interesting situation the first equals method overrides the equals
method of the Object class (same method name same parameters). The two
equals method the Object parameter equals method and the Person parameter
equals method overloads each other. (Same method name different parameters).

To do

Add the Person parameter equals method to your Person class.

 If the equals method is called with a Object argument then the equals method
with the Object parameter is called.

public boolean equals(Object obj)

If the equals method is called with a Person object argument then
the equals method with the Person object parameter is called.

public boolean equals(Person p)

Todo

Make a new class file called Lesson7.java with a main method. Make some Person
Objects with same name and some with different names. Using the two Person
objects call the Person object equals method. Print out the results using
System.out.println();

Adding equals methods to a derived class

We can also add the equals methods to a derived class. This can be a little tricky
to do because we have more things to compare. For the derived class equals
methods we call the equals methods from the super class and compare the result
with the values in the derive class. When we call the equals method from the
super class we pass the derive object to it. Note: the derive Student object also
contains the base class Person object. For the student derived class we compare
the Person name with the StudentID of the Student class. Here is the Student
equals method using the Object parameter.

85
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // Student class equals method using Object parameter:
 public boolean equals(Object obj)

{
 If(obj != null)
 {

 if(obj instanceof Student)
 {
 Student s2 = (Student) obj;

 return super.equals(s2) && idnum.equals(s2.idnum);
 }
 }
 return false;
 }

Here is the Student equals method using the Student parameter.

 // equals method using Student parameter:
 public boolean equals(Student s2)

{
 If (s2 != null)

 return super.equals(s2) && idnum.equals(s2.idnum);
 else return false;

}
Todo

Add both equals method to the Student class. the object parameter equals
method and the Student parameter equals method.

INTERFACES

The purpose if the interface is to specify what methods a class should have and to
represent objects that implement it. The interface has only pure abstract
methods. Pure abstract methods are method definitions that have no
programming statements that end in a semi colon. The code is to be implemented
by the class that implements the interface.

86
copyright © 2020 www.onlineprogramminglessons.com For student use only

The interface becomes the super class for the class it implements. An interface
starts with the interface keywords and then contains all the pure abstract
method definitions:

interface interface_name
{
 pure_abstract_method_definition(s);
}

Calculator Interface

We have made a sample interface for you, that defines the methods for a simple
calculator class. You can put the ICalculator interface in a file called
ICalculator.java

/*
 * ICalculator interface
 * specifies the method a ICalculator should have
 */
interface ICalculator {
 public double add(double a, double b);
 public double sub(double a, double b);
 public double mult(double a, double b);
 public double divide(double a, double b);
}

Note: the public modifier is optional, some java compilers make you remove it.

To use an interface the class must implement it using the keyword implements.
The class must write code for all the methods that are specified in the interface.

public class class_name implements interface_name
{
 methods_to_implement
}

87
copyright © 2020 www.onlineprogramminglessons.com For student use only

A class implementing the ICalculator interface is as follows: You can put into an
class file called MyCalculator.java

/*
 * class MyCalculator implements ICalculator interface
 * implements the methods of the ICalculator interface
 */
public class MyCalculator implements ICalculator{

 public double add(double a, double b){
 return a + b;
 }
 public double sub(double a, double b){
 return a - b;
 }
 public double mult(double a, double b){
 return a * b
 }
 public double divide(double a, double b){
 return a/b;
 }
}

To do

Add a main method to the MyCalculator Java file. You will have to instantiate a
MyCalculator object in your main class because the MyCalculator class methods
are not static. We represent the MyCalculator by the ICalculator interface.

ICalculator calc = new Calculator();

Test each method in the calculate object inside a System.out.println
statement.

Comparable Interface

We have already used java classes that implement the Comparable interface. The
String and Integer class all implement the Comparable Interface having the
compareTo method.

88
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // Comparable interface:
public interface Comparable
{

 int compareTo(Object obj2);
}

The compareTo method returns a negative number if the current executing
object value is less than the parameter obj2, returns a positive number if the
object value is greater than the parameter obj2 value and returns 0 if the object
value is equal to the parameter obj2 value

To use the compareTo method in your class you must implements the
Comparable interface.

public class MyClass implements Comparable

Add a compareTo method to your Person class, so you can compare person
names. Your person class must now implement the Comparable interface using
the implements keyword.

 public class Person implements Comparable {

You will need to use the instanceof operator as we did above in the equals
method to test if the obj parameter is a Person Object.

 // compare two persons
 public int compareTo(Object obj)

{
 If(obj != null)
 {

 if(obj instanceof Person)
 {
 Person p2 = (Person) obj;
 return name.compareTo(p2.name);
 }

 }
 return 0;
 }

89
copyright © 2020 www.onlineprogramminglessons.com For student use only

Todo

In your Lesson7.java main method, make some persons with different names.
Using the compareTo method print out the results of comparing different and
same Person objects, using System.out.println().

Adding the compareTo method to a derived class

We can also add the compareTo methods to a derived class. This can be a little
tricky to do because we have more things to compare. In the compareTo method
we only need to compare a value in the derived class when the result of the
super compareTo method is equal. (a 0 value).

 // compare to method of Student derived class
 public int compareTo(Object obj)
 {

 If(obj != null)
 {

 if(obj instanceof Student)
 {
 Student s2 = (Student) obj;
 If(super.compareTo(s2) == 0)
 return idnum.compareTo(s2.idnum);
 else
 return super.compareTo(s2)
 }
 }
 return 0;
 }

The Student derived class definition would now be

public class Student extends Person implements Comparable

when it implements the Comparable interface.

To do

Add the compareTo method to your derived Student class. In your Lesson7 main
instantiate some Student objects and compare them.

90
copyright © 2020 www.onlineprogramminglessons.com For student use only

GENERICS

Generics allow a class to a have a specified data type when it is declared and
instantiated. The specified data type in the Generic class all inherit from the
Object class. The Object class is the super class of all classes, and can represent
any other class. The Object class has a few methods available to do things with,
just methods like equals, toString() etc. But no compares. The specified data type
in a Generic is actually an Object data type. Generics are very awkward and
frustration to use in Java. You will see soon.

We have already used Generics with the ArrayList, HashSet and HashMap when
you specified the data types in diamond <> brackets to specify what data type
they should use. Example specifying the data the for an ArrayList,

ArrayList<Integer> list1 = new ArrayList<Integer>();

This means the ArrayList will hold an Integer data type that allows you to use int
numbers.

You define a Generic class like this:

access_modifier class_name<T>
{
 T variable name;
 additional variables
 constructors
 T getters
 setters(T)
 equals
 toString
}

The T can represent any class that the generic class will use.

91
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here is a simple Generic class that holds a single generic variable TItem. The T
represents any data type that will be specified when the constructor is called.

 TItem<Integer> titem = new TItem<Integer>();

You can put the TItem into a class file called TItem.java

// Simple Generic class to hold a generic data type
public class TItem<T>
{
 private T item; // generic variable

 // construct TItem
 public TItem(T item)
 {
 this. item = item;
 }

 // return item
 public T getItem()
 {
 return item;
 }

 // assign item
 public void setItem(T item)
 {
 this.item = item;
 }

 // return data as a string
 public String toString(){
 return this.item.toString();
 }
 }

92
copyright © 2020 www.onlineprogramminglessons.com For student use only

Todo

Put the TItem class in a file called TItem.java, in your Lesson7.java file instantiate
the TItem class like this

 TItem<Integer> tItem = new TItem<Integer>(5);

Call the getItem method to print out the return value. Using the setItem method
assign a new value to the TItem object like 8 then call the getItem method again
to print out the return value. Finally print out the return value from the toString
method.

Todo

Instantiate a TItem class with a String instead of a Integer.

Add a copy constructor to the TItem class.

 // copy TItem
 public TItem(TItem<T> tItem)
 {
 data = tItem.data;
 }

Adding a equals method to a generic class:

We now add three different equals method’s to our TItem generic class

93
copyright © 2020 www.onlineprogramminglessons.com For student use only

The first one receives an Object parameter.

public boolean equals(Object obj)
 {
 If(obj != null)
 {

 if (obj instanceof TItem<?>)
 {
 TItem<?> t = (TItem<?>) obj;
 if (item.equals(t.item))
 {
 return true;
 }
 }
 }
 return false;

}

The above equals method overrides the equals method of the Object class.
Notice the TItem<T> has been replace with TItem<?> the ? is called a wildcard
and accepts any class data type. This is needed since at compile time the object
can be any class data type.

The second equals method takes a TItem object for convenience and compares
to TItem objects. This is a standalone method but does not override the equals
method in the Object class.

 // return true if 2 Item have same data
 public boolean equals(TItem<T> tItem){

 if(item != null)
 return this.item.equals(tItem.item);
 else return false;
 }

The thirds one just takes a T data object not a TItem object. This is just to
compare this TItem object with a T data object.

94
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // return true if Item have same data
 public boolean equals(T item){
 return this.item.equals(item);
 }

The most appropriate equals method will be called by the compiler.

Note: With some Java compilers the public boolean equals(T item) method
cannot coexist with the public boolean equals(Object obj) since the java
compiler thinks the T is a Object.

Todo

Add the above equals method to the TItem class. In your Lesson7.java file, make
another TItem object with another value, then print out if the two item objects
are equal.

Make some more generic TItem object’s of type String, Double, Character etc,
and test if they are equal.

The Generic data type must be classes like Integer, Double, Float, Character not
primitive data type int, double, float and char. You can still use primitive data
type values. The java complier will automatically convert a primitive data type to
its corresponding Class. Example int 1234 get’s converted to Integer, this is called
boxing.

GENERIC INTERFACES

Interfaces can also be Generic to. The Comparator interface also has generic
version where T can be any class that can be compared.

 Compararable Generic interface

public interface Comparable<T>
{

 int compareTo(T obj);
}

95
copyright © 2020 www.onlineprogramminglessons.com For student use only

With the use of Generics we can add a CompareTo method to our Person class
that takes a Person rather than an Object.

 // compare 2 person names
 public int CompareTo(Person p)
 {
 If(p != null)
 return this.name.compareTo(p.name);
 else return 0;
 }

Our Person class definition would then look like this:

 public class Person implements Comparable<Person>

Add this compareTo method to your Person class. You may need to remove or
comment out the public int compareTo(Object obj) method if get a name clash
error. Then in the Lesson7 main function try it out, compare two person objects.

Adding a compareTo method to a derived class that implements the Generic
Comparable interface.

The compareTo method will now take a Student parameter rather than a Object
parameter.

 // compare to method of Student class using Student parameter
 public int compareTo(Student s2)
 {
 If(s2 != null)
 {
 If(super.compareTo(s2) == 0)
 return idnum.compareTo(s2.idnum);
 else
 return super.compareTo(s2)
 }
 return 0;
 }

96
copyright © 2020 www.onlineprogramminglessons.com For student use only

You need to rewrite the Student class definition as follows to use the Generic
Comparable interface.

public class Student extends Person implements Comparable<Person>

rather than

public class Student extends Person implements Comparable<Student>

This is because the Generic Comparable interface cannot handle inheritance.
You will get this error.

GENERIC CLASSES IMPLEMENTING GENERIC INTERFACES

A generic class implementing the Comparable interface would be like this

public class MyGenericClass<T extends Comparable<T> > implements
Comparable<T> {
}

For our TItem class it would look like this:

public class TItem<T extends Comparable<T> > implements Comparable<T> {
}
T needs to extends Comparable<T> because T does not know anything about the
compareTo method and we need to tell the java complier that T extends
Comparable . We use the extends keyword instead of the implements keyword
because we want to use the compareTo method of the Comparable object
represented by T

implements Comparable<T> lets the compareTo method in the TItem class to
have a T parameter.

error: Comparable cannot be inherited with different arguments: <Student> and <Person>

97
copyright © 2020 www.onlineprogramminglessons.com For student use only

Todo

 Have your TItem class implement the Comparable interface to compare the T
data. Add a compareTo method to your TItem class that will compare T data.

public int compareTo(T data)
 {
 // compare the 2 data elements and return the result
 return this.data.compareTo(data);
 }

In your Lesson7.java file use your TItem objects to compare values. Print out the
results using System.out.println statements.

Using the Generic CompareTo on A Generic class

Using the generic compareTo on a generic classes is a little awkward since you
must compare a generic class with a generic data type. Your TItem class definition
will now look like this.

public class TItem<T extends Comparable<? super T>> implements
Comparable<TItem<T>>

? is called a wildcard and the super keyword means that ? is to accept super types
of T. If T is a Integer then T would inherit the compareTo method.

Todo

Add the compareTo method to the TItem class to compare two TItem Objects.
You need to update you class definition as above. Your second compareTo
method will now look like this:

98
copyright © 2020 www.onlineprogramminglessons.com For student use only

 public int compareTo(TItem<T> tItem2)
 {
 If(titem2 != null)
 // compare the 2 TItem class objects using the data element
 return this.data.compareTo(tItem2.data);
 else return 0;
 }

Todo

In your Lesson7.java file use your TItem objects to compare other TItem objects.
Print out the results using System.out.println statements.

Array of Generic Objects

This is always a difficult thing to do. It is difficult to do because people do not
realize you cannot create an Array of generic Object s, you just need to make an
array of Objects only without specifying the data type. Once you realize this all
your problems are over. The complier cannot make the array of your Generic
Object because it does not know the data type yet until the program runs. It
thinks the generic T is an Object not a specified Integer or String, so you do not
need to specify the T when your create the array. You still need to specify the T
data type when you define the array variable.

Create an array of generic TItem’s:

TItem<Integer>[] items = new TItem[5];

Optionally you can type cast to your array data type:
 TItem<Integer>[] items = (TItem<Integer>[])new TItem[5];

Note: you need to ignore any compiler warnings, or add code to suppress the
error.

@SuppressWarnings("unchecked")
 TItem<Integer>[] items = new TItem[5];

99
copyright © 2020 www.onlineprogramminglessons.com For student use only

Once you have an array of TItems you can add TItem object to it

 Items [0] = new TItem<Integer>(1);

Todo

Make an array of 5 Generic TItems and in a loop fill them with some values.
In another loop print out the values, compare adjacent values and test if they are
equal.

Making our own Generic Interface

We will make a generic interface called TICalculator that can use any specified
DataType T.

Make a interface called TICalculator.java as follows:

/*
 * Generic TICalculator interface
 * specifies the methods a Generic Calculator should have
 */

public interface TICalculator<T> {

 public T add(T a, T b);
 public T sub(T a, T b);
 public T mult(T a, T b);
 public T divide(T a, T b);

GENERIC CALCULATOR

We now make a Generic Calculator that implement the TICalculator.
We will name the calculator MyTICalculator and the file MyTICalculator.java
The solution is very awkward because the T does not have any arithmetic
operators like add or subtract.

100
copyright © 2020 www.onlineprogramminglessons.com For student use only

 Also the compiler cannot convert T to its primitive data type to the arithmetic
operation like +,-*./. Instead we use the instance operator to find out what our
data type and then type cast T to that data type.

/*
 * generic class MyTICalculator that implements the methods
 * of the TICalculator interface
 */

public class TCalculator<T> implements TICalculator<T>{

 public T add(T a, T b){

 if(a instanceof Integer)
 return (T)(Integer)((Integer)a + (Integer)b);

 else if(a instanceof Double)
 return (T)(Double)((Double)a + (Double)b);

 else if(a instanceof String)
 return (T)(String)((String)a + (String)b);

 else return null;
 }
}

Although not a optimum solution all we are doing is checking what data type our
data is and then type casting our data to that data type so we can use the +
operator. Once we do the addition we type cast the data back to our generic T
data type.

A different approach is to use overloading, that has separate methods for the
different data types, where as the Generic method just returns null.

101
copyright © 2020 www.onlineprogramminglessons.com For student use only

public class MyTCalculator<T> implements TICalculator<T>{

 public int add(int a, int b){

 return a + b;
 }

 public double add(double a, double b){

 return a + b;
 }

 public T add (T a, T b)
 {
 return null;
 }

 // etc
}

I am sure there are other solutions.

Todo

Type in the generic calculator and use the methods you like or a combination of
both or come with another elegant solution of your own. Add the reset of the
methods, sub, mult and divide. Make a main method to test all the methods, try
with many different data types like Integer, Double and String. String may not
work in all situations or solutions.

 MyTCalculator<Integer> calc = new MyTCalculator<Integer>();
 System.out.println(calc.add(3,4));

 MyTCalculator<Double> calc2 = new MyTCalculator<Double>();
 System.out.println(calc2.add(3.7,4.4));

102
copyright © 2020 www.onlineprogramminglessons.com For student use only

 MyTCalculator<String> calc3 = new MyTCalculator<String>();
 System.out.println(calc3.add("happy","sad"));

You should get something like this:

LESSON 7 HOMEWORK

Question 1

Add the copy constructor to your Profession class and to your derived Payroll
class from previous lesson 3. The Payroll derived class would have to pass the
Payroll object to the Profession class using the super keyword. In your main
method of Homework7.java make a few Professions and Payrolls and print them
out, then make a copy of each one using the copy constructor.

Question 2

Add the equals and compare To methods to your Profession and Payroll class
from Lesson 3. The Profession class should compare the profession and/or salary,
and the Payroll class can compare the bonus and optionally the result from the
Profession class. In your main method of Homework7.java make a few Profession
and Payroll’s and print them out, then check if they are equal using the equals
method and compare the objects using the compareTo method, then print out
the results.

7
8.1
happysad

103
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 3

Make a Interface called IAnimal that has a void method sound().

interface IAnimal {

 public void sound();
}

Put the interface in a java file called IAnimal.java.

Make a class called Cat that implements the IAnimal interface. It has a constructor
that receives a name, a sound method that prints out “meow” and a toString()
method the prints out the name of the animal and type. Put this in a java file
called Cat.java.

Make a class called Dog that implements the IAnimal interface. It has a
constructor that receives a name, a sound method that prints out “bark” and a
toString() method the prints out the name of the animal and type. Put this in a
java file called Dog.java.

Make a class called Tiger that implements the IAnimal interface. It has a
constructor that receives a name, a sound method that prints out “roar” and a
toString() method the prints out the name of the animal and type. Put this in a
java file called Tiger.java.
Make a class of your favorite Animal that implements the IAnimal interface. It has
a constructor that receives a name, a sound method that prints out “????” and a
toString() method the prints out the name of the animal and type. Put this in a
java file called ????.java.

Your toString method should return the animal name what kind of animal it is like:

“I am Fluffy and I am a cat”

104
copyright © 2020 www.onlineprogramminglessons.com For student use only

In your main method of Homework7.java make the 4 four animals and print out
what each animal says by first calling the toString method and then the sound
method. You may want to put all the animals in a IAnimal array and print in a
loop.
 IAnimal[] animals = new IAnimal[4];

This is possible because an interface can represent any class that implements it.

An example output is:

“I am Fluffy I am a cat”
“meow”

Question 4

Add the compare To methods to your Profession and Payroll class from
Question2 , using the Generic Comparable interface Comparable<Profession>.
Each will receive a Profession and Payroll parameter respectively. The Profession
class should compare the profession and/or salary and the Payroll class can
compare the bonus and optionally the result from the Profession class. The
derived class Payroll must implement Comparable<Profession> not
Comparable<Payroll> to avoid a name clash.
Check if the homework 7 program still work’s the same.

Question 5

Make generic Animal class called TAnimal that can hold any type of the animals
Cat, Dog, Tiger, etc. from Question 3 that implements the IAnimal interface also
from Question 3

public class TAnimal<T extends IAnimal> implements IAnimal

The TAnimal class should have a generic instance variable T animal and T Animal
getters and setters. We need to use <T extends IAnimal> because we want the
compiler to know that T will represent a IAnimal so we can call the sound method
from the animal instance variable. The IAnimal interface specifies the sound
method() print out a animal sound.

105
copyright © 2020 www.onlineprogramminglessons.com For student use only

interface IAnimal {
 public void sound();
}

In the main method of Homework 7.java make some animals and print them out
with a sound like this:

 TAnimal<Cat> cat = new TAnimal<Cat>(new Cat("Tom"));
 cat.sound();

Make an array of Generic TAnimals. When you make a Generic array you do not
specify the data type but have to suppress any warnings.

 @SuppressWarnings("unchecked")
 TAnimal[] animals = new TAnimal[3];

 Put some IAnimals in the animals array. You can use the animals you made
above or make some new ones

 animals[0] = new TAnimal<Cat>(new Cat("tom"));
 animals[1] = new TAnimal<Dog>(new Dog("bill"));
 animals[2] = new TAnimal<Tiger>(new Tiger("george"));

Print out the animal and then call the sound method.

 for(int i=0;i<animals.length;i++)
 {
 System.out.println(animals[i].toString());
 animals[i].sound();
 }

You should get something like this:

“I am Fluffy I am a cat”
“meow”

106
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 6

Make a generic TIAnimal interface that has an additional method called talk that
takes a Generic parameter that let’s two animals to talk to each other. TIAnimal
extends IAnimal interface from Question 5.

interface TIAnimal<T> extends IAnimal{

 public void talk(T animal2);
}

where the IAnimal interface from Question 3 is:

interface IAnimal {

 public void sound();
}

Make a generic class called TalkingTAnimal that extends TAnimal that can hold
any type of the animals Cat, Dog, Tiger, etc. from Question 3 that implements the
IAnimal interface.
public class TalkingTAnimal<T extends IAnimal> extends TAnimal<T>
 implements TIAnimal<TalkingTAnimal<T>>

<T extends IAnimal> means we want the compiler that T represents a IAnimal
so we can call the sound method from it.

extends TAnimal<T> means we want to use all the methods from the super
class TAnimal
TIAnimal<TalkingTAnimal<T>> means we want the talk method parameter to be
a TalkingTAnimal of Animal type T, so we can call the sound from it.

The TalkingTAnimal class should have a generic instance variable T animal and T
getters and setters.

107
copyright © 2020 www.onlineprogramminglessons.com For student use only

The talk method just lets each animal talk to each other by each calling the sound
method(). It could say

“meow”
“ my name is Tony”

You need to make two talk methods, one that receives a T and a the other one
receives TalkingTAnimal<T> .
The T would represent a IAnimal like Cat or Dog where as the TalkingTAnimal<T>
would represent a TalkingAnimal that could be a Cat or Dog.

public void talk(T animal2)
 {
 sound();
 animal2.sound();
 }

 public void talk(TalkingTAnimal<T> animal2)
 {
 sound();
 animal2.sound();

In the main method of Homework 7.java make some animals and print them out
talking to each other like this:

 TalkingTAnimal<Cat> cat = new TalkingT<Cat>(new Cat("tom"));
 TalkingTAnimal<Cat> cat2= new TalkingT<Cat>(new Cat("sue"));

 cat.talk(cat2);
 cat2.talk(cat);

You should get something like this

Meow
My name is tom and I am a Cat
Meow
My name is sue and I am a Cat

108
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 8 Enhanced Loops, Iterators, Comparators and Anonymous Functions
and Inner classes

For loops print out values from lists. We can do this 3 different ways. Index for
loop inside an index counter, enhanced for loop that can travel through each item
in the list using a variable value and a loop that uses an iterator to traverse
through the list by extracting the next value per iteration of the loop. Iterators are
used allot in Java programming. You need to have the ArrayList and Iterator
import statement at the top of your java program to use the ArrayList and
Iterator. Note we are now using the List interface to represent our ArrayList
object. Many people in programming recommend this as the correct way to
program, to have a class that implements an interface to be represented by their
interface name rather than their class name. We need to do the same. You will
need the following imports at the top of your program.

import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;

 // make an ArrayList of values
 List<Integer> list1 = new ArrayList<Integer>();
 list1.add(1);
 list1.add(2);
 list1.add(3);
 list1.add(4);
 list1.add(5);

 // using an index loop
 for (int i=0;i<list1.size();i++)
 System.out.print (list1.get(i) + " ");
 System.out.println("");

 // use an enhanced for loop
 for(int v: list1)
 System.out.print (v + " ");
 System.out.println("");

109
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // use an iterator loop
 Iterator<Integer> itr = list1.iterator();
 while(itr.hasNext())
 {
 int x = itr.next();
 System.out.print (x + " ");
 }

System.out.println("");

We can also use a for loop to print out the items stored in a Hash Set. Printing
values in a HashSet is more difficult since the HashSet values are not stored in
sequential memory locations. The Hash set values are not always in order. We
only used enhanced for loop that can travel through each item in the list using a
variable value and a loop that uses an iterator to traverse through the list by
extracting the next value per iteration of the loop. You need to have the HashSet
and iterator import statement at the top of your java program to use the ArrayList
and Iterator. Note we are now using the Set interface to represent our HashSet
object. Many people in programming recommend this as the correct way to
program, we need to do the same. You would need the following imports at the
top of your program

import java.util.Set;
import java.util.HashSet;
import java.util.Iterator;

 // put values in a HashSet
 System.out.println("print out values in a hashset");
 Set<Integer> set1 = new HashSet<Integer>();
 set1.add(1);
 set1.add(2);
 set1.add(3);
 set1.add(4);
 set1.add(5);

1 2 3 4 5

110
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // use a enhanced for loop
 for(int v: set1) System.out.print (v + " ");
 System.out.println("");

 // use an iterator loop
 Iterator<Integer> itr2 = set1.iterator();
 while(itr2.hasNext())
 {
 x = itr2.next();
 System.out.print (x + " ");
 }
 System.out.println("");

We also use for loops can to print out HashMaps. The main purpose of loops is to
print out the HashMap in order by key or order by values. We first print out
dictionary by keys unsorted. You need to have the HashMap and iterator import
statement at the top of your java program to use the HashMap, Iterator and
Collections objects. The Collections is used for sorting. Note we are now using the
Map interface to represent our HashMap object. Many people in programming
recommend this as the correct way to program, we need to do the same. You
would need the following imports at the top of your program

import java.util.Map;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Collections;

// make empty map

 Map<String,String> map1 = new HashMap<String,String>();

 // add values to HashMap
 map1.put("name","Bill");
 map1.put("age","24");
 map1.put("studentid","S1234");

1 2 3 4 5

111
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // print out map using entry set
 // An Entry class contains the key and value
 for(Map.Entry<String, String> set:map1.entrySet())
 {
 System.out.println(set);
 }
 System.out.println("");

 // print out keys of HashMap
 for(String key: map1.keySet())
 {
 System.out.print (key + " ");
 }
 System.out.println("");

 // print HashMap by values of HashMap
 for(String value: map1.values())
 {
 System.out.print (value + " ");
 }
 System.out.println("");

 // print HashMap sorted by key
 // get list of keys
 List<String> keys = new ArrayList<String>(map1.keySet());

// sort list of keys
 Collections.sort(keys);

name
age
studentid

name Bill
age 24
studentid S1234

age: 24
studentid: S1234
name: Bill

age=24
studentid=S1234
name=Bill

112
copyright © 2020 www.onlineprogramminglessons.com For student use only

 //print hashmap sort by key
 for(String key: keys)
 {
 String value = map1.get(key);
 System.out.print (key + ":" + value + " ");
 }

System.out.println("");

 // print out HashMap sorted by value

 // get list of values
 List<String> values = new ArrayList<String>(map1.values());

// sort list of values
 Collections.sort(values);

 # for each sorted value find the corresponding key
 for(String value: values)
 {
 for(String key: map1.keySet())
 {
 if(map1.get(key).equals(value))
 {
 System.out.print(key + " : " +value);
 break;
 }
 }
 }

Print HashMap sorted by value using EntrySet

To print a Hash Map sorted by values we have to put the EntrySet on an ArrayList.
then sort the ArrayList by values. An Entry Set is a set that contains an Entry
object containing both the key and value. The Entry object is specified in the Map
Interface. We need to use the Entry object so that we can sort both the value and
corresponding key together at the same time

age: 24
name: Bill
studentid: S1234

113
copyright © 2020 www.onlineprogramminglessons.com For student use only

Here are the steps:

Step 1: get the EntrySet from the HashMap

Obtain an Entry Set from the HashMap.

Set<Map.Entry<String, String>> set = map1.entrySet();

Step 2: make an ArrayList of Entry Sets

Put the entry set in a ArrayList.

 List<Map.Entry<String, String>> list = new ArrayList<Entry<String, String>>(set);

Step 3: make the anonymous class Comparator

We sort the ArrayList by value, using the static sort method from the Collections
class and using our own Comparator. A Comparator is an interface that has a
compare method to compare 2 objects.

 int compare(T obj1, T obj2);

The compare method returns a negative integer, zero, or a positive integer as the
first argument obj1 is less than, equal to, or greater than the second argument
obj2.

We use an anonymous class for our Comparator. An anonymous class is a class
with no name that implements a known interface. The interface states what class
the anonymous class is as well as to specify what methods the anonymous class
must implement. Anonymous classes are quite handy and used everywhere in
Java. The syntax for an Anonymous class is:

new interface_name () {

 implement interface_methods
}

114
copyright © 2020 www.onlineprogramminglessons.com For student use only

We construct our anonymous class as follows:

Comparator c = new Comparator<Map.Entry<String, String>>() {

 public int compare(Map.Entry<String, String> e1,
 Map.Entry<String, String> e2) {
 return e2.getValue().compareTo(e1.getValue());
 }
};

We have implemented the compare method that compares two Map.Entry
objects by value.

Step 4: Sort the ArrayList using Collection.sort and our anonymous comparator

The Collections sort method takes an extra parameter as a Comparator object as a
custom sort. We put in our anonymous comparator class as an argument to the
Collection sort method like this.

Collections.sort(list,c);

Our anonymous class comparator sorts the Entry objects by values using its
compare method.

Step 5: print out the sorted ArraySet

for (Map.Entry<String, String> entry : list) {
 System.out.println(entry.getKey() + " = " + entry.getValue());
 }
 System.out.println("");

age: 24
idnum: S1234
name: tom

115
copyright © 2020 www.onlineprogramminglessons.com For student use only

You need to put the following import statements on top of your Java class so that
the compiler with recognize the HashMap, Entry, Comparator and Collections
classes.

import java.util.Map.Entry;
import java.util.Comparator;

 import java.util.Collections;

Here is the Complete Program:

 // print HashMap sorted by value

// Entry set contains both key and values,
// so we can sort key and value together
 Set<Map.Entry<String, String>> set = map1.entrySet();

 List<Map.Entry<String, String>> list
 = new ArrayList<Map.Entry<String, String>>(set);

 // anonymous comparator class to sort array list of entries
 Comparator c = new Comparator<Map.Entry<String, String>>() {
 public int compare(Map.Entry<String, String> e1,
 Map.Entry<String, String> e2) {
 return e1.getValue().compareTo(e2.getValue());
 }
 };

// sort Entry key value pairs by value using anonymous Comparator
 Collections.sort(list,c);

Lastly, we print out the sorted list.

 for (Map.Entry<String, String> entry : list) {
 System.out.println(entry.getKey() + " = " + entry.getValue());
 }
 System.out.println("");

age: 24
idnum: S1234
name: tom

116
copyright © 2020 www.onlineprogramminglessons.com For student use only

Recapping: here are the collection classes and their corresponding interfaces:

Interface class implementing interface

List ArrayList
Set HashSet

Map HashMap

Inner classes

Classes may contain other classes. The classes inside a class are known as a inner
classes where as the class containing the inner class is known as a outer class. The
advantage of inner classes is that they can access private variables and methods
of the Outer class that they reside in. There are basically four ways of creating
inner classes:

1) Nested Inner class
2) Outer Method Inner class
3) Anonymous inner classes
4) Static nested Inner classes

Nested Inner class

A nested inner class is contained in a outer class.

// outer class
class Outer {

 // nested inner class
 class Inner {
 public void print() {
 System.out.println("I am a Inner class method");
 }
 }

117
copyright © 2020 www.onlineprogramminglessons.com For student use only

Instantiating a Inner class outside the Outer class

You instantiate a nested Inner class using an instance of the Outer class. You must
instantiate the inner class with an instance of the outer class because the nested
inner class belongs to the outer class.

public static void main(String[] args){
{

 Outer.Inner inner = new Outer().new Inner();
 inner.print();

}
}

Calling the print method on the inner object would display the following:

Instantiating a Inner class inside the Outer class

In this situation the Outer class object is already created, you can create the Inner
class without explicitly stating the outer class object reference.

// outer class
class Outer {

 // nested inner class
 class Inner {
 public void print() {
 System.out.println("I am a Inner class method");
 }
 }

I am a Inner class method

118
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // outer class method
 void outerMethod() {
 System.out.println("inside outerMethod");
 Inner inner = new Inner();
 inner.print();
 }

To run the inner class methods we must instantiate a outer class object then call
the outer class outerMethod. Note: for the inner class to use the variables of the
outer methods the variables inside the outer method must be declared final.

public static void main(String[] args){
{

 Outer outer = new Outer();
 outer.outerMethod();

}
}

Instantiating Inner class declared inside a Outer Method

In this situation the Inner class is defined inside a method of the outer class. The
inner class is also instantiated and run from inside the outer class method. Note:
for the inner class to use the variables of the outer methods the variables inside
the outer method must be declared final.

inside outerMethod
I am a Inner class method

119
copyright © 2020 www.onlineprogramminglessons.com For student use only

// outer class
class Outer {

 // outer class method
 void outerMethod() {
 System.out.println("inside outerMethod");

 // Inner class inside outer class method
 class Inner {
 void print() {
 System.out.println
 ("I am a Inner class method called inside a outer class method ");
 }
 }

 // instantiate a inner class inside a outer class method
 Inner inner = new Inner();
 inner.print();

 }
}

To run the inner class methods we must instantiate a outer class object then call
the outer class outerMethod.

public static void main(String[] args){
{

 Outer outer = new Outer();
 outer.outerMethod();

}
}

The output as follows because the outerMethod of the outer object instantiates a
inner object and then calls the print method of the inner object.

I am a Inner class method called inside a outer class method

120
copyright © 2020 www.onlineprogramminglessons.com For student use only

Anonymous inner classes

Anonymous class is a class with no name. It can be created 2 different ways.

1) A Anonymous class is created from a known base class

class Base
{
 public void print()
 {
 System.out.println("I am a base class method");
 }
}

class AnonymousDemo
{
public void createAnonymousClass()
 {
// create a anonymous class from the base class
 Base base = new Base() {
 public void print() {
 super.print(); // calls method from base class
 System.out.println("I am a method in an anonymous class");
 }
 };
base.print(); // call print method from anonymous class
}

You would run like this, create the AnonymousDemo and the call the print
method from the anonymous class.

 public static void main(String[] args)
 {
 AnonymousDemo demo = new AnonymousDemo();
 demo.createAnonymousClass();
 }
}

121
copyright © 2020 www.onlineprogramminglessons.com For student use only

You would get something like this.

2) An implementation of a specified interface

interface IBase
{
 public void print();
}

class AnonymousIDemo
{
 public void createAnonymousClass()
 {
// create a anonymous class from the IBase interface
 IBase ibase = new IBase() {
 public void print() {
 System.out.println("I am a method in an anonymous class");
 }
 };

ibase.print(); // call print method from anonymous class
}

You would run like this, create the AnonymousIDemo and the call the print
method from the anonymous class.

 public static void main(String[] args)
 {
 AnonymousIDemo demo = new AnonymousIDemo();
 demo.createAnonymousClass();
 }
}

I am a base class method
I am a method in an anonymous class

122
copyright © 2020 www.onlineprogramminglessons.com For student use only

You would get something like this:

You should now realize these Anonymous classes have no name because they are
created from a base class or from an interface .

Static nested classes

Static classes are inner classes that can be instantiated without an instance of the
outer class. Static inner classes cannot use the variables of an outer class unless
they are declared static. Static inner class may be easier to use outside the outer
class because you can easily access them by only using the outer class name.

// outer class
class SOuter {

 // nested inner class
 static class SInner {
 public void print() {
 System.out.println("I am a static Inner class method");
 }
 }

When instantiating a static inner class outside the outer class you use the outer
class name not a outer class object.

public static void main(String[] args)
 {

 Souter.SInner sinner = new SOuter.SInner();
 sinner.print();
 }
}

I am a base class method
I am a method in an anonymous class

123
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can also instantiate inner class inside the outer class.

// outer class
class SOuter {

 // nested inner class
 static class SInner {
 public void print() {
 System.out.println("I am a static Inner class method");
 }
 }

// outer class method
 void outerMethod() {
 System.out.println("inside outerMethod");
 SInner sinner = new SInner();
 sinner.print();
 }

public static void main(String[] args){
{

 SOuter outer = new SOuter();
 souter. outerMethod();
 }

}

}

I am a static Inner class method

inside outerMethod

I am a static Inner class method

124
copyright © 2020 www.onlineprogramminglessons.com For student use only

To do: try all The inner class variations in your Lesson 8.java file.

Lesson 8 Home Work

Sentence Generator

A Sentence is composed of the following:
<article><adjective><noun><adverb><verb><article><adjective><noun>

Make an ArrayList<String> of articles like: "a", "an" and "the"
Then make an ArrayList<String> of adjectives like: "fat", "big", "small"
Then make an ArrayList<String> of nouns like: "cat", "rat", "house"
Then make an ArrayList<String> of adverbs like: "slowly", "gently", "quickly"
Then make an ArrayList<String> of verbs like "ate", "sat on", "pushed"

Make a HashMap<String,ArrayList<String> > called words to hold all the lists:

words .put("articles",articles);
words .put("adjectives",adjectives);
words .put("nouns",nouns);
 words .put("adverbs",adverbs);
 words .put("verbs",verbs);
Next make an array of Strings or a ArrayList<String> called keys
Containing "articles", "adjectives", "nouns", "adverbs", "verbs", "articles", "adjectives",

"nouns" which atre HashMap keys used to make a sentence:

Finally make a sentence using the HashMap entries, using the parts of speech as
the HashMap keys and by selecting random words from the HashMap ArrayList
values.

String sentence = "";
for(String key: keys)
 {
 int r = (int)(Math.random()*words.get(key).size());
 sentence += words.get(key).get(r) + '' '';
 }

125
copyright © 2020 www.onlineprogramminglessons.com For student use only

Then print out the sentence.

System.out.println(sentence);

You should get something like this:

The big cat slowly ate the small rat

Which has picked random words from the dictionary sentence structure:
<article><adjective><noun><adverb><verb><article><adjective><noun>
You can put your code in your homework8.java file or make a Sentence.java file

Animal Zoo

Make a class called Zoo that has a Inner class called Animal. You can make any
Kind of Inner class you want. Make a HashMap of your favorite animals. The key
should be the animal kind like cat, dog or tiger, the value should be what sound
the animal makes meow, bark, tiger. Sort all animals by what sound they make.
Finally print out the animal kind and value sorted by what sound they make.

126
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON9 FILE ACCESS

Create a new java class file called Lesson9.java and type in all the following
examples.

File Access

Java has extensive file objects for reading and writing to file. We concentrate on
the most used.

Write characters to a file

The FileWriter class is used to write characters one by one sequentially to a file.

 try
 {
 // write chars to a file
 FileWriter fw = new FileWriter("data1.txt");

 String s = "Hello";

 for(int i=0;i<s.length();i++)
 {
 char c = s.charAt(i);
 fw.write(c);
 }

 fw.write('\n');
 }

 catch(IOException ex)
 {
 System.out.println(ex.getMessage());
 }

hello

127
copyright © 2020 www.onlineprogramminglessons.com For student use only

Read characters from a file

The FileReader class is used to read characters one by one sequentially from a
file. The File class is used to store a file name. The try block is used to catch any
errors like file not found, corrupt file etc. The catch statement is used to catch the
errors. When a program encounters abnormal operation, an Exception is thrown.
The try block initiates the operation so that the catch block can catch the
exception and report the exception. Failure to include a try catch block would
result in immediate program termination.

 try{
 FileReader fr = new FileReader("data1.txt");
 int ch = fr.read();

 while(ch != -1)
 {
 // convert int to char
 System.out.print((char) ch);
 ch = fr.read();
 }

 fr.close();
 }

 catch(IOException ex)
 {
 System.out.println(ex.getMessage());
 }

hello

128
copyright © 2020 www.onlineprogramminglessons.com For student use only

Write lines to a file

The PrintWriter class is used to write lines one by one sequentially to a file.

 // write lines to a file
 try{
 PrintWriter pw = new PrintWriter("data2.txt");
 pw.println("hello there");
 pw.println("goodbye now");
 pw.close();
 }

 catch(IOException ex)
 {
 System.out.println(ex.getMessage());
 }

Read line by line from a file

The Scanner class is used to read lines one by one sequentially from a file.

 try{

 // Open the file for read
 Scanner fsc = new Scanner(new File("data2.txt"));

 // for each line in file
 while(fsc.hasNextLine())
 {
 String line = fsc.nextLine();
 System.out.println(line);
 }

Hello there
goodbye now

129
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // close the file
 fsc.close();
 }

 catch(IOException ex)
 {
 System.out.println(ex.getMessage());
 }

Just read words from a file

The Scanner class can also be used to read words one by one sequentially from a
file.

 try{

 // Open the file for read
 Scanner fsc = new Scanner(new File("data2.txt"));

 // for each word in file
 while(fsc.hasNext())
 {
 String word = fsc.next();
 System.out.println(word);
 }

 // close the file
 fsc.close();
 }

Hello there
goodbye now

Hello
there
goodbye
now

130
copyright © 2020 www.onlineprogramminglessons.com For student use only

catch(Exception ex)
 {
 System.out.println(ex.getMessage());
 }

Write lines to a csv file (comma separated values)

The PrintWriter class is used to write lines one by one sequentially to a file.

 // write lines to a file
 try{
 PrintWriter pw = new PrintWriter("data.csv");
 pw.println("one,two,three,four");
 pw.close();
 }

 catch(IOException ex)
 {
 System.out.println(ex.getMessage());
 }

Read a csv file.

 A csv file is a file where data is stored row by row in columns separated by
commas. The Scanner class is used again to read lines one by one sequentially
from a file. We use the split method from the String class to separate each line
into an array of words. Each word is called a token.

 data.csv:

one,two,three,four

five,six,seven,eight

one,two,three,four

131
copyright © 2020 www.onlineprogramminglessons.com For student use only

// read csv file
// Open the file for read

 try
 {
 Scanner fsc = new Scanner(new File("data.csv"));

 // read line one at a time
 // till the file is empty
 while (fsc.hasNextLine())
 {
 line = fsc.nextLine();
 String[] words = line.split(",");

 for(String word: words)
 {
 System.out.println(word);
 }
 }

 System.out.println("");
 fsc.close();
 }

catch(FileNotFoundException ex)
 {
 System.out.println(ex.getMessage());
 }

Output token words

One

two

three

four

132
copyright © 2020 www.onlineprogramminglessons.com For student use only

Append line to end of file

We can also write lines to the end of a file (append) using the PrintWriter class
and open the file with the FileWriter class set to append with the true argument.

 // write lines to end of a file
 try{
 PrintWriter pw2 = new PrintWriter(new FileWriter("data2.txt",true));
 pw2.write("tomorrow");
 pw2.close();
 }
 catch(IOException ex)
 {
 System.out.println(ex.getMessage());
 }
 }
}

Read the lines back from data2.txt and you will get:

Write A Object to a File

You can write objects to a file as long as they implement the Serializable interface
located in

java.io.Serializable;

Most of the built in Java objects already implement the Serializable interface like
the String class.

hello
goodbye
tomorrow

133
copyright © 2020 www.onlineprogramminglessons.com For student use only

The first step is to make a Java class to implement the Serializable interface. We
will make a Book class that store’s a title and description.

 import java.io.Serializable;

class Book implements Serializable
{
 private String title;
 private String author;

 public Book(String title, String author)
 {
 this.title = title;
 this.author = author;
 }

 public String toString()
 {
 return "Book " + title + " written by " + author;
 }
}

If your class does not implement the Serializable interface you will get the
following message when you run the program:

writing aborted; java.io.NotSerializableException: Book
You can put the book class at the top of your Lesson9.java file if you do not
include the public modifier, or you can out it into a java file called Book.java.

The next thing we make a Book object from the Book class definition.

 Book book = new Book("Wizard of OZ","L. Frank Baum");

We can now write out the book object to a file called “test.bin”. This would be a
binary file that has un readable character in it.

134
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // write to output stream
 try {
 FileOutputStream fos = new FileOutputStream("Test.bin");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(book);
 oos.close();
 }
 catch (Exception ex) {
 System.out.println(ex.getMessage());
 }

The ObjectOutputStream object oos is used to write the object to a file

We can now read in the Book object from the file using the
ObjectInputStream object ois.

// read object
 try {
 FileInputStream fis = new FileInputStream("test.bin");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Book b2 = (Book)ois.readObject();
 ois.close();
 System.out.println(b2); // print out book object
 }
 catch (Exception ex) {
 System.out.println(ex.getMessage());
 }

The output is as follows:

Book Wizard of OZ written by L. Frank Baum

135
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 9 HOMEWORK

Question 1

Write a small 5 line story to a file called “story.txt” then close the file. Then open
the story text file that has the small story in it, and count the number of letters,
words, sentences and lines. Words are separated by spaces and new lines.
Sentences are separated by periods “.” or other punctuation like “?”.
 Lines are separated by ‘\n’. Words may contain numbers and punctuation like
apple80 and don’t.
Print a report to the screen: the number of letters, words, sentences and lines.
Also write the report to a file called report.txt. Open the report file and display
the report file lines to the screen. Call your java file Homework9.java.

Question 2

Write a program that writes out another Java program to a file, then open up the
file you wrote that contains the Java program and execute it.

Algorithm:
1. Open up a file with PrintWriter with a java extension like “Test.java”
2. Write lines to a file with print statements like:
3. pw.write(“System.out.println(\”I like programming\”)”)
 you need to alternate between hardcoded double quotes and specified \”
double quotes
4. close the file
5. open the Test.java file in your Java IDE and run the Java file.
 It should print out

I like programming

136
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can put your code in your java file Homework9.java or make a new Java File
called Homework9Question2.java

Bonus:

Add more print , input, etc Java statements, you could even write out the
question code so you have a program the writes out itself!

137
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 10 Abstract Classes and Methods, Polymorphism and Java Objects

Abstract classes and methods

A method with no code is called an abstract method. A class that contains an
abstract method is known as an abstract class. An abstract class may contain
ordinary methods and abstract methods. An abstract method has a method
signature but no underlying code. Signature refers to the method definition
heading. The code for a abstract method is to be implement in the derived class.
Here is an abstract method to calculate weekly pay.

 // calculate weekly pay
 public abstract double weeklyPay();

If a class has an abstract method then it must to be marked abstract. Here is an
abstract Employee class that has a abstract method weeklyPay.

public abstract class Employee
{

 // calculate weekly pay
 public abstract double weeklyPay();

}

In run the time the code in the derived class is executed. When a class contain the
same name and signature as a method of the bases class this is known as
overriding. Here is a derived class Manager the implements the weeklyPay
method of the super class Employee.

public class Manager extends Employee {

 // Constants
 public static final int WEEKS_IN_YEAR = 52

138
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // calculate weekly pay
 public double weeklyPay()
 {
 double pay = getSalary() / WEEKS_IN_YEAR;
 return pay;
 }
}

Abstract classes are never instantiated because they have incomplete (missing)
code. All the code is to be implemented in the derived classes. Only the derived
classes are instantiated.

Polymorphism

Polymorphism is another powerful concept in Object Oriented Programming.
Polymorphisms lets one super class represent many other different types of
derived classes and then execute a method from each one that will produce a
different behaviour. We can have an Employee super class to represent different
kinds of Employees. Managers, Secretaries, Salesman and Workers derived
classes.

We make our Employee class abstract meaning it can never be instantiated.
We also need an abstract method to calculate the employee’s wages for the
week. An abstract method is a method that is defined in the super class that has a

 Employee

Manager

Secretary

Salesman

Worker

139
copyright © 2020 www.onlineprogramminglessons.com For student use only

method header definition but no programming statements. The programming
statements will be defined in the derived class.
This is known as method overriding since it has the same method name and
identical parameter data types. We also have method overloading where we have
same method name but different parameter data types.

Here is our Employee super abstract class.

/*
 * Employee abstract class
 *
 */

public abstract class Employee {

 private String name;
 private String id;
 private double salary;

// construct Employee with name, id and salary
 public Employee(String name,String id,double salary)
 {
 this.name=name;
 this.id=id;
 this.salary = salary;
 }

 // return employee name
 public String getName()
 {
 return this.name;
 }

 // return employee id
 public String getID()
 {
 return this.id;

140
copyright © 2020 www.onlineprogramminglessons.com For student use only

 }
 // return employee yearly salary
 public double getSalary()
 {
 return this.salary;
 }

 // assign name
 public void setName(String name)
 {
 this.name=name;
 }

 // assign id
 public void setID(String id)
 {
 this.id=id;
 }

 // assign salary
 public void setSalary(double salary)
 {
 this.salary = salary;
 }

 // calculate weekly pay
 public abstract double weeklyPay();

 // return employee info
 public String toString()
 {
 return name + " " + id + " $" + salary;
 }
}

141
copyright © 2020 www.onlineprogramminglessons.com For student use only

We now need to make the derived classes. You can put them in the same file as
the Employee class or in separate files. If you put them into the Employee.java
file, then the derived classes cannot have the public access modifier. We will have
4 derived classes. Each derived class will calculate the pay for the week
differently, calculated from the yearly salary. Each derived class will calculate the
weekly pay separately as follows:

Derived class How to calculate weekly pay

Manager Divide yearly salary by number of weeks in year
Secretary Divide yearly salary by number of weeks in year plus $100

bonus
Salesman Divide yearly salary by number of weeks in year plus sales

Commission rate
Worker Divide yearly salary by number of weeks plus any overtime

time and a half

It is probably best to put each derived class in a separate file. This way it makes
thing easier these classes to use in other projects. Our Manager class as do the
other class uses constants to store and represent herd coded values. We do not
want numbers in our program, since they may have to be changed later.
Constants just store a value. Once declared and initialized the value cannot be
changed. Constants have the keyword final, Constants are also declared as static
so that they only consume once space in memory.

public static final int WEEKS_IN_YEAR = 52;

This way many objects can share the same constant, and no duplicate memory
space is used.

/*
 * Manager derived class
 *
 */

142
copyright © 2020 www.onlineprogramminglessons.com For student use only

 public class Manager extends Employee {

 // Constants
 public static final int WEEKS_IN_YEAR = 52;

 // construct Manager with name, id and salary
 public Manager(String name,String id,double salary)
 {
 super(name,id,salary);
 }

 // calculate weekly pay
 public double weeklyPay()
 {
 double pay = getSalary() / WEEKS_IN_YEAR;
 return pay;
 }

 // return manager info
 public String toString()
 {
 return "Manager " + super.toString();
 }
}

/*
 * Secretary derived class
 *
 */

public class Secretary extends Employee {

 // Constants
 public static final int WEEKS_IN_YEAR = 52;
 public static final double BONUS = 100;

143
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // construct Secretary with name, id, salary
 public Secretary(String name,String id,double salary)
 {
 super(name, id, salary);
 }

 // calculate weekly pay
 public double weeklyPay()
 {
 double pay = getSalary()/ WEEKS_IN_YEAR + BONUS;
 return pay;
 }

 // return employee info
 public String toString()
 {
 return "Secretary " + super.toString();
 }
}

/*
 * Salesman derived class
 *
 */

public class Salesman extends Employee {

 // Constants
 public static final double COMMISSION_RATE = .25;

 // weekly sales
 private double sales;

144
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // construct Salesman with name, id, salary and sales
 public Salesman(String name,String id,double salary, double sales)
 {
 super(name, id, salary);
 this.sales = sales;
 }

 // calculate weekly pay
 public double weeklyPay()
 {
 double pay = getSalary() + sales * COMMISSION_RATE;
 return pay;
 }

 // return employee info
 public String toString()
 {
 return "Salesman " + super.toString() + " Sales: " + sales;
 }
}

/*
 * Worker derived class
 *
 */
public class Worker extends Employee {

 // Constants
 public static final int WEEKS_IN_YEAR = 52;
 public static final int HOURS_IN_WEEK = 40;
 public static final double OVERTIME_RATE = 1.5;

 // hours overtime
 private int overtime;

 // construct Worker with name, id, salary

145
copyright © 2020 www.onlineprogramminglessons.com For student use only

 public Worker(String name,String id,double salary, int overtime)
 {
 super(name, id, salary);
 this.overtime = overtime;
 }

 // calculate weekly pay
 public double weeklyPay()
 {
 double pay_rate = getSalary()/ WEEKS_IN_YEAR /
 HOURS_IN_WEEK;
 double pay = getSalary()/ WEEKS_IN_YEAR
 + overtime * pay_rate * OVERTIME_RATE;
 return pay;
 }

 // return employee info
 public String toString()
 {
 return "Worker " + super.toString();
 }
}

Polymorphism is like a giant else-if statement. If it is a Salesman derived class
object, then calculate weekly wage using sales and commission. Our first step is to
make an array to hold Employee derived objects.

 // make an array of employees
 Employee[] employees = new Employee[4];

Next, we will the add with the derived objects to the Array. Each derived object
gets a name, employee id, yearly salary, the salesman gets the sales for the week
and the worker get the number of over time hours for the week.

146
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // fill array with derived objects
 employees[0] = new Manager("Tom Smith","E1234",100000);
 employees[1] = new Secretary("Mary Smith","E5678",40000);
 employees[2] = new Salesman("Bob Smith","E1111",20000,10000);
 employees[3] = new Worker("Joe Smith","E2222",30000,5);

Next, we loop through the array printing out the employee info and the calculated
weekly pay. Notice the weekly pay is different for each employee type, this is
what we want, automatic selection. This is polymorphism in action.

 // loop through employee array
 // print out employee info
 // calculate weekly pay.

 for(int i=0;i<employees.length;i++)
 {
 // print out employee info
 System.out.println(employees[i].toString());

 // calculate weekly pay
 double pay = employees[i].weeklyPay();

 // print weekly pay

System.out.println("My weekly pay is: $" +
String.format("%.2f",pay));

 }

To do:

Add an abstract raise method to the Employee class to give each employee
different types of raises. This methos will return a double. Some could be
percentages, others can be a fixed value, how many sales or how many over time
hours worked..
In another loop in the main method give each employee a raise and them
recalculate their weekly pay and print out the results. Use an enhanced for loop.

147
copyright © 2020 www.onlineprogramminglessons.com For student use only

Abstract classes implementing interfaces

We can make an abstract class called Animal the implements the IAnimal
interface from previous lessons. The IAnimal interface contains the sound
method, what sound a animal makes.

interface IAnimal:
{
 public String sound();
}

The abstract Animal class will implement the IAnimal interface. The sound
method specified in the IAnimal interface will be implemented in the classes
derived from the abstract Animal class. The abstract Animal class will also have a
abstract method called getType that will return the type of Animal. The abstract
method getType() will also be implemented by the derived class of the Animal
class. Note: The sound method cannot be an abstract method in the Animal class,
it can only be implemented as a non-abstract method.

class abstract Animal implements IAnimal
{
 private String name;

 public Animal(String name)
 {
 this.name = name;
 }

 public abstract String getType();

 public String toString()
 {
 return “my name is: “ + name;
 }
}
We then can make a derived Cat class that inherits the Animal class.

148
copyright © 2020 www.onlineprogramminglessons.com For student use only

public class Cat extends Animal
{
 public Cat(String name)
 {
 super(name);
 }

 public String sound()
 {
 return “meow”
 }

 public String getType()
 {
 return “cat”;
 }

 public String toString()
 {
 return “I am a cat” + super.toString();
 }
}

To do:

Make derived classes Dog and Tiger, and in a main method make an array of
IAnimals interfaces and print out what animal it is what name, type of animal and
what sound it makes. Put the main method in a java class called Animals and in a
file called Animals.java.

149
copyright © 2020 www.onlineprogramminglessons.com For student use only

Java Built in Classes and Objects.

Java has lots of built in objects, meaning classes already written for you that you
can use right away. We cannot cover them all, but we can cover a few of them.
We have already covered the String object and the File Access objects; all these
objects have lots of methods to do many different operations. The Math class is
used allot for mathematical calculations, The Math class is not considered an
Object but just a class because all its methods are static.

The random method of the math class is used to generate a random number
between 0 and 1.0;

double d = Math.random();
System.out.println(d);

Generates a double number between 0 and1.0 like 0.6549805947125389
We can multiply the random() method by another to get larger random number.

Double d = Math.random() * 10;
System.out.println(d);

 IAnimal

Cat

Dog

Animal

Tiger

150
copyright © 2020 www.onlineprogramminglessons.com For student use only

Generates a double number between 0 and 10 like 6.87654343233444
You can typecast the double number to an int to get an integer result like this:

int x = (int)Math.random() * 10);
System.out.println(x);

Here we generate a random number between 0 and 9 like 7; The random
methods generate a decimal number between 0 and 1.0. We multiply this number
by 10 and convert to a int number using (int). This is known as type casting.
You will be using the random method of the Math class allot.

Here are some of the math class common used fields and methods

Following are the fields for java.lang.Math class

Math.E − the base of the natural logarithms.
Math.PI − the ratio of the circumference of a circle to its diameter.

Here are the Math Class methods:

Method Description

static double abs(double a) returns the absolute value of a double
value.

static double acos(double a) returns the arc cosine of a value; the
returned angle is in the range 0.0
through pi

static double asin(double a) returns the arc sine of a value; the
returned angle is in the range -pi/2
through pi/2.

static double atan(double a) returns the arc tangent of a value; the
returned angle is in the range -pi/2
through pi/2

static double atan2(double y, double x) returns the angle theta from the
conversion of rectangular coordinates
(x, y) to polar coordinates (r, theta).

static double ceil(double a) returns the smallest double value that
is greater than or equal to the

151
copyright © 2020 www.onlineprogramminglessons.com For student use only

argument and is equal to a
mathematical integer.

static double cos(double a) returns the trigonometric cosine of an
angle

static double floor(double a) returns the largest double value that is
less than or equal to the argument and
is equal to a mathematical integer

static double log(double a) returns the natural logarithm (base e)
of a double value.

static double log10(double a) returns the base 10 logarithm of a
double value

static double max(double a, double b) returns the greater of two double
values

static double min(double a, double b)

returns the smaller of two double
values

static double pow(double a, double b) returns the value of the first argument
raised to the power of the second
argument

static double random() method returns a double value with a
positive sign, greater than or equal to
0.0 and less than 1.0.

static long round(double a) returns the double value that is closest
in value to the argument and is equal
to a mathematical integer

static double sqrt(double a) returns the correctly rounded positive
square root of a double value.

static double tan(double a) returns the trigonometric tangent of
an angle

static double toDegrees
(double angrad)

converts an angle measured in radians
to an approximately equivalent angle
measured in degrees

static double toRadians
(double angdeg)

converts an angle measured in degrees
to an approximately equivalent angle
measured in radians.

152
copyright © 2020 www.onlineprogramminglessons.com For student use only

Random Class

The Random class is also used to generate Random numbers. The Random class
has many methods to generate Random numbers.

You must instantiate a Random object before you can use it because the Random
class methods are not static.

Random rgen = new Random();

you need to put the following import statement on top of your Java file, so the
Java compiler will know about it.

import java.util.Random;

You can generate double random number using the nextDouble method

double d = rgen.nextDouble();

generates a double number between 0 and1.0 like 0.6549805947125389

You can generate integer random number using the nextInt method. This method
allows you to specify the upper bound -1

int r = rgen.nextInt(10)

Generates a random number between 0 and 9 like 7

enum

enums allow you to associate a constant with a label and conveniently group the
labels together under a common purpose. This is quite an advantages to group a
collection of related constants together under a common name. A good example
are the days of the week: Sunday, Monday, Tuesday Wednesday, Thursday,
Friday, Saturday.

153
copyright © 2020 www.onlineprogramminglessons.com For student use only

 A enum lets you list all the labels and automatically assign constants to them. The
constants are String representation of the label. The constants let you compare
the label’s.

 A enum is little bit like a class since you can have methods to do operations on
the labels. Here is a enum for the days of the week:

 enum Weekdays{
 Sunday, Monday, Tuesdays, Wednesday, Thursday, Friday, Saturday
 }

An enum is analogous to using constant’s, you use the labels just like constants.
The labels are actually string values. Sunday would get the string value "Sunday ".

The advantage of enum is that all the weekdays get to be in a Weekdays group.
This makes your program more professional because you now know what group
a label belongs to. When you use enums Java forces you to use the enum name
with the label., Example: Weekdays.Monday;

You would use the Weekdays enum like this:

 // make a day to represent weekday Monday
 Weekdays day1 = Weekdays.Monday;
 System.out.println(day1); // Monday

 // make a day to represent weekday Tuesday
 Weekdays day2 = Weekdays.Tuesday;
 System.out.println(day2); // Tuesday

 // We can compare 2 weekdays are equal like this:
 if(day1 == day2)
 {
 System.out.println(day1 + " equals " + day2);
 }

154
copyright © 2020 www.onlineprogramminglessons.com For student use only

 else{
 System.out.println(day1 + " not equals " + day2);
 // Monday not equals Tuesday
 }

// get a weekday from a string
 Weekdays day3 = Weekdays.valueOf("Wednesday");
 System.out.println(day3); // Wednesday

 // print weekday string
 System.out.println(Weekdays.Wednesday); // Wednesday

// get index of weekday
int index = Weekdays.valueOf("Monday").ordinal(); // 1
System.out.println(index); // 1

 // to print out a list of Weekdays
 for (Weekdays day : Weekdays.values()) {
 System.out.println(day);

Packages

Packages represent another organizational unit. Packages allow you to group
common purpose classes together under a common name. For example:
You pay have input and output classes under a io package. Data classes under a
data package, display classes under a View class, operational classes under a
Controller package. Larger programming projects must use packages to organize
their classes into computational units.

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

155
copyright © 2020 www.onlineprogramminglessons.com For student use only

Without packages the project would be unorganized and difficult to manage.
Unfortunately small programming projects find packages a nuisance and
frustrating and the cause of all compilation errors. A small program in a package
may be difficult to compile and run.

Also using a class from another project may be difficult to use, since its package
name may be different from your class package name. When a package is used
the java file must be inside a folder with the same package name. Package names
are all lower case as to match the folder name that houses it.
To declare class in a package:

package mypackage;

public class MyClass
{
 public MyClass()
 {
 }
 public String toString()
 {
 return “I like packages”;
 }
}

For another class to use the packaged class you must import the package at the
very top of your program:

import mypackage.MyClass

public class Test
{
 public static void main(String[] args)
 {
 MyClass mc = new MyClass()
 System.out.println(myClass.toString());
 }
}

For a class to import a package the folder holding the package must be in the
same folder as the class using the package.

156
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lambda and Functional Interfaces

A Java lambda expression is just like a method which can be created without
belonging to any class. They are anonymous methods (methods without names)
and are used to implement a method defined by a functional interface. A
functional interface is an interface that contains one and only one abstract
method.

interface Operation {
 int calculate(int n);
}

Lambda expressions use the arrow operator -> to specify the lambda expression.
It divides the lambda expressions in two parts:

(n) -> n*n

The left side specifies the parameters required by the expression, which could
also be empty if no parameters are required. () -> System.out.println("Hello");

The right side is the lambda body which specifies the actions of the lambda
expression which is a programming statement using the parameters (if any) from
the left hand statement like the n*n.

We declare and define a lambda expression using the functional Operation

interfaces defined above that increments a number as follows:

 Operation inc = (n) -> n+1; // means return n+1

We declare and define a lambda expression that decrements a number as
follows:

 Operation dec = (n) -> n-1; // means return n-1

157
copyright © 2020 www.onlineprogramminglessons.com For student use only

We now increment and decrement a number using the lambda expression and
call the calculate method defined in the functional interface:

 int result = inc.calculate(5);
 System.out.println(result); // 6

 result = dec.calculate(5);
 System.out.println(result); // 4

We can make another functional interface that has a method to add two numbers
as follows:

interface Operation2 {
 int calculate(int n, int n2);
}

We then declare and define a lambda expression that adds two numbers as
follows:

 Operation2 add = (a, b) -> a + b;

We now add two numbers using the lambda expression and call the calculate
method defined in the functional interface

 result = add.calculate(3,4);
 System.out.println(result);
It seems to be a three step process:

(1) Define the functional interface:
interface Operation {
 int calculate(int n);

(2) Write the lambda e\expression?:
 Operation inc = (n) -> n+1;

(3) Use the lambda expression to calculate a value:
 int result = add.calculate(3,4);

158
copyright © 2020 www.onlineprogramminglessons.com For student use only

A lambda expression may also include additional blocks of code to do additional
calculations. Here is a lambda expression that sums the numbers between two
values. Notice we put the block of code between 2 curly brackets ending in a semi
colon. { };

 Operation2 sum = (a, b) -> {

 int v = 0;

 for(int i=a;i<=b;i++)
 {
 v += i;
 }

 return v;
 }; // don’t forget the semi-colon

 result = sum.calculate(1,5);
 System.out.println(result); // 15

TO DO:

Define a functional interface that can do operations on a input string.
Write a lambda expression to print out a string message and then use the lambda
expression to print out somebody’s name. Next write a lambda expression to
reverse the string. You will need to declare your functional interface outside
(above) the main function() since you cannot declare a interface inside another
method just inside another class. Very awkward don’t you think?

You can also have Generic functional interfaces as follows:

interface TOperation2<T>
{
 T calculate(T n, T n2);

}

159
copyright © 2020 www.onlineprogramminglessons.com For student use only

We now write our Generic lambda expression as follows using a Double

TOperation2<Double> tadd = (a, b) -> a + b;

We then call the calculate method to do the addition:

 double result2 = tadd.calculate(3.7,4.8);
 System.out.println(result2); // 8.5

TO DO:

Use the generic functional interface that can join two Strings together.

LESSON 10 HOMEWORK

Question 1

Make a book interface call IBook that has a method to calculateTotalCost to
purchase a book. Make a Abstract Book class called Book that implements the
IBook interface and has the abstract method calculateTax and calculateShipping.
A Book has a title, cost and a toString() method. Make derived classes EBook and
PaperBackBook. A EBook has no shipping cost but a PaperBackBook has a
shipping cost. A EBook has 10% tax rate but a PaperBackBook has no tax. Make a
class called Homework10 with a main method. In the main method make an array
of IBook interfaces. Populate the array with one EBook and one PaperBook. In a
loop print out the book’s detail, calculate the shipping and tax and add to the
cost as final total cost. Print out the cost, tax, shipping charges and final cost using
the calculateTotalCost method.

160
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 2

Use a generic functional interface to make a generic calculator we did from
Lesson 9. Call your homework program LambdaGenericCalculator.java

/*
 * Generic TICalculator interface
 * specifies the methods a Generic Calculator should have
 */

public interface TICalculator<T> {

 public T add(T a, T b);
 public T sub(T a, T b);
 public T mult(T a, T b);
 public T divide(T a, T b);
}

 IBook

EBook

PaperBackBook

Book

161
copyright © 2020 www.onlineprogramminglessons.com For student use only

LESSON 11 RECURSION

When a function calls itself it is known as recursion. Recursion is analogues to a
while loop. Most while loop statements can be converted to recursion, most
recursion can also be converted back to a while loop.

The simplest recursion is a function calling itself printing out a message.

public static void print_message()
{
 System.out.println("I like programming");
 print_message();
}

Unfortunately this program will run forever, so you will need to stop the program
somehow while it is running.

We can add a counter n to it so it can terminate at some point.

public static void print_message(int n)
{
 if(n > 0)
 {
 System.out.println("I like programming");
 print_message(n-1);
 }
}

Now the program will print the message n times

Every time the print_message function is called n decrements by 1
When n is 0 the recursion stops. You may place the statement
System.out.println("I like programming\n") before or after the recursive call. If
you put it before than the message is printed first before each recursive call.

I like programming
I like programming
I like programming
I like programming
I like programming
...

162
copyright © 2020 www.onlineprogramminglessons.com For student use only

If you put after than the message is printed after all the recursive calls are made.
There is quite a difference in program execution.
The operation is very similar to the following while loop:

n = 5
while(n > 0)
{
 System.out.println("I like programming\n");
 n--;
}

You should now run the recursion function

You would call the function like this:

print_message(5);

It will print I like programming 5 times.

Recursion is quite powerful, a few lines of code can do so much.

Our next example will count of numbers between 1 and n. This example may be
more difficult to understand, since recursion seems to work like magic, and
operation runs in invisible to the programmer.

public static int countn(int n)
{
 if(n == 0)
 {
 return 0;
 }
 else
 {
 return countn(n-1) + 1;
 }
}
count(5) would return 5 because 1 + 1 + 1 + 1 + 1 = 5

I like programming
I like programming
I like programming
I like programming
I like programming

163
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can run it in a program like this:

System.out.println(count(5)); // 5

When (n == 0) this is known as the base case. When n == 0 the recursion stops
and 0 is return to the last recursive call. Otherwise the countn function is called
and n is decremented by 1.

It works like this:

 main calls countn(5) with n = 5
 countn(5) calls countn(4) with n=4
 countn(4) calls countn(3) with n=3
 countn(3) calls countn(2) with n = 2
 countn(2) calls countn(1) with n = 1
 countn(1) calls countn(0) with n = 0

 countn(0) returns 0 to count(1) since n == 0
 countn(1) add’s 1 to the return value 0 and then returns 1 (0 + 1) to count(2)
 countn(2) add’s 1 to the return value 1 and then returns 2 (1 + 1) to count(3)
 countn(3) add’s 1 to the return value 2 and then returns 3 (2 + 1) to count(4)
 countn(4) add’s 1 to the return value 3 and then returns 4 (3 + 1) to count(5)
 countn(5) add’s 1 to the return value 4 and then returns 5 (4 + 1) to main()

 main() receives 5 from count(5) and prints out 5

The statement return countn(n-1) + 1 is used to call the function recursively and
also acts as a place holder for the value returned by the called function countn.
The returned value is then added to 1 and then returned.

The value returned from the recursive countn function is the previous value and
the 1 is the present value to be added to the previous value.

164
copyright © 2020 www.onlineprogramminglessons.com For student use only

We could rewrite the recursive part as follows:

 int x = countn(n-1);
 return x + 1;

x will now receive the return value from the countn recursive function call and 1
will be added to the return value and this new value will be returned to the caller.

If you can understand the above then you understand recursion. If you cannot
then maybe the following diagram will help you understand.

You probably don’t need to understand how recursion works right away.
Sometime you just need to accept things for now then understand later. One day
it will hit you when you are thinking about something else.
Basically recursion works like this:

count(4)

count(3)

count(2)

count(5)

count(1)

count(0)

main()

0

0 + 1 = 1

1 + 1 = 2

2 + 1 = 3

3 + 1 = 4

4 + 1 = 5

165
copyright © 2020 www.onlineprogramminglessons.com For student use only

For every recursive function call the parameter and local variables are stored.
Technically they are stored in temporary memory called a stack.
Every time the function returns the previous numbers that were stored are
restored and now become the current number, to be used to do a calculation. The
numbers are restored in reverse order.

Function call/ return N
call count(n-1) 5

call count(n-1) 4
call count(n-1) 3

call count(n-1) 2

call count(n-1) 1
count(n-1) returns 0 0

count(n-1) returns 0 + 1 1
count(n-1) returns 1 + 1 2

count(n-1) returns 2 + 1 3
count(n-1) returns 3 + 1 4

count(n-1) returns 4 + 1 5

The thing to remember about recursion is it always return’s back where it is
called. A recursive function call behaves the same way as a non-recursive
function, program execution resumes right after the recursive function call.

Here are some more recursive function examples:

// Sum of numbers between 1 to n
public static int sumn(int n)
 {
 if(n ==0)
 {
 return 0;
 }
 else
 {
 return sumn(n-1) + n;
 }
 }

sumn(5) would return 15

166
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can run it in a program like this:

 System.out.println(sumn(5)); // 15

It works similar to countn instead of adding 1 its adds n’s.

0+1+2+3+4+5 = 15

Our counter n serves 2 purposes a recursive counter and a number to add.

The previous value is returned from the recursive sumn function and the present
value is n. The value n is restored in reverse order that is saved in. Every time the
recursive sumn function is called it is saved. Every time the recursive sumn
function is returned n is restored in traverse order.

Main calls sumn(5)

n Call sumn(n-1) Previous present calculated Returned value

5 Call sumn(4) (5-1)
4 Call sumn(3) (4-1)

3 Call sumn(2) (3-1)

2 Call sumn(1) (2-1)
1 Call sumn(0) (1-1)

0 Return 0
1 Return sumn(0) +1 0 1 0 + 1 1

2 Return sumn(1)+2 1 2 1+2 3
3 Return sumn(2)+3 3 3 3+3 6

4 Return sumn(3)+4 6 4 6+4 10

5 Return sumn(4)+5 10 5 10+5 15 to main

Main receives 15 from sum(5)

167
copyright © 2020 www.onlineprogramminglessons.com For student use only

The sumn function just returns the value 0 when n is 0 and other times just calls
itself then adds the value n to the returned value. Basically sumn is just calling
itself and adding n to the retuned values. For each recursive call sumn(n-1) is
called first aster each recursive call the n is added and a value is returned,. N is
added in reverse order because sumn(n-1) is called first n times.

Multiply numbers 1 to n (factorial n)

We can also make a multn function which multiples n rather than adding n. This
is basically factorial n.

public static int multn(int n)
 {
 if(n ==0)
 {
 return 1;
 }

 else
 {
 return multn(n-1) * n;
 }
 }

multn(5) would return 120

 since 1*2*3*4*5 = 120

Our base case returns 1 rather than 0 or else our result would be 0;

You can run it in a program like this:

System.out.println(multn(5)); // 120

168
copyright © 2020 www.onlineprogramminglessons.com For student use only

Power xn

Another example is to calculate the power of a number xn
In this case we need a base parameter b and an exponent parameter n.

public static int pown(int b, int n)
 {
 if(n ==0)
 {
 return 1;
 }

 else
 {
 return pown(b,n-1) * b;
 }
 }

pown(2,3) would return 8 because 2*2*2= 8 since 23=8

You can run it in a program like this:

System.out.println(pown(2,3)); // 8

Every time a recursive call is made the program stores the local variables in a call
stack. Every time recursive call finishes executing, the save local variables
disappear and the previous local variables are available. These are the ones
present before the recursive function was called. These save variables may now
be used in the present calculations.

169
copyright © 2020 www.onlineprogramminglessons.com For student use only

For the above example 23=8 the call stack would look like this.

 n=0
 b=2 1
 n=1 n=1
 b=2 b=2 2
 n=4 n=2 n=2 n=2
 b=2 b=2 b=2 b=2 4
n=5 n=5 n=3 n=3 n=3 n=3
b=2 b=2 b=2 b=2 b=2 b=2 8

Every time the recursive function finished executing it returns a value. Each
returning value is multiplied by the base b. In the above case the returning values
are 1,2,4 and 8

The return value is the value from the previous function multiplied by b (2)

return pown(b,n-1) * b;

the function first returns 1 then 1 * b = 1* 2 = 2 then 2 * 2 = 4 and finally 4 * 2 = 8

efficient power xn

A more efficient version of pown can be made relying on the fact then even n can
return b * b rather than just return * b for odd n

public static int pown2(int b,int n)
 {
 if (n == 0)
 {
 return 1;
 }

170
copyright © 2020 www.onlineprogramminglessons.com For student use only

 if (n % 2 == 0)
 {
 return pown2(b, n-2) * b * b;
 }

 else
 {
 return pown2(b, n-1) * b;
 }
 }

Operation is now much more efficient 1 * 2 * 4 = 8

You can run it in a program like this:

System.out.println(pown2(2,3)); // 8

Summing a sequence

Adding up all the numbers in a sequence

n (n *(n + 2))/2

0 0
1 1
2 4
3 7
4 12
5 17

 Total: 42

171
copyright © 2020 www.onlineprogramminglessons.com For student use only

public static int seqn(int n)
 {
 if(n == 0)
 {
 return 0;
 }

 else
 {
 int x = (n * (n + 1))/ 2;
 System.out.println(x);
 return x + seqn(n-1);
 }
 }

seqn(5) would return 35 because 0 + 1 + 3 + 6 + 10 + 15 = 35

You can run it in a program like this:

System.out.println(seqn(5)); // 35

You can print out the sequence by modifying the seqn function like this:

 public static int seqn2(int n)
 {
 if(n == 0)
 {
 return 0;
 }
 else
 {
 int x = (n * (n + 1))/ 2;
 System.out.println(x);
 return x + seqn2(n-1);
 }
 }

172
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can run it in a program like this:

System.out.println(seqn2(5));

You will get an output like this:

The sequence printed backwards and the final sum is 35

To do:

Try this formula: f(n-1) + 2 * (n-1)

Fibonacci sequence

Recursion is ideal to directly execute recurrence relations like Fibonacci sequence

The Fibonacci numbers are the numbers in the following integer sequence.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …….

In mathematical terms, the sequence fn of Fibonacci numbers is defined by the
recurrence relation.

 fn = fn-1 + fn-2

with seed values

 f0 = 0 and f1 = 1.

15
10
6
3
1
35

173
copyright © 2020 www.onlineprogramminglessons.com For student use only

A recurrence relation is an equation that defines a sequence based on a rule that
gives the next term as a function of the previous term(s).
public static int fib(int n)
 {
 if (n == 0)
 {
 return 0;
 }

 else if (n == 1)
 {
 return 1;
 }

 else
 {
 return fib(n-1) + fib(n-2);
 }
}

Notice The recursive statement is identical to the recurrence relation

fib(10) would return 55 because 21 + 34= 55

You can run it in a program like this:

System.out.println(fib (10)); // 55

Combinations

We can also calculate combinations using recursion.

Combinations are how many ways can you pick r items from a set of n distinct
elements.

Call it nCr (n choose r)

174
copyright © 2020 www.onlineprogramminglessons.com For student use only

5C2 (5 choose 2) would be

 Pick two letters from set S = {A, B, C, D, E}

Answer:{A, B}, {B, C}, {B, D}, {B, E}{A, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E}

There are 10 ways to choose 2 letters from a set of 5 letters. The combination
formula is

nCr= n! / r!(n-r)!

The Recurrence relation for calculated combinations is:

base cases:

nCn= 1
nC0= 1

recursive case:

nCr= n-1Cr + n-1Cr-1 for n > r > 0

Our recursive function for calculating combinations is:

public static int combinations(int n, int r)
{
 if (r == 0 || n == r)
 {
 return 1;
 }

 else
 {
 return combinations(n-1, r) + combinations(n-1, r-1);
 }
}

combinations(5,2) would return 10

175
copyright © 2020 www.onlineprogramminglessons.com For student use only

You can run like this:

System.out.println(combinations(5,2)); // 10

Print a string out backwards

With recursion printing out a string backwards is easy, it all depends where you
put the print statement. If you put before the recursive call then the function
prints out the characters in reverse, since n goes from n-1 to 0.If you put the print
statement after the recursive call then the characters are printed not in reverse
since n goes from 0 to n-1.

// reverse a string
public static void print_reverse(String s, int n)
{
 if(n == 0)
 {
 System.out.println(s.charAt(0));
 }

 else
 {
 System.out.print(s.charAt(n));
 print_reverse(s, n-1);
 }
}

You would call the print_reverse function like this

 string s = "hello";
 print_reverse(s, s.length()-1);

Check if a string is a palindrome

A palindrome is a word that is spelled the same forward as well as backwards:
Like "radar" and "racecar"

olleh

176
copyright © 2020 www.onlineprogramminglessons.com For student use only

// return true if string is a palindrome otherwise return false
public static boolean is_palindrome(String s, int i, int j)
{

if (i >= j)
{

 return true;
 }

 else
 {

 if (s.charAt(i) != s.charAt(j))
 return false;
 else
 return is_palindrome(s,i+1, j-1);
 }
}

You would call the is_palindrome function like this:

 string s2 = "radar";

System.out.println(s2 + " " + (is_palindrome(s2, 0,s2.length()-1)));

 string s3 = "apple";

System.out.println(s3 + " " + (is_palindrome(s3, 0,s3.length()-2)));

Radar
true

apple
false

177
copyright © 2020 www.onlineprogramminglessons.com For student use only

Permutations

Permutations are how many ways you can rearrange a group of numbers or
letters. For example for the string “ABC” the letters can be rearranges as follows:

ABC
ACB
BAC
BCA
CBA
CAB

Basically we are swapping character and then print them out
We start with ABC if we swap B and C we end up with ACB

// print permutations of string s
public static void printPermutations(char[] s, int i, int j)
{
 int k;
 char c;

 // print out permutation
 if (i == j)
 {
 System.out.println(new String(s));
 }

 else
 {
 for (k = i; k <= j; k++) {

 // swap i and k
 c = s[i];
 s[i] = s[k];
 s[k] = c;

178
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // recursive call
 printPermutations(s, i + 1, j);

 // put back, swap i and k
 c = s[i];
 s[i] = s[k];
 s[k] = c;
 }
 }
}

You would call the print_reverse function like this:

char[] ca = {'A','B','C'};
printPermutations(ca, 0,ca.length-1);

Combination sets

We have looked at combinations previously where we wrote a function to
calculate home many ways you can choose r letters from a set of n letters.

nCr n choose r

Combinations allow you to pick r letters from set S = {A, B, C, D, E}

 n = 5 r = 2 nCr 5C 2

Answer:{A, B}, {B, C}, {B, D}, {B, E}{A, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E}

We are basically filing a seconded character array with all possible letters up to r.

ABC
ACB
BAC
BCA
CBA
CAB

179
copyright © 2020 www.onlineprogramminglessons.com For student use only

Start with ABCDE we would choose AB then AC then AD then AE etc.
We use a loop to traverse the letters starting at n =0, and fill the comb string.
When n = r we then print out the letters stored in the comb string

public static void printCombinations(char[] s, char combs[],
 int start, int end, int n, int r)
{
 int i = 0;
 int j = 0;

// current combination is ready to be printed
 if (n == r)
 {
 for (j = 0; j < r; j++)
 {
 System.out.print(combs[j]);
 }
 System.out.println("");
 return;
 }

 // replace n with all possible elements.
 for (i = start; i <= end && end - i + 1 >= r - n; i++)
 {
 combs[n] = s[i];
 print_combinations(s, combs, i+1, end, n+1, r);
 }
}

You would call the print_combinations function like this:

char[] ca2 = {'A','B','C','D','E'};
char[] combs = new char[ca2.length+1] ;
int r = 2
 printCombinations(ca2, combs,0,ca2.length-1,0,r);

180
copyright © 2020 www.onlineprogramminglessons.com For student use only

The difference between combinations and permutations is that in a combination
you can have different lengths within the set, where as in permutations they are
the same length as the set but different arrangements.

Determinant of a matrix using recursion

In linear algebra, the determinant is a useful value that can be computed from the
elements of a square matrix. The determinant of a matrix A is denoted det(A),
detA , or |A

In the case of a 2 × 2 matrix, the formula for the determinant is:

 | a b |
 |A| = | | = ad – bc
 | c d |

For a 3 × 3 matrix A, and we want the s formula for its determinant |A| is

 | a b c | | e f | | d f | | d e | | |
 |A| = | d e f | = a | | - b | | + c | |
 | g h i | | h i | | g I | | g h |

 = aei + bgf – ceg – bdi - afh

Each determinant of a 2 × 2 matrix in this equation is called a "minor" of the
matrix A. The same sort of procedure can be used to find the determinant of a
4 × 4 matrix, the determinant of a 5 × 5 matrix, and so forth.

AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

181
copyright © 2020 www.onlineprogramminglessons.com For student use only

Our code actually follows the above formula, calculating and summing the miners.

// calculate determinant of a matrix
public static float determinant(float matrix[][], int size)
{
 int c;
 float det=0;
 int sign=1;
 float[][] b=new float[3][3];
 int i,j;
 int m,n;

 // base case
 if(size == 1)
 {
 return (matrix[0][0]);
 }
 else
 {
 det=0;
 for(c=0; c<size; c++)
 {
 m=0;
 n=0;
 for(i=0; i<size; i++)
 {
 for(j=0; j<size; j++)
 {
 b[i][j] = 0;
 if(i!=0 && j!=c)
 {
 b[m][n] = matrix[i][j];
 if(n<(size-2))
 {
 n++;
 }

182
copyright © 2020 www.onlineprogramminglessons.com For student use only

 else
 {
 n=0;
 m++;
 }
 }
 }
 }
 det = det + sign*(matrix[0][c]*determinant(b,size-1));
 sign = -1*sign; // toggle sign
 }
 }
 return (det);
}

You call and run the determinant function like this:

 float m[3][3] = {{6,1,1},{4,-2,5},{2,8,7}};

System.out.println ("det = " + determinant(m,m.length));

There are many more recursive examples, too numerous to present.
If you do all the following to do questions you will be a recursive expert.

LESSON 11 HOMEWORK

Question 1

Write a recursive function int addNumbers(int[] a, int n) adds up all numbers in
an array and returns the sum.

Question 2

Write a recursive function int searchNumber(int[] a, int n, int x) that searches for
a number(x) in an array and return the index (n) of the number if found
otherwise returns -1 if not found.

-306

183
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 3

Write a recursive function int largestNumber(int[] a, int n, that returns the
largest number in an array,

Question 4

Write a recursive function int smallestNumber(int[] a, int n) that returns the
smallest number in an array,

Question 5

Write a recursive function boolean searchDigit(int number, int x) that searches
for a digit in an positive number and return true if the number is found otherwise
returns false if not found.

Question 6

Write a recursive function called int sumDigits (int number) that adds up all the
digits in a positive number of any lengths. The recursive function receives an int
number and returns the sum of all the digits.

Question 7

Write a recursive function called void printArrayReverse(int a[], int n) that prints
an array backwards. The recursive printArrayReverse method receives the array
and the array length – 1 prints the array in reverse. Make sure your method
prints a new line at the end

Question 8

Write a recursive function called void printArray(int a[], int n) that prints an
array. The recursive printArray method receives the array and the array length – 1
and prints the array. Make sure your method prints a new line at the end.

184
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 9

Write a recursive function called void reverseString(String s) that reverses a string
in place. The recursive reverseString method receives the string and returns the
string in reverse. No printing is allowed. You need to use the substring method
since you cannot replace individual letters in a string.

Question 10

Write a recursive function called void formatNumber(String s) that can insert
commas in a number. For example 1234567890 becomes 1,234,567,890

Question 11

Write a recursive function boolean isEven(int n) that return true if a number has
even count of digits or false if the number of digits is odd. Hint: subtract by -2.

Question 12

Write a recursive function void printBinary(int d) that would print a decimal
number as a binary number. A binary number just has digits 0 to 1.
Where as a decimal number has digits 0 to 9. The decimal number 5 would be
0101 in binary, since 1*1 + 0* 2 + 1* 4 + 0 *8 is 10. We are going right to left.
To convert a decimal number to binary You just need to take mod 2 of a digit and
then divide the number by 2

5%2 = 1 : 1
5/2 = 2
2 %2 = 0 : 0
2/2 = 1
1 %2 = 1 : 1

 1/2 = 0
 0 %2 = 0 : 0

We are done so going backwards
5 in binary is 0 1 0 1

185
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 13

Write a recursive function boolean isPrime(int number, int n) that returns true if
a number is prime otherwise false.
 A prime number can only is divides evenly by itself. 2,3,5,7, are prime numbers.
You can use the mod operator % to test if a number can be divided evenly by
itself. 6 %3 = 0 , so 6 can be divided evenly by 3 so 6 is not a prime number.

Algorithm:
If the number is less than 2 then it is not a prime number.
If the number is 2 then it is a prime number.
If the number can be divided evenly by n then it is not a prime number
If n reached the number then it is a prime number.
Start n with 2 and increment to the number recursively.

Examples:

 isPrime(10,2) false 10 is not a prime number
 isPrime(7,2) true 7 is a prime number

Question 14

Make a recursive function called partition(int[] a,int n) that will partition an array
in place into odd and even numbers
Example: partition([1, 2, 3, 4, 5, 6], 0)
Array before:
[1, 2, 3, 4, 5, 6]

Array After:
 [1, 3, 5, 2, 4, 6]

Use your printArray method to print out the array before and after the partition
method is called.

Put all your functions in a java file called Homework11.java Test all the recursive
functions in the main function.

186
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson 12 Regular Expressions

Regular expressions let’s you search for string patterns in a text string. Regular
expressions are a little difficult to understand and use, but once you realize they
are just using letters used to form a pattern that you can match.
The simple lest regular expression is a string of letters like "are" that you can use
to determine if a text string contains this pattern.
Example: “Happy days are here again” contains the pattern “are”.

Java has the following classes to work with Regular Expressions located in the
java.util.regex package:.

Java Regular Expression classes.

Class Description

Pattern Defines a Pattern to be used in a search

Matcher
Used to search for a Pattern and contains search
information

Pattern
SyntaxException

Indicates a syntax error in a regular expression pattern

Pattern class methods

Method Description
static Pattern compile
(String pattern, int flag)

Contains a pattern to compile and a flag to
indicate how to search like case insensitive
search. Returns a Pattern object that can
be used to validate string using the
compiled regular expression pattern.

Matcher matcher(String text) Creates and returns Matcher object that
will be used to match the given input
string text against the compiled regular
expression pattern

String[] split(String text) Split the given input string accordingly the
compiled regular expression pattern

187
copyright © 2020 www.onlineprogramminglessons.com For student use only

Pattern class flags

Flag Description

CASE_INSENSITIVE Ignore case of letters
LITERAL Ignore special characters

UNICODE_CASE Used with CASE_INSENSITIVE to ignore the case
of letters outside the English alphabet

Matcher class methods

Method Description

boolean find() Returns true if the compiled pattern was found
in the string otherwise false

String group(int n) Is used to find matched subsequences
int groupContact() Used to find the total amount of matched

subsequences

Example using find

The find () function searches the string for a match, and returns true object if
there is a match.

import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Lesson12 {
 public static void main(String[] args) {
 Pattern pattern = Pattern.compile("like",
Pattern.CASE_INSENSITIVE);
 Matcher matcher = pattern.matcher("I like Java");
 boolean matchFound = matcher.find();
 if(matchFound) {
 System.out.println("Match found");
}
else {
 System.out.println("Match not found");
 }
 }
}

Match found

188
copyright © 2020 www.onlineprogramminglessons.com For student use only

How it works:

 Pattern pattern = Pattern.compile("like", Pattern.CASE_INSENSITIVE);

Is used to compile the pattern “like and returns a Pattern object. A case insensitive

search is to be performed,

 Matcher matcher = pattern.matcher("I like Java");

The matcher method is used to search for the pattern “like” in the string ‘I like
Java” and returns a Matcher object cointainig information about the search.

boolean matchFound = matcher.find();

The find method returns true if the pattern “like” is found in the string “I like
Java”

Using Split

Split is used to separate a string text into individual words separated by the
regular expression pattern.

 pattern = Pattern.compile(" ", Pattern.CASE_INSENSITIVE);
 String[] result = pattern.split("I like Java");

 for(String w: result)
 {
 System.out.println(w);
 }

How it Works

pattern = Pattern.compile(" ", Pattern.CASE_INSENSITIVE);

Is used to compile the pattern “ “ (empty space) and returns a Pattern object. A

case insensitive search is to be performed,

String[] result = pattern.split("I like Java");

I
like
Java

189
copyright © 2020 www.onlineprogramminglessons.com For student use only

The split method is used to search for the pattern “ ” (empty space) in the string
‘I like Java” and separate into individual words in a returned array.

 for(String w: result)
 {
 System.out.println(w);
 }

Used to print out the individual words stored in the returned array.

Sequences, Metacharacters and Sets

Regular expression have sequences, metacharacters and sets to make regular
expressions more powerful.
A special sequence is a \ followed a characters and has a special meaning, like \s
to represent white space.
Metacharacters are characters with a special meaning, like + which means 1 or
more matches.

A set is a set of characters inside a pair of square brackets [] with a special
meaning, where [A-z] matches any letter A to Z.

Here are the tables of Sequence, metacharacters and sets:

Sequences

A special sequence is a \ followed by one of the characters in the list below, and has a special meaning.

Sequence Description Example
\A Returns a match if the specified characters are at the beginning

of the string "\AThe"

\b Returns a match where the specified characters are at the

beginning or at the end of a word

(the "r" in the beginning is making sure that the string is being

treated as a "raw string")

r"\bain"

r"ain\b"

\B Returns a match where the specified characters are present, but

NOT at the beginning (or at the end) of a word

(the "r" in the beginning is making sure that the string is being

treated as a "raw string")

r"\Bain"

r"ain\B

\d Returns a match where the string contains digits (numbers from "\d"

190
copyright © 2020 www.onlineprogramminglessons.com For student use only

0-9)
\D Returns a match where the string DOES NOT contain digits "\D"

\s Returns a match where the string contains a white space

character

"\s"

\S Returns a match where the string DOES NOT contain a white

space character

"\S"

\w Returns a match where the string contains any word characters

(characters from a to Z, digits from 0-9, and the underscore _

character)

"\w"

\W
Returns a match where the string DOES NOT contain any word

characters

"\W"

\Z Returns a match if the specified characters are at the end of the

string
"Java\Z"

Metacharacters

Metacharacters are characters with a special meaning that allows the
metacharacter to represent many other characters. Example the dot . can
represent any character.

Metacharacter Description Example
[] A set of characters from start to end separated by a - "[a-m]"

\
Signals a special sequence

(can also be used to escape special characters like \(
"\d"

. Any character (except newline character) "."

^ Starts with "^happy"

$ Ends with "days$"

* Zero or more occurrences "a*"

+ One or more occurrences "a+"

? Zero or more occurrence a?

{} Exactly the specified number of occurrences "a{2}"

|

Either or

"yes|no"

() Capture and group “(\w+)”

Sets

A set is a set of characters inside a pair of square brackets [] with a special meaning.

191
copyright © 2020 www.onlineprogramminglessons.com For student use only

Set Description
[arn] Returns a match where one of the specified characters (a, r, or n) are present

[a-n] Returns a match for any lower case character, alphabetically between a and n

[^arn] Returns a match for any character EXCEPT a, r, and n

[0123] Returns a match where any of the specified digits (0, 1, 2, or 3) are present

[0-9] Returns a match for any digit between 0 and 9

[0-5][0-9] Returns a match for any two-digit numbers from 00 and 59

[a-zA-Z]
Returns a match for any character alphabetically between a and z, lower case OR

upper case

[+]
In sets, +, *, ., |, (), $,{} has no special meaning, so [+] means: return a match

for any + character in the string

Using metacharacters

If you want to match a digit use: \d
If you want to match a uppercase letter use: [A-Z]
If you want to match a uppercase and lowercase letter use: [a-zA-Z]
If you want to match a space use: \s
To match 1 or more spaces: \s+
To match 0 or more spaces: \s*
To match 0 or 1 spaces: \s?
To match 3 digits use: \d{3}
To match 1 or more letters: [a-zA-Z]+
To match 0 or more letters: [a-zA-Z]*
To match 0 or 1 letter: [a-zA-Z]?

Regular Expression examples using Sequences, Metacharacters and Sets

us zip code

use \d{5} to match 5 digits

note: we must use “ \\d{5} “ in the pattern string since ‘\’ is an escape character
that needs to be escaped again to become just a forward slash

 pattern = Pattern.compile("\\d{5}", Pattern.CASE_INSENSITIVE);
 matcher = pattern.matcher("12345");

System.out.println(matcher.find()); // true

192
copyright © 2020 www.onlineprogramminglessons.com For student use only

Canadian postal code

use [a-aA-AZ] to represent all upper and lower case letters

pattern = Pattern.compile
("[a-zA-Z]\\d[a-zA-Z]\\d[a-zA-Z]\\d",Pattern.CASE_INSENSITIVE);
matcher = pattern.matcher("M2J2Y5");
 System.out.println(matcher.find()); // true

Phone number

 (123) 456-7890

A phone number has 3 digits surrounded by round brackets: (123)

So we use \d to represent digits 0-9 and the use {3} for three digits contained in
round brackets. (\d{3})

The round brackets are metacharacters that have to be escaped with forward
slashes. \(\d{3}\)

Continuing we have a space followed by three more digits \d{3} a hyphen –
followed by 4 more digits \d{4} The following is a regular expression for a phone
number.

\(\d{3}\) \d{3}-\d{4}

(123) 456 - 7890

\(\d{3}\) \d{3} - \d{4}

We only have 1 slight problem, many people will forget to enter a space after the
round brackets so we use the metacharacter ? which means 0 or 1 character.

193
copyright © 2020 www.onlineprogramminglessons.com For student use only

 pattern = Pattern.compile
 ("\\(\\d{3}\\) ?\\d{3}-\\d{4}",Pattern.CASE_INSENSITIVE);
 matcher = pattern.matcher("(123) 456-7890");
 System.out.println(matcher.find()); // true
 matcher = pattern.matcher("(123)456-7890");
 System.out.println(matcher.find()); // true

The final regular expression as follows to handle a space or empty space is:

(123) 456 - 7890
\(\d{3}\) ? \d{3}-\ - \d{4}

using groups ()

A group allows you to pick out and extract parts of the matching text.
Example: pick parts of the first and last name of a name

 pattern = Pattern.compile
 ("(\\w+), (\\w+)",Pattern.CASE_INSENSITIVE);
 matcher = pattern.matcher("Tom, Smith");
 System.out.println(matcher.find());
 for(int i=1;i<=matcher.groupCount();i++)
 {
 System.out.printf("Group %d %s\n",(i),matcher.group(i));

 }

The groupCount function tells us how many groups we have. The group function
prints out the group test resulting from the search.

Group 1 Tom
Group 2 Smith

194
copyright © 2020 www.onlineprogramminglessons.com For student use only

Using Java String class Regular Expressions

Using Regular Expressions with the Java string class may be a little easier to use,
The String class has the following methods.

Method Description

boolean matches
(String pattern)

method takes a regular expression as parameter, and
returns true if the regular expression matches the
string, and false if not

String[] split
(String pattern)

method takes a regular expression as parameter and
splits the string at all positions in the string where the
regular expression matches a part of the string. returns
a String array with these substrings.

String replaceFirst
(“from”,”to”)

returns a new String with the first match of the regular
expression passed as first parameter with the string
value of the second parameter.

String
replaceAll(“from”,”to”)

returns a new String with all matches of the regular
expression passed as first parameter with the string
value of the second parameter.

Example using matches

 String text = "(123) 456-7890";
 System.out.println(text.matches("\\(\\d{3}\\) ?\\d{3}-\\d{4}")); // true

Example using split

 text = "Happy days are here again";
 String[] words = text.split("\\s+");
 for(String w: words)
 {
 System.out.println(w);
 }
 }

Happy
days
are
here
again

195
copyright © 2020 www.onlineprogramminglessons.com For student use only

Example using replaceFirst

Replace all replaces the first occurrence in the string

 text = "Happy days are here again";
 text = text.replaceFirst(" ",",");
 System.out.println(text);

Example using replaceAll

Replace all replaces all occurrences in the string

 text = "Happy days are here again";
 text = text.replaceAll(" ",",");
 System.out.println(text);

Regular Expression Homework

You can use String class or Regular Expression classes.

Question 1

 Write the regular expression to validate a web page url like:
http://www.cstutoring.com

Question 2

Write the regular expression to validate a email and use a group the print out the
username and host.
Example:

students@cstutoring.com
username: students
host: cstutoring.com

Happy,days are here again

Happy,days,are,here,again

196
copyright © 2020 www.onlineprogramminglessons.com For student use only

Question 3

Write a regular expression to split a line where the word are separated by
commas that can contain one or many spaces. Pring out the words in a loop each
on a separate line.
hint: use split method

Example line:

Happy, days, are, here,again\n”

Example output:
Happy
days
are
here
again

Question4

Write a regular repression to remove all the new lines from a string.
hint: use replaceAll method

Example:
Before:
happy days are\nhere again\n”
after:
happy days are here again”

Question 5

Write python code using a regular expression(s) to locate all words with a certain
letter and print them out.

Hint #1: use split then match on each word.
Hint #2: use * metacharacter

197
copyright © 2020 www.onlineprogramminglessons.com For student use only

Lesson 13 PROJECTS

Project 1 IntArray Class

Make an IntArray class to store a int values in an internal array called items. Make
a default constructor that makes an empty array. Make another constructor that
takes in the initial size of the array. Make another constructor the receives an
ordinary array. You need to copy the elements in the receiving array to your
internal array. Make another constructor that receives your IntArray. Again, you
need to copy the elements in the receiving IntArray to your internal array. Make
methods to access array elements by array index. Make operational methods to
add items to the end, insert at a certain index, and remove at a certain index.
When adding and inserting items the internal array should just increase in size by
1. When removing items from the internal array just shift the other vales down
and set the last value to 0. Make operational method to sort the array ascending
and search for values. Use bubble sort to sort the array and use binary search to
search for items in the internal array when it is sorted. You can find the code for
bubble sort and binary search on the internet. Lastly make a toString method to
print out the array elements enclosed in square bracket’s like this: [9 4 9 3 6 4 8]
Make a TestArray class with a main method to test all the methods of your Array
class or alternately for convenience put the main method inside your IntArry
class.

Project 2 Int Matrix class

Make a Matrix class that has rows and column variables and an two-dimensional
array of the specified rows and columns. Make a default constructor to make an
empty Matrix of rows and columns. Have private variable to store rows and
columns. Make another constructor the receives an ordinary two-dimensional
array. You need to copy the elements in the receiving array. Make another
constructor that receives your IntMatrix. Again, you need to copy the elements in
the receiving IntMatrix. Make setters and getters to access the matrix elements.
make a to string method that will print out the matrices Make operational
methods to add, subtract, multiply, divide, transpose and rotate matrices by a
specified rotation. Make a TestMatrix class with a main method to test all the
methods of your Matrix class.

198
copyright © 2020 www.onlineprogramminglessons.com For student use only

Project 3 Spelling Corrector

Read in a text file with spelling mistakes, find the incorrect spelled words and
offer corrections. The user should be able to choose the correct choice from a
menu. Look for missing or extra letters or adjacent letters on the keyboard.
Download a word dictionary from the internet as to check for correct spelled
words. Use a Hash table to store the words. Store the correct spelled file.

Project 4 MathBee

Make a Math bee for intermixed addition, subtraction, multiplication and division
single digit questions. Use random numbers 1 to 9 and use division numbers that
will divide even results. Have 10 questions and store results in a file. Keep track of
the users score.

Project 5 Quiz App

Make a quiz app with intermixed multiple choice, true and false questions.
You should have a abstract Question super class and two derived classes
MultiipleChoice and TrueAndFalse. Each derived class must use the abstract
methods to do the correct operation. Store all questions in one file. Store the
results in another file indicating the quiz results.

Project 6 Phone Book App

Make a phone book app that uses a HashMap or ArrayList to store Phone
numbers, emails and names. You need an Contact class to store name, emails
and phone number. You should be able to view, add, delete, and search for
contacts as menu operations. Contacts need to be displayed in alphabetically
orders. Offer to lookup by name, email or by phone number. Contacts should be
stored in a file, read when app runs, and saved with app finished running.

import java.util.Map.Entry;
import java.util.Comparator;

 import java.util.Collections;

199
copyright © 2020 www.onlineprogramminglessons.com For student use only

 // print HashMap sorted by value

// Entry set contains both key and values,
// so we can sort key and value together
 Set<Map.Entry<String, String>> set = map1.entrySet();

 List<Map.Entry<String, String>> list
 = new ArrayList<Map.Entry<String, String>>(set);

 // anonymous comparator class
 Comparator c = new Comparator<Map.Entry<String, String>>() {
 public int compare(Map.Entry<String, String> e1,
 Map.Entry<String, String> e2) {
 return e2.getValue().compareTo(e1.getValue());
 }
 };

// sort Entry key value pairs by value using anonymous Comparator
 Collections.sort(list,c);

Lastly, we print out the sorted list.

 for (Map.Entry<String, String> entry : list) {
 System.out.println(entry.getKey() + " = " + entry.getValue());
 }
 System.out.println("");

Project 7 Appointment App

Make an Appointment book app that uses a HashMap to store Appointments. You
need an Appointment class to store name, description and time. You should be
able to view, add and delete appointments as menu operations. Appoints need to
be displayed in chronological orders. Appointments should be stored in a file,
read when app runs, and saved with app finished running
Use the following code to sort a Hashmap by value.

import java.util.Map.Entry;

200
copyright © 2020 www.onlineprogramminglessons.com For student use only

import java.util.Comparator;
 import java.util.Collections;

 // print HashMap sorted by value

// Entry set contains both key and values,
// so we can sort key and value together
 Set<Map.Entry<String, String>> set = map1.entrySet();

 List<Map.Entry<String, String>> list
 = new ArrayList<Map.Entry<String, String>>(set);

 // anonymous comparator class
 Comparator c = new Comparator<Map.Entry<String, String>>() {
 public int compare(Map.Entry<String, String> e1,
 Map.Entry<String, String> e2) {
 return e2.getValue().compareTo(e1.getValue());
 }
 };

// sort Entry key value pairs by value using anonymous Comparator
 Collections.sort(list,c);

Lastly, we print out the sorted list.

 for (Map.Entry<String, String> entry : list) {
 System.out.println(entry.getKey() + " = " + entry.getValue());
 }
 System.out.println("");

Project 8 Fraction class

Make a Fraction class that stores an int numerator and denominator. Make two
constructors, a default constructor that initializes the numerator to 0 and
initializes the denominator to 1, and an initializing constructor that initializes the
numerator and denominator with user values.

201
copyright © 2020 www.onlineprogramminglessons.com For student use only

Make methods add, subtract, multiply and divide, that receives two Fraction
classes and return a Fraction class result. Your empty add method may look like
this:

public Fraction add(Fraction f2)
{
 Fraction f3 new Fraction();
 return f3.
}

Make a toString method that returns a String representation of a fraction class as
a whole number like 5, when the denominator is 1 and a fraction like 2/3 when
the denominator is not 1. Make a main or standalone Test class to test your
Fraction class.

Bonus marks:

Make a reduce method using GCD that will reduce a fraction to lowest terms. You
can make a iterative or recursive GCD private method as follows:

iterative GCD

static long gcd (long a, long b) {
 long r, i;
 while(b!=0){
 r = a % b;
 a = b;
 b = r;
 }
 return a;
}

recursive GCD

public int gcd(int a, int b) {
 if (b==0) return a;
 return gcd(b,a%b);
}

202
copyright © 2020 www.onlineprogramminglessons.com For student use only

Also make a equals method and a compareTo methods to test if two fractions are
equal and to compare fractions if they are less or greater to each other. Test
these features to your testing.

Project 9 GenericArray Class

Make the IntArray class to be a Generic Matrix class TArray so that it can store
any data type. You need your generic data type T to extend the Comparable
interface like this

 T extends Comparable<T>

or else you cannot compare values in your TArray class for sorting.

You need to instantiate generic array with a Comparable object to hold your array
T items, since the java compiler cannot make a T object for you. You then need to
type cast your created Comparable array to a T type array.

 items = (T[])new Comparable[size];

Make a TestTArray class with a main method to test all the methods of your
TArray class.

Project 10 Generic Matrix class

Make the IntMatrix class to be a Generic Matrix class TMatrix so that it can store
any data type. You need your generic data type T to extend the Number interface
like this

 T extends Number<T>

or else you cannot do arithmetic operations in your TMatrix class. You will also
need the Generic TCalculator class from Lesson6 as a private variable so it can do
arithmetic operations for you.

 private TCalculator<T> calc = new TCalculator<T>();

203
copyright © 2020 www.onlineprogramminglessons.com For student use only

You need to instantiate generic two dimensional array with a Number object since
the Java compiler cannot make a T object for you. You then need to type cast your
created Number array to a T type array.

 items = (T[][])new Number[rows][cols];

Make a TestTMatrix class with a main method to test all the methods of your
TMatrix class.

Project 11 Generic Arithmetic Classes

Make Generic Add, Sub, Mult and Divide Generic classes so each has a
overloaded method to do arithmetic operations on any data type. Have an
generic abstract super class called Operations to represent all the Operation
classes. Incorporate the classes in you Generic Calculator. Rename you Generic
calculator to TCalculator2.

Project 12 Grocery Store App

Make a Grocery Store App where Customers can purchase items. Preferred
customers get a discount. After all items have been entered a receipt is printed.

Step 1: Item class

Make a Item class with private variables product name, quantity ordered, price
and discountPrice.
If the item is not a discount item then the discount price is 0.
Make a constructor that will receive the item name, quantity, price and discount
price.
Make getters and setters for each instance variable

204
copyright © 2020 www.onlineprogramminglessons.com For student use only

Make a formatted toString method that will return item name price quantity
discount price surrounded by round brackets and extension price like this:

Carrots 2 1.29 (.89) 2.58 (1.78)

Step 2: GroceryStore class

Make a GroceryStore class that will store items bought, total items bought, that
total’s the order and print out a receipt.

The Grocery Store class will store the customer’s name, and all items bought in an
ArrayList <Item> called items.

The Grocery store constructor will receive the customer name and create the
ArrayList <Item> of items.
The grocery store will have a method to add an item object called add.
The grocery store class will also print out a receipt using a method called
printReceipt.

The Grocery store class will have a getTotal method to return the total of all
items. The getTotal method can also be used to print out the receipt total.

All instance variables are private and you cannot have any getters and setters.

Step 3: DiscountStore class

The DiscountStore class inherits from the GroceryStore class.

The DiscountStore receives the CustomerName and sends the CustomerName to
the GroceryStore super class.

If the customer is a preferred customer then the DiscountStore class is used. The
DiscountStore class will calculate discount percent, and count of discount items
and total of all items using the discount price rather than the regular price. The
discount class will override the getTotal class of the grocery store class.
The discount store class will also print a receipt showing the number of discount,
items and the discount percent obtained.

205
copyright © 2020 www.onlineprogramminglessons.com For student use only

Step 4 GroceryApp class.

The GroceryApp class is the main class where the cashier enters the customer
items, bought.
The cashier will ask if the customer is a preferred customer. if it is a preferred
customer then the DiscountStore class is used else the Grocery Store class
Is used.

The cashier will enter the items bought. Once all items have been enters then
the receipt is printed out.

You will need to store a list of products in a file to simulate the entering of
products or make an array of items like this:

Item[] items = {new Item(“apples”,2,1.26,1.08)
new Item(“oranges”,2,1.26,1.08),
new Item(“carrots”,2,1.26,1.08)
new Item(“apple”,2,1.26,1.08)};

The file format will be like this

Customer name
Preferred or not preferred
Number of products
Item name, quantity, price, discount price

Example file:
Tom Smith
Preferred
3
Carrots , 2.49, 1.78, 2
Fish,12.67, 11.89,3
 Milk 4.89.3.75, 2
In either case the items will be added to the store.

206
copyright © 2020 www.onlineprogramminglessons.com For student use only

The main method will have a menu as follows:

(1) add items to Grocery store
(2) add items to Discount store
(3) print receipt
(4) exit program

END

