

1
copyright © 2021 www.onlineprogramminglessons.com For student use only

Python Mini Lessons last update: Mar 15, 2021

From http://www.onlineprogramminglessons.com

These Python mini lessons will teach you all the Python Programming statements

you need to know, so you can write 90% of any Python Program.

Lesson 1 Input and Output

Lesson 2 Functions

Lesson 3 Classes

Lesson 4 Operators

Lesson 5 Lists, Sets, Tuples and Dictionaries

Lesson 6 Programming Statements

Lesson 7 File I/O

Lesson 8 List Comprehension, Iterators, Generators

 and Higher Order Functions

Lesson 9 Recursion

Lesson10 Regular Expressions

Lesson 11 SQL and SQLite

Lesson 12 Python Project to do

Let’s get started!

You first need a Python interpreter to run Python Programs.

Download from this site: https://www.python.org/downloads/

Choose Python version 3.6.4 or higher.

Conventions used in these lessons:

bold - headings, keywords, code

italics - code syntax

underline - important words

http://www.onlineprogramminglessons.com/
https://www.python.org/downloads/

2
copyright © 2021 www.onlineprogramminglessons.com For student use only

Once you download Python and run it you will get this screen known as the

Python interpreter shell:

Lesson 1 Input and Output

Introduction to variables

Programming is all about storing values and doing operations on them. Values can

be numeric numbers like 5 or a decimal number like 10.5 or a text message like

"Hello there". Text messages are known as strings and are enclosed in double or

single quote. Operation on values maybe adding two values together or joining

two strings together. When a Python program is run, values are stored in a

computer memory location. In a Python program the memory location is

represented by a identifier name. This identifier name is known as a variable. A

variable may store many different values at different times as the Python program

runs. We now make our first variable and assign a value to it. For convenience

*you can do this in the Python interpreter shell that first appears when Python is

launched. In the Python shell type x = 5 and then press the enter key, then type

the variable name x. You should get something like this:

3
copyright © 2021 www.onlineprogramminglessons.com For student use only

The value 5 is assigned to the variable x and x now holds the value 5. When you

type the variable name x in the python interpreter shell the value of the variable

is printed out to the screen. When you type x = 5 in the python interpreter shell x

stores the value 5. the x = 5 is known as a programming statement. A program

statement is an instruction directing the computer to do operations like store a

value, print out a value, get a value from the keyboard or add another value to a

variable. A program is just a collection of programming statements.

Programming statements

Although you can type python programming statements directly into the Python

interpreter shell, but for convenience It is better to store all your lesson programs

in a file. A Python program is also known as script, because it is an interpretive

language, meaning the Python programming statements are executed one by one

as they appear in the program file. To make a Python program file select New File

from the File menu.

4
copyright © 2021 www.onlineprogramminglessons.com For student use only

The editor window appears where you can type in Python programming

statements that you can save and run. You may want first to make a folder on

your computer called python Lessons to store all your python programs.

From the File menu select File Save As

5
copyright © 2021 www.onlineprogramminglessons.com For student use only

Navigate to your python Lessons folder and save your (empty) python program

file as lesson1.py

6
copyright © 2021 www.onlineprogramminglessons.com For student use only

It’s now time to write your first Python Programming Statement. Your program

will print a welcome message to the computer screen. In the Python Editor type:

 print("Welcome to my program")

To run your program select Run Module from the Run Menu.

7
copyright © 2021 www.onlineprogramminglessons.com For student use only

Select OK

“Welcome to my program” is now printed on the screen in the Python execution

window. The print statement was used to print the “Welcome to my program”

message on the screen .

The next thing we need to do is get a value from the keyboard using an input

statement. We will ask the user to type in their name and then greet them.

8
copyright © 2021 www.onlineprogramminglessons.com For student use only

Type in the following statements in the Python editor right after the Hello World

statement:

name = input("Please type in your name: ")

print("Nice to meet you ", name)

Now run your program, you will get something like this:

(You may want to close the previous Python execution window before running.)

9
copyright © 2021 www.onlineprogramminglessons.com For student use only

Recapping: The print statement writes messages and values on the screen. The

messages and values to be printed out are enclosed in round brackets and

separated by commas. The input statement prompts the user with a text message

and reads a value from the key board and stores the value in a variable. Variables

store values. The input statement stores the name of the person in the variable

name. Python has two types of values string values and numeric values. String

values are messages enclosed in double or single quotes like "Hello World" or

‘Hello World’ where as numeric values are numbers like 5 and 10.5 Numeric

values without decimal points like 5 are known as an int and numbers with

decimal points like 10.5 are known as a float. Variables store string or numeric

values that can be used later in your program. The variable name stores the string

value entered from the keyboard, in this case the person’s name.

name = input("Please type in your name: ")

10
copyright © 2021 www.onlineprogramminglessons.com For student use only

The print statement prints out the string message "Nice to meet you" and the

name of the user stored in the variable name.

print("Nice to meet you ", name)

Note inside the print statement the string message and variable name are

enclosed in round brackets and the values are separated by commas. Round

brackets are important in Python. The opening round bracket ‘(‘ introduces the

start of the values, the closing ‘)’ round bracket species the end of the values.

We now ask the user how old they are.

Type in the following statements at the end of your program and then run the

program.

age = int(input("How old are you? "))

print ("You are", age , "years old")

Run the program and enter Tom for name and 24 for age you will get something

like this:

11
copyright © 2021 www.onlineprogramminglessons.com For student use only

Recapping: The input statement asks the user to enter their age. The int

statement converts the entered age to a int number and the variable age holds

the age value. We need to convert the string input to a numeric value using the

int statement.

age = int (input ("How old are you? "))

This is a 2 step process we first get the age of the person as a string using the

input statement. The age at this point is a string value (digits are considered string

letters when read by the input statement). The input value is converted to a

number value using the int statement.

age = input ("How old are you? ")

age = int (age)

Variables in Python can hold any value, string or number at any time.

12
copyright © 2021 www.onlineprogramminglessons.com For student use only

The print statement is used to print out the messages, the person’s name and

age.

print (name,"You are", age , "years old")

If you have got this far then you will be a great python programmer soon.

Most people find Programming difficult to learn. The secret of learning program is

to figure out what you need to do and then choose the right programming

statement to use. If you want to store a value use a variable. If you want to print

messages and values to the screen you use a print statement. If you want to get

values from the keyboard, you use an input statement. If you need to input a

numeric value, you use a int statement or float statement on the input statement

to convert the input value to a numeric value.

Here is the complete program again:

name = input("Please type in your name: ")
print("Nice to meet you ", name)
age = int(input("How old are you? "))
print ("You are", age , "years old")

Python data types:

With Python you do not need to specify what data type a variable is suppose to

hold. Python figures this out for you automatically.

i = 5 # integer data type
f = 10.5 # float data type
d = 10.1234512 # double precision data type (exponential)
c = 2 + 3j # complex data type
b = True # boolean data type
s = "Hello" String data type

One of the big draw backs of Python is you do not know what kind of data a

variable represents. You can use type(x) to find out.

13
copyright © 2021 www.onlineprogramminglessons.com For student use only

print(type(i)) # <class 'int'>
print(type(f)) # <class 'float'>
print(type(d)) # <class 'float'>
print(type(c)) # <class 'complex'>
print(type(b)) # <class 'bool'>
print(type(s)) # <class 'str'>

Introduction to Functions

Functions allow you to group many programming statements together so that you

can reuse them repeatedly in your Python program. The most common function

to use is the main function. We will now group our previous programming

statements in a main function and then call the main function from the python

script. Type in the following Python program, use tabs or spaces for the

indentation. Indentation is very important on python programs. You must use

proper indentation.

def main():

 print("Welcome to my program")

 name = input("Please type in your name: ")

 print("Nice to meet you ", name)

 age = int(input("How old are you? "))

 print ("You are", age , "years old")

main()

Now run your program, it will do the same thing as the previous program.

All functions in Python start with the key word def which means define function.

Function name’s end with 2 rounds brackets (). The round brackets distinguish a

function name from a variable name. A function may receive values that are

enclosed within the round brackets. Think that the round brackets are a portal

mechanism for the function to receive values.

14
copyright © 2021 www.onlineprogramminglessons.com For student use only

After the function name and the round brackets () there is a colon : the colon

states there are programming statements to follow that belong to the current

function name. Programming statements in a function are indented with a tab or

spaces. All indented statements following def and the function name belong to

the function. In the above function our function name is main. This indentation

makes python very awkward to use and is the most cause of many program errors

and unexpected program executions. Fortunately, you will get use to indentation

and realize its importance in a python program to define the python program

structure.

The last program statement main() is un-indented indicating the end of the main

function and the start of a new programming statement. The main programming

statement calls our main function. It has the same name as the main function and

includes round brackets to indicate a function call.

If you get your program running them you are doing good.

Python has many built in functions that you can use, that make python

programming easier to use. You already used some of them print, input, int and

float. As we proceed with these lessons you will learn and use many more

functions.

Lesson 1 Skill testing questions

1. What is a program?

2. What is a variable?

3. What is a data type, name some data types

4. What does a programming statement do?

5. What does the print statement do?

6. What does the input statement do?

7. What is a function?

8. What is the purpose of the main function?

9. How do you call the main function

15
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 1 Homework:

Write a python program that ask someone what their profession title is, like

Doctor, Lawyer, Salesman etc. and what their annual salary is. Next print out their

profession title and how much money they make. You can use the float function

to convert an input value into a number

 salary = float(input("How much money do you make? "))

Use a main function to call your programming statements.

Your program would run like this:

Welcome to my Program
What is your profession title? Doctor
How much money do you make? 120000
You are a Doctor
You make 120000 dollars

 Call your Python homework program, homework1.py

Python Program Format

Python Program

main function

Calculation section

Input section

Output Section

local variables

functions

16
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 2 Functions

Functions allow your program to be more organized and allow programming

statements to be re-used so duplication is avoided. We will make a welcome,

enterName ad enterAge functions.

Functions usually are defined at the top of the program in order as they are used.

The main function is the last one because it will call all the proceeding functions.

When a function is called in a programming statement it means it is executed. In a

Python script the functions must be defined before they are used.

Here is our program now divided into functions. Type in the following program

and save as Lesson2.py.

def welcome():

 print("Welcome to my program")

def enterName():

 name = input("Please type in your name: ")

 return name

def enterAge():

 age = int(input("How old are you? "))

 return age

def displayInfo(name, age):

 print("Nice to meet you ", name)

 print ("You are", age , "years old")

17
copyright © 2021 www.onlineprogramminglessons.com For student use only

def main():

 welcome()

 name = enterName()

 age = enterAge()

 displayInfo(name, age)

main()

Run the program and you will get the same results as in program lesson1.py.

Functions make your program more organized and manageable to use. Functions

have three different purposes. Functions can receive values, execute

programming statements and return values. Functions receive values inside the

round brackets following the function name. The values are separated by

commas. The welcome function just prints a statement and receives no values or

returns no value.

18
copyright © 2021 www.onlineprogramminglessons.com For student use only

def welcome():

 print("Hello World")

The getName function gets a name from the keyboard and return the name value

using the return statement.

def enterName():

 name = input("Please type in your name: ")

 return name

The getAge function gets an age value from the keyboard and returns an age

value using the return statement. Note we use the int function to convert the

string value to a numeric value.

def enterAge():

 age = int(input("How old are you? ")

 return age

The p display function receives a name and age value to print out, but return’s no

value. def displayInfo(name, age):

 print("Nice to meet you ", name)

 print ("You are", age , "years old")

The name and age inside the round brackets of the displayInfo function definition

statement are known as parameters and contain values to be used by the

function. The parameters just store values from the calling function and are not

the same variables that are in the calling function. The calling function is the

function that calls another function. Although the parameter names and values

may be same as in the calling function variable names, they are different memory

locations. The main purpose of the parameters is to transfer or pass values to the

function.

19
copyright © 2021 www.onlineprogramminglessons.com For student use only

The main functions call the preceding functions to run them and store the values

in variables and pass the stored variable values to the other functions. Calling a

function means to execute the function. The values that are passed to the called

function from the calling function are known as arguments.

Variables inside a function are known as local variables and are known to that

function only. Name and age are local variables in the main function but are also

arguments to the displayInfo function.

def main():

welcome()

 name = enterName()

 age = enterAge()

 displayInfo(name, age)

 main()

Notice, our main function is must smaller and our program is more organized. It’s

now time to comment your program. All programs need to be commented so that

the user knows what the program is about. Just by reading the comments in your

program you will know exactly what the program is supposed to do. We have two

types of comments in python. Header comments, that are at the start of a

program or a function. They start with 3 double quotes and end with three double

quotes and can span multiple lines like this.

"""

Program to read a name and age from a user and

print the details on the screen

"""

Other comments are for one line only and explain what the current or proceeding

program statement it is to do,

The one-line comment starts with a # like this:

function to read a name from the key board are return the value

20
copyright © 2021 www.onlineprogramminglessons.com For student use only

We now comment the program as follow. Please add all these comments to your

program.

"""

Program to read a name and age from a user and print

the details on the screen

"""

function to print a welcome message

def welcome():

 print("Welcome to my program")

function to read a name from the key board are return the value

def enterName():

 name = input("Please type in your name: ")

 return name

function to read an age from the key board are return the value

def enterAge():

 age = int(input("How old are you? ")

 return age

function to print out a person’s name and age

def displayInfo(name, age):

 print("Nice to meet you ", name)

 print ("You are", age , "years old"

21
copyright © 2021 www.onlineprogramminglessons.com For student use only

main function to run program

def main():

 welcome() # welcome user

 name = enterName() # get user name

 age = enterAge() # get user age

 displayInfo(name, age) # print user name an age

main() # call main function to run program

Lesson 2 Homework:

Take your homework program from Lesson1.py that stored the title and salary of

a Profession. Make functions welcome, enterTitle, enterSalary, displayInfo and

main.

Use the functions to print a welcome message, get a profession title, get a salary

and print out the professions details.

You can call your python homework 2 program, homework2.py

Lesson 2 Skill testing questions

1. What is the purpose of a function?

2. How do you define a function

3. How do you call a function

4. What is the purpose of the round brackets when you define a function

5. What is the purpose of the round brackets when you call a function

6. What is the difference of defining a function and calling a function

7. Why do we need functions?

8. How do you return values from a function?

22
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 3 CLASSES

We now take a big step in Python Programming. This is very important step to

take. Classes represent another level in program organization. They represent

programming units that contain variables to store values and contain functions to

do operations (calculations) on these variable. This concept is known as Object

Oriented Programming, and is a very powerful concept. It allows these

programming units to be used over again in other programs. The main benefit of

a class is to store values and do operations on them transparent from the user of

the class. It is very convenient for the programmers to use classes. They are like

building blocks that allow one to create many sophisticated programs with little

effort.

A class starts with the keyword class and the class name like this:

 class Person:

The class uses another keyword self that indicates which variables and functions

belong to this class. The keyword self is a little awkward to use, but we have no

choice but to accept and use properly. Class definitions are little more automatic

in other programming languages. Classes in Python are just probably an add on

hack. All functions in a Python class must contain the self keyword.

We now convert our previous program to use a class. We will have a Person class

that has variables to stores a name and age of a person and have functions to do

operations on them, like initializing, retrieval, assignment and output. Type in the

following class into a python file called lesson3.py

23
copyright © 2021 www.onlineprogramminglessons.com For student use only

"""

Person Class to store a person's name and age

"""

define a class Person

class Person:

 # initialize Person

 def __init__(self, name, age):

 self.name = name

 self.age = age

 # return name

 def getName(self):

 return self.name

 # return age

 def getAge(self):

 return self.age

 # assign name

 def setName(self,name):

 self.name = name

 # assign age

 def setAge(self, age):

 self.age = age

24
copyright © 2021 www.onlineprogramminglessons.com For student use only

 # return person info as a string

 def __str__(self):

 s = "Nice to meet you " + self.name + "\n"

 s += "You are " + str(self.age) + " years old"

 return s

recapping:

The Person class definition starts with the class key word and class name Person

class Person:

A class contains an __init__() function that initializes the class. This __init__()

function is also known as a constructor. (__ is 2 under scores) The mechanism

that allocates memory in the computer for the variables defined in the class, is

known as instantiation. When a class is instantiated it is known as an object. A

class refers the class definition code that is typed into the program, where as an

object refers to the memory that is allocated for the values of the variables

defined in the class.

initialize Person

 def __init__(self, name, age):

 self.name = name

 self.age = age

Notice the self keyword in the constructor parameter list. The self keyword is also

passed to every function in the Person class and represents the memory location

of the Person class variable values. The programming statements inside the

constructor define the variables name and age belonging to the Person class.

Name and age are assigned values from the parameters name and age.

 self.name = name

 self.age = age

25
copyright © 2021 www.onlineprogramminglessons.com For student use only

The keyword self specifies which variables belongs to the Person class. The

parameter name and age are just used to pass values to be assigned to the

variables of the Person class and are not the same ones in the Person class.

The self key word also distinguished which variables belong to the class and which

variables are local variables or a parameter.

The get functions also known as getters and just return values of the variables

stored in the Person class. Again, you notice the self keyword.

return name

 def getName(self):

 return self.name

 # return age

 def getAge(self):

 return self.age

We also have set functions known as setters that allow the user of the class to

assign new values to the variable belonging to the Person class.

 # assign name

 def setName(self,name):

 self.name = name

 # assign age

 def setAge(self, age):

 self.age = age

26
copyright © 2021 www.onlineprogramminglessons.com For student use only

You will notice the parameter list has the keyword self and an additional

parameter to assign the name or age value. Again, the self keyword distinguishes

the person variables from the parameters since they both have the same names.

All classes should have a __str__() function so that it can easily return the class

variables as a string message.

 # return person info as a string

 def __str__(self):

 s = "Nice to meet you " + self.name + "\n";

 s += self.name + " You are " + str(self.age) + " years old"

 return s

Notice we have no print statement in our __str__ function. We assign information

to the local variable s and return the s value. A local variable is just known to the

function it resides in. The s variable uses the + operator to join values together as

a message. Unfortunately, the + operator only joins string variables in case of

numeric value. In this case a str function is used to convert a numeric value to

string value. The str function is a common built in python function that return a

string value.

The class definition should not contain any input or output statements. A class

must be a reusable program unit, not dependent on any input or output print

statements. The purpose of the class is to contain information that can be easily

accessed.

Therefore, additional functions not belonging to the Person class must provide

all the input and output statements.

When you use a class definition in a program it becomes an object. A object is

simply allocated memory for the variables defined in the class definition. A class is

considered a user data type. Objects are made from class definitions. Just like a

house is made from a set of drawing plans. The house is the object and the

drawing plans is the class definition.

We make a Person object like this:

p = Person(‘Tom’,24)

27
copyright © 2021 www.onlineprogramminglessons.com For student use only

When you make a object from a class definition it is known as instantiating.

When a class definition is instantiated computer memory is allocated for the

variables defined in the class. The variable p holds the location of the computer

memory where the Person object was created. The p becomes the value for the

self keyword defined in the Person class definition. The self keyword in the class

needs to know which object you are using.

We give the Person __init__ function the person’s name and the persons age.

 def __init__(self, name, age):

 self.name = name

 self.age = age

We can also print out the person’s name and age by calling the __str__ function

automatically using

print(p)

This would be the same thing as writing print(p.__str__()) or print(str(p))

Now put the above statements in a main function and run the program.

def main():

p = Person(‘Tom’,24)

print(p)

main()

You should get something like this

28
copyright © 2021 www.onlineprogramminglessons.com For student use only

We can expand our program to get a person’s name and age from the keyboard.

We will use the input and output functions from our previous program.

Type in or copy the following python statements from lesson2.py and put at the

bottom of your lesson3.py file and also add the additional line to the main

function as follows.

function to print a welcome message

def welcome():

 print("Hello World")

function to read a name from the key board and return the value

def enterName():

 name = input("Please type in your name: ")

 return name

function to read an age from the key board and return the value

def enterAge():

 age = int(input("How old are you? ")

 return age

main function to instantiate class Person and run program

def main():

 welcome() # welcome user

 name = enterName() # get user name from keyboard

 age = enterAge() # get user age from key board

 p = Person(name, age) # create Person class

 print(p) # print user name and age from person class

main() # call main function

Notice we create the Person object from the person class definition using the

following statement:

p = Person(name, age) # create Person object

29
copyright © 2021 www.onlineprogramminglessons.com For student use only

Objects are allocated memory in a compute for the variables defined in the class

when the program runs. Objects are created from class definitions.

This statement calls the __init__() function of the person class to create the

person object and initialized with the values name and age.

 Using the p variable the print statement automatically calls __str__() function

print(p)

After typing in the class and main function in a python program lesson3.py. and

run the program. You will get the same output as the previous program.

default parameters

Constructors and other functions can also have predefined parameter values. This

comes in handy when you want to assign the values later or do not know what

the values are supposed to be. You can make a default constructor like this.

 def __init__(self, name="", age=0):

 self.name = name

 self.age = age

30
copyright © 2021 www.onlineprogramminglessons.com For student use only

Notice the parameter name is pre-initialized to "" and the parameter age is pre-

initialized to 0.

to do:

Change your Person class to use a default constructor. Make a default person

called p2 like this:

p2 = new Person() # create default Person object

Use the getters from the p person object and assigned the values to the p2

person object using the setters, then print out the p2 details. You should get

something like this:

If you can do this, you are almost great python programmer!

Lesson 3 Homework Part 1

Take your homework program from Lesson 2 and make a Profession class that

stores a profession title like: Doctor, Lawyer, Salesman, Secretary etc. and a

salary.

31
copyright © 2021 www.onlineprogramminglessons.com For student use only

Make initializer _init_ that receives a title and a salary.

Make getters and setters for title and salary.

Lastly make a __str__ function use to print out the profession’s title and salary.

In the main method make 2 Profession objects. One using the key board functions
and the other one with hard coded values.

Print both objects on the screen.

Put all your homework 3 in a python file called Homework3.py. You will still need

the standalone functions welcome, enterTitle, enterSalary from homework 2.

INHERITANCE

The beauty of classes is that they can be extended to increase their functionality.

We can make a Student class to use the variables and functions from the Person

class. This is known as inheritance.

A Student class will have an additional variable called student that will represent

a string student id number. Using inheritance, the student class will be able to use

the variables and functions of the Person class. The Person class is known as the

super or base class and the Student class is known as the derived class. The

Person class knows nothing about the Student class where as the Student class

knows all about the Person class.

Create a class called Student below the Person class using this statement

class Student (Person):

The above statement means to define a class Student that inherits the Person

class.

32
copyright © 2021 www.onlineprogramminglessons.com For student use only

Now make a constructor that will initialize the student name, age and student.

initialize Student

def __init__(self, name, age, studentid):

 super().__init__(name, age)

 self.studentid = studentid

Notice we pass the name and age to the super Person class by calling the

Person.__init()__ constructor and passing self, name and age

Note for python version 2.7 you need to Person class name instead of the

super() function.

initialize Student

def __init__(self, name, age, student):

 Person.__init__(self,name, age)

 self.studentid = studentid

You should now be able to make the getID and setID getters and setters like this

without our help.

 # return student id

def getId(self):

 return self.studentid

assign student id

def setId(self,studentid):

 self.studentid = studentid

The last thing you need to make the __str__() function. By using the super class

name Person you can call functions directly from the super Person class inside

the Student derived class. Here is the Student __str__() function

33
copyright © 2021 www.onlineprogramminglessons.com For student use only

return student info as a string

def __str__(self):

 s= super().__str__() + "\n"

 s += " having Student ID: " + self.studentid;

 return s

Note: for python 2.7 you need to use the Person class name instead.

 s = Person.__str__(self)

Once you got the Student class made then add programming statements to the

lessons3_main.py file to obtain a student name, age and studentid. You will have

to make an additional enterID() function to obtain a student id number from the

key board.

function to read a student id number from the key board

and return the value

def enterIDnum():

 studentid = input("Please type in your student number: ")

 return studentid

Next make a student object and use the obtained name, age and studentid then

print out the student details.

s = Student(name, age, studentid) # create Student object

print(s)

You should get something like this:

34
copyright © 2021 www.onlineprogramminglessons.com For student use only

Derived class default parameters

The derived Student class can also have default parameters as follows.

initialize Person

def __init__(self, name="", age=0):

 self.name = name

 self.age = age

 # initialize Student

 def __init__(self, name, age, idnum="S1234"):

 super().__init__(name, age)

 self.studentid = studentid

Using separate files for classes

Classes are usually put into their own files So put all the Person class code in a file

called person.py. Put all the Student class code in a file called student.py.

On the top of the student.py file just below the header comment you need to tell

the python interpreter to use the Person class

from person import Person

This means from the file person.py use the code from the Person class.

Put all the main functions in a file called lesson3_main.py. Lesson3_main.py

needs some extra statements. We need to tell file lesson3_main.py to use the

Person class and Student class. Put these statements just below the header

comment of lesson3_main.py file near the top of the file.

from person import Person

This means from file person.py use the code from the Person class.

from student import Student

This means from file student.py use the code from the Student class.

35
copyright © 2021 www.onlineprogramminglessons.com For student use only

Importing python pre-built modules

Python has lots of pre- built modules you can use like the math module

import math

print(math.pi) # 3.141592653589793

You can also give modules another name using the as directive.

 import math as m

print(m.pi) # 3.141592653589793

Indicating the main module

You also need to tell the python interpreter that lesson3_main.py is the main file

to run. You cannot run a class without a main program. Classes do not run by

them selves. Put this statement just above the main() call statement at the

bottom of the file.

if __name__ == "__main__":

 main() # call main function

Now run file lesson3_main.py and make sure everything still works.

LESSON 3 HOMEWORK Part 2

Make a class called Payroll derived from the Profession class where the

professional get a designated bonus. In the Payroll class make constructor

__init__ that receives a title, salary and bonus. The Payroll __init__ function

should send the title and salary to the Profession__init__ function. Make getter

and setters for the bonus. Finally make a __str__ function for the Payroll class.

The Payroll __str__ function should also call the __str__ function from the

Profession class.

36
copyright © 2021 www.onlineprogramminglessons.com For student use only

The Payroll _str_ function should print out the title, salary and bonus.

You will also need to make another standalone function enterBonus.

In the main method make 2 Payroll objects. One using the key board functions

and the other one with hard coded values.

Put every thing in the same file homework3.py used in the previous homework.

Additional homework to do

Put the Profession class and Payroll classes in separate files called profession.py

and patrol.py respectively.

from profession import Profession

from payroll import Payroll

In the main file call main using:

if __name__ == "__main__":

 main() # call main function

You can still use the same file homework3.py

Lesson 3 Skill testing questions

1. What is a class?

2. What is an object?

3. What is the difference between a class and an object

4. Why do we need classes?

5. What are the components of a class

6. What does the __init__() do?

7. What do getters do?

8. What do setters do?

37
copyright © 2021 www.onlineprogramminglessons.com For student use only

9. What does the __str__ () do?

10. What is inheritance?

11. How do you make a subclass?

12. What does super() do?

38
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 4 OPERATORS

Operators

Operators do operations on variables like addition + , subtraction -, comparisons >

(greater) < (less) etc. You can test Python programming statements directly on

the Python shell, which is very convenient to use. You just type in the program

statement into the python shell and it gets executed automatically. To see the

value of a variable you just type in the variable name and the value is displayed

automatically. Hint: To type in more than 1 line at a time end the last line with a

extra enter to get back to the shell prompt.

We now present all the Python operators. You can type all the examples in the

python shell or put in a python file called lesson4.py

If you use a python file, then you will have to use print statements to see the

result on the screen like this:

print (3 + 4) # would print 7

39
copyright © 2021 www.onlineprogramminglessons.com For student use only

or like this using variables:

x = 5

y = 3

print (x, "+" , y , " = ", x + y) # would print 3 + 4 = 7

Arithmetic Operators

Arithmetic operators are used to do operations on numbers like addition and

subtraction.

Operator Description Example Result

+ Add two operands or unary plus x = 3 +2 5

- Subtract right operand from the left or unary

minus

x -= 3-2

x = -2

1

-2

* Multiply two operands x = 3 * 2 6

/ Divide left operand by the right one x = 5 / 2 2.5

% Modulus - remainder of the division of left

operand by the right

x = 5 % 2 3

// Floor division - division that results into

whole number

x = 5 // 2 2

** Exponent - left operand raised to the power

of right

x = 5**2 25

Comparison Operators

Comparison operators are used to compare values. It either returns True or False

according to the condition. In python true and false start with capital letters True

or False.

40
copyright © 2021 www.onlineprogramminglessons.com For student use only

x = 5

y = 3

print (x,">",y, " = ",x > y) # would print 5 > 3 = False

Operator Description Example Result

 > Greater than - True if left operand is greater

than the right

 5 > 3 True

 < Less than - True if left operand is less than

the right

 3 < 5 True

 == Equal to - True if both operands are equal 5 == 5 True

 != Not equal to - True if operands are not equal 5!= 5 True

 >= Greater than or equal to - True if left

operand is greater than or equal to the right

5 >= 3 True

 <= Less than or equal to - True if left operand is

less than or equal to the right

 5 <= 3 True

Logical Operators

Logical operators are the and, or, not boolean operators.

x = True

y = False

print (x,"and",y, " = ",x and y) # would print True and True = True

Operator Description Example Result

 And True if both the operands are true True and True True

 Or True if either of the operands is true True or False True

 Not True if operand is false

(complements the operand)

 Not False True

41
copyright © 2021 www.onlineprogramminglessons.com For student use only

Compound Comparison Operations

You may also combine the Comparison operators with the Logical operators like

to form compound comparisons:

 5 > 3 and 3 != 6

 3 < 5 or 3 == 6

x = 3

y = 5

print (x, ">",y,"and",x, "<",y ," = ",x>y and x<y) # 3 > 5 and 3 < 5 = False

Binary Numbers

All numbers in a computer are stored as binary numbers. Binary numbers (base 2)

just has 2 digits 0 and 1 whereas decimal numbers have 10 digits 0 to 9. We also

have hexadecimal (base 16) numbers 0 to F that represent decimal numbers 0 to

15. We use the letters A to F to represent decimal numbers 10 to 15.

Here are the binary and hexadecimal numbers for decimal numbers 0 to 15.

Decimal Binary Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

42
copyright © 2021 www.onlineprogramminglessons.com For student use only

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Bitwise Operators

Bitwise operators act on operands as if they were binary digits. It operates bit by

bit. Binary numbers are base 2 and contain only 0 and 1’s. Every decimal number

has a binary equivalent. Every binary number has a decimal equivalent. For

example, decimal 2 is 0010 in binary and decimal 7 is binary 0111.

print(x, "|"n,y, "=", 10 | 4); // would print out 10 | 4 = 7

In the table below: Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Operator Description Example and Result

 & Bitwise AND

1 if both operands are 1

otherwise 0

x & y = 0 (0000 0000)

 | Bitwise OR

1 if either operands are 1

x | y = 14 (0000 1110)

 ^ Bitwise XOR

same values are 0

opposite vales are 1

x ^ y = 14 (0000 1110)

 ~ Bitwise NOT

reverse bits

~x = -11 (1111 0101)

43
copyright © 2021 www.onlineprogramminglessons.com For student use only

You can use the bin function to print out numbers in binary.

 print(bin(5))

You may want to use variables instead like this:

x = 0

y = 1

print(x & y)

using 0 and 1’s rather than numbers make the bitwise operations easier to

understand

and & or | xor ^

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 =1

0 | 0 = 0
0 | 1 = 1
1 | 0 = 1
1 | 1 = 1

0 ^ 0 = 0
0 ^ 1 = 1
1 ^ 0 = 1
1 ^1 =0

The ~ operator reverse the bits. 0 becomes 1 and 1 becomes -

10 = 0000 1010

~ 1111 0101

Negative binary numbers have a 1 at the start known as the msb

(most significant bit)

1111 0101 is actually =-11

You can use 2’complement to convert a positive binary number to a negative
binary number or a negative binary number to a positive binary number.

 0000 1011 1111 0101
Step 1 complement binary number 1111 0100 0000 1010
Step 2 add 1 1
 --------------- ---------------
 1111 0101 (-11) 1111 1011 (11)

'0b0101'

44
copyright © 2021 www.onlineprogramminglessons.com For student use only

Shift Operators

Shift operators are used to multiply or divide numbers by powers of 2

Multiply by powers of 2 shift bit right

x << 1 means to multiply x by 2^1 which is x * 2
x << 2 means to multiply x by 2^2 which is x * 4
x << 3 means to multiply x by 2^3 which is x * 8

Divide by powers of 2 shift bits left

x >> 1 means to divide x by 2^1 which is x / 2
x >> 2 means to divide x by 2^2 which is x / 4
x >> 3 means to divide x by 2^3 which is x / 8

x = 2
y = 3
print(x,"<<”, y,x << y) // 2 << 3 = 16
x = x << y
print(x,">>”, y,x << y) // 16 >> 3 = 2

<< left shift

multiply by powers of 2

x = 2

x = x<< 3 2* 8 = 16

>> right shift

divide by powers of 2

x = x>> 2 x / 4 = 5

Assignment Operators

Assignment operators are used in Python to assign values to variables.

x = 5 is a simple assignment operator that assigns the value 5 on the right to the

variable a on the left.

45
copyright © 2021 www.onlineprogramminglessons.com For student use only

There are various compound operators in Python like x += 5 that adds to the

variable and later assigns the same. It is equivalent to x = x + 5.

Try them all!

x = 5

print(x)

x+=5

print("x += 5 = ",x); // x += 5 = 10

Operator Compound Equivalent

 = x = 5 x = 5

 += x += 5 x = x + 5

 -= x -= 5 x = x – 5

 *= x *= 5 x = x * 5

 /= x /= 5 x = x / 5

 %= x %= 5 x = x % 5

**= x **= 5 x = x ** 5

//= x //= 5 x = x // 5

&= x &= 5 x = x & 5

|= x |= 5 x = x | 5

^= x ^= 5 x = x ^ 5

<<= x <<= 5 x = x << 5

>>= x >>= 5 x = x >> 5

Identity Operators

is and is not are the identity operators in Python. They are used to check if two

values (or variables) are located on the same part of the memory. Two variables

that are equal does not imply that they are identical.

46
copyright © 2021 www.onlineprogramminglessons.com For student use only

x = 5
y = 5
print(x , " is ", x,x is y) # 5 is 5 = True
print(x , " is ", y,x is y) # 5 is 5 = False

Operator Description Example

 Is True if the operands are identical x is y

 is not True if the operands are not identical x is not y

in Operator

The in operator test if a value is stored in a collection like a string

x = 'a'
y = 'apple'
print(x , " in ", y,x in y) # a in apple True
print(x , " not in ", y,x not in y) # a not in apple False

Operator Description Example

 In True if value in a collection ' a ' in 'apple '

 not in True if the value not in a collection 'a 'not in 'apple '

You should type in all the examples and try them out. You will be using them soon

in the next lesson.

String Operators

String operators are used to do operations on strings like joining strings or getting

parts of a string. You will be using string operators a lot.

47
copyright © 2021 www.onlineprogramminglessons.com For student use only

join two strings together
s1 = "hello"
s2 = "there"
s3 = s1 + s2
print(s3) # hellothere

length of string
length = len(s3)
print(length) # 10

get a character from string using an [index]

(index start at 0)

c = s3[0]

print (c) # h

get last character

c = s3[-1]

print (c) # e

You cannot assign a value to a string index, you will get a error message

 s3[0] = 'x'

Strings are immutable meaning you cannot change them.

get a substring using slices

[start index=0 : end index=len()-1 : (optional step=1)]

(defaults are start, end index and step by 1)

print out character indexes 0 to 4

s4 = s3[0:5]

print (s4) # hello

48
copyright © 2021 www.onlineprogramminglessons.com For student use only

print out character indexes 0 to 4 using default start index

s4 = s3[:5]

print (s4) # hello

print out character indexes 0 to 4 using default end index

s4 = s3[0:]

print (s4) # hello

print out all characters using default index’s

s4 = s3[:]

print (s4) # hello

print first to last -1 letters

s4 = s3[0:-1]

print (s4) # hell

print first to last -1 letters using default start index

s4 = s3[:-1]

print (s4) # hell

print second to last -1 letters

s4 = s3[2:-1]

print (s4) # ll

print second to fourth letters

s4 = s3[2:4]

print (s4) # ll

reverse a string

s6 = s5[::-1]

print (s6) # erehtXolleh

reverse a range

s6 = s5[10:2:-1]

print (s6) # ehtXoll

add a character to middle of a string

s5 = s3[:5] + 'X' + s3[5:]

print (s5) # helloXthere

49
copyright © 2021 www.onlineprogramminglessons.com For student use only

replace a character in a string

s5 = s5[:5] + ' ' + s5[6:]

print (s5) # hellothere

make string upper case

s8 = s6.upper()

print(s8) # EREHTXOLLEH

make string lower case

s7 = s6.lower()

print(s7) # erehtxolleh

change a character to a ASCII number

x = ord('A')

print(x) #65

#change a ASCII number to a character

c = chr(x)|

print(c) # A

#repeat a string using the * operator

s8 = 'Happy' * 2

print(s8) # 'HappyHappy'

check if a character or substring is in a string

s = 'happy'

x = ‘a’ in s

print(x) # True

x = ‘g’ in s

print(x) # False

returns the index of first occurrence of the substring.

If not found, it returns -1.

s = 'happy'

i = s.find(‘a’)

print(i) # 1

50
copyright © 2021 www.onlineprogramminglessons.com For student use only

i = s.find('g')

print(i) # -1

note: find has optional start at stop arguments

i = s.find(‘a’,1,5) # look for a starting at index 1 to index 5

returns the index of a substring inside the string.

If the substring is not found, it raises an exception.

try:

s = 'happy'

i = s.index('a')

print(i) # 1

except ValueError:

 print('a not found')

note: find has optional start at stop arguments

i = s.index(‘a’,1,5) # look for a starting at index 1 to index 5
format a string
method 1 using %
s9 = '$%.2f' % (10.4564)
print(s9) # 10.5

#method 2 using format
S9 = '${:.2f}' .format(10.4564)
print(s9) # 10.5
method 3 using f’ formatter
x = 10.4564
s9 = f'${x:.2f}'
print(s9) # 10.5

51
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 4 Homework

1. Print out if a number is even, using just use a print statement and an

arithmetic operator

2. Print out of a number is odd, using just use a print statement and an

arithmetic operator

3. Swap 2 numbers using a temporary variable, print out numbers before and

after swapping them.

4. In a print statement, add 2 numbers together and check if they are less than

multiplying them together

5. In a print statement, add 2 numbers together and check if they are less than

multiplying them together and greater then multiplying them together.

6. In a print statement, add 2 numbers together and check if they are less than

multiplying them together or greater then multiplying them together.

7. Multiply a number by 8 using a shift operator, print out numbers before and

after shifting them.

8. Divide a number by 8 using a shift operator, print out numbers before and

after shifting them

9. Make a string and replace the first letter with another letter

Example: change ‘hello’ to ‘jello’

10. Make a string and replace the last letter with another letter

Example: change ‘jello’ to ‘jelly’

11. Make a string and replace the middle letter with another letter

Example: change ‘jelly’ to ‘jexly’

12. Make a string. Split it in the middle, swap both parts and reverse the first

part and change to upper case.

Example Change: ‘jexly’ change to: ‘YLjex’

13. Make a string. replace the last letter with the first letter.

Example Change: ‘YLjex’ change to: ‘xLjeY’

Call your python file homework4.py

52
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 5 LISTS, SETS, TUPLES AND DICTIONARIES

Lists

Lists store many sequential values together. Lists are analogous to arrays in other

programming languages. Lists in python are very powerful and can do many

things. We now present many list examples. Put the following programming

statements in a python file called lesson5.py and run it.

To create an empty list
list1 = []
print(list1) # []

To create a list with pre-initialized values
list2 = [1,2,3,4, 5]

 print(list2) # [1, 2, 3, 4, 5]

get the number of elements in an list
x = len(list2)
print (x) # 5

Add a value to a list
list1.append(5)
print(list1) # [5]

Get a value from a list at a specified location
x = list2[0]
print(x) # 1

Get part of a slice of a list
[start index=0 : end index=len()-1 : (optional step=1)]
(defaults are start, end index and step)
[:] would be the whole list using defaults

 list3 = list2[1:3]
print(list3) # [2, 3]

53
copyright © 2021 www.onlineprogramminglessons.com For student use only

get last value of list
list3 = list2[-1:]
print(list3) # [5]

get last 2 values of list
list3 = list2[-2:]
print(list3) # [4, 5]

get every other value
list3 = list2[0:5:2]
print(list3) # [1,3,5]

get all values except last value
list3 = list2[:-1]
print(list3) # [1, 2, 3, 4]

get all values except last 2 values
list3 = list2[:-2]
print(list3) # [1, 2, 3]

get all values except last 2 values
list3 = list2[-5:-2]
print(list3) # [1, 2, 3]

get every other values except last value
list3 = list2[-5:-1:2]
print(list3) # [1, 3]

reverse a list
list3 = list2[::-1]
print(list3) #[5, 4, 3, 2, 1]
reverse the first 4 numbers
list3 = list2[-2::-1]
print(list3) #[4, 3, 2, 1]

54
copyright © 2021 www.onlineprogramminglessons.com For student use only

reverse the middle numbers
list3 = list2[-2:-5:-1]
print(list3) #[4, 3, 2]

Create a list pre-initialized with one values of a specified length.
an list of 10 0’s is created
list3 = [0] * 10
print(list3) # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3 ways to copy a list

Make a copy of this list using the copy function:

 list2 = list1.copy()

by slicing:

 list2 = list1[:]

by calling the list constructor:

 list2 = list(list1)

Sorting lists:

sort a list in place
list3.sort()
print(list3) # [1, 2, 3, 4, 5]

 # sort a list in place descending
 list3.sort(reverse=True)
 print(list3) #[5, 4, 3, 2, 1]

return a sorted list
list4 = sorted(list3)
print(list4) # [1, 2, 3, 4, 5]

55
copyright © 2021 www.onlineprogramminglessons.com For student use only

return a sorted list in descending order
list4 = sorted(list3, reverse=True)
print(list4) #[5, 4, 3, 2, 1]

add a list to the end of another list
list1 = [1,2,3,4,5]
list2 = [5,6,7,8,9]
list1.extend(list2)
print(list2) # [1, 2, 3, 4, 5, 5, 6, 7, 8, 9]

join 2 lists together
list1 = [1,2,3,4,5]
list2 = [5,6,7,8,9]
list3 = list1 + list2;
print(list3) # [1, 2, 3, 4, 5, 5, 6, 7, 8, 9]

remove a value from a list
list2.remove(3);
print(list2) # [1, 2, 4, 5]

remove a list item by index
del list2[0]
print(list2) # [2, 4, 5]

remove more than 1 item in a list using index slicing
del list2[0:3]
print(list2) # [5]

test if a value is in a list returns True or False
x = 2 in list2 # True
print (x)

 x = 1 in list2
 print (x) # False

put a list inside another list
list1.append(list2);
print(list1) # [5, [2, 4, 5]]

56
copyright © 2021 www.onlineprogramminglessons.com For student use only

convert a string to a list
s = 'happy days are here again'
list1 = s.split(' ')
print(list1)

get a list of letters by calling list constructor with a word
list2 = list("hello")

which is quite different then
list2 = ["hello"]

convert a list to a string
*** list must contain all strings ***

list1 = ['happy', 'days', 'are', 'here', 'again']

s = ' '.join(list1)

print(s)

sum all numbers in a list
list1 = [1,2,3,4,5]
print(sum(list1)) # 15

happy days are here again

['happy', 'days', 'are', 'here', 'again']

['h', 'e', 'l', 'l', 'o']

['hello']

57
copyright © 2021 www.onlineprogramminglessons.com For student use only

find largest number in a list
list1 = [1,2,3,4,5]
print(max(list1)) # 5

find smallest number in a list
list1 = [1,2,3,4,5]
print(min(list1)) #1

 # find the average of a list
 list1 = [1,2,3,4,5]

print(sum(list1)/len(list1)) # 3

find count of 2's
list1 = [1,2,2,2,3,5]
print(list1.count(2)) # 3
find most occurrence of number
list1 = [1,2,2,2,3,5] # 2
print(max(list1,key=list1.count))

find first least occurrence number
list1 = [1,2,2,2,3,5] #1
print(min(list1,key=list1.count))

convert a list of integers into a list of strings using map
list1 = [1,2,3,4,5]
s = list(map(str,list1)))
print(s)

In this situation we use the python map function that takes the function str
and a list of integers as parameters. Using the past str function, the map
function converts each number to a string. We then convert the result to a
list object calling the list constructor.

['1', '2', '3', '4', '5']

58
copyright © 2021 www.onlineprogramminglessons.com For student use only

convert a list of integers to a string of numbers
list1 = [1,2,3,4,5]
s = " ".join(map(str,list1))
print(s)

In this situation we use the map function that takes a the function str and a list of
integers. Using the past str function and list1, the map function converts each
number to a string, whereas the join function joins all the string numbers
together from the map result.

Using your own function with map

We first make a square function:

 def sq(x):
 return x*x

We use the square function with map to print out the square of numbers
contained in a list. The map applies the sq function to each item in the list.
A list object is then made from the map result.

list 2 = list(map(sq,list1))
print(list2)

Alternatively you can use an inline function called lambda. A lambda function is
just a convenient function without a def keyword, a name and a parameter list.

normal function Lambda function

def sq(x):
 return x*x

lambda x: x* x

[1, 4, 9, 16, 25]

1 2 3 4 5

59
copyright © 2021 www.onlineprogramminglessons.com For student use only

They both do the same thing, the only difference is there is less overhead. The
input parameters are on the left of the colon and the return statement is on the
right of the colon

 lambda x : x * x

We use the inline lambda square function with map to print out the square of
numbers contained in a list. map applies the lambda square function to each item
in the list.

list2 = list(map(lambda x: x* x,list1))
print(list2)

Executing a function stored in a list

We first make a square function:

 def sq(x):
 return x*x

We store the function in a list with a input argument, so it executes when the list
is made

 list1 = [1,2,sq(3)]
 print(list1)

[1, 4, 9, 16, 25]

Return value

Input parameter x

Function name

[1, 2, 9]

60
copyright © 2021 www.onlineprogramminglessons.com For student use only

We store the function name in a list without a input argument

list1 = [1,2,sq]

we now execute function stored in a list giving the argument 5

print(list1[2](5))

We can also store a lambda inline function in a list (without a input argument)

list1 = [1,2,lambda x:x*x]

we execute the lambda inline function stored in a list giving the argument 5

print(list1[2](5))

to do:

Make a list of your favourite animals and apply all the list operations on them.

animals = [‘cat’,’dog’,’pig’,’zebra’,’elephant’]

passing a list of values to a function

It is easy to pass a list of values to a function.

list1 = [1,2,3,4,5]

25

25

61
copyright © 2021 www.onlineprogramminglessons.com For student use only

function to return the sum of numbers in a list
def f(list1):
 total = 0
 for x in list1:
 total = total + x
 return total
total = f(list1)
print("the total is: ", total) # 15

passing a unknown number of values to a function

We can use the * operator to unpack a many numbers, and treat them like a list

of numbers.

function to return the sum of numbers in a list
def f(*numbers):
 total = 0
 for x in numbers:
 total = total + x
 return total
total = f(1,2,3,4,5)
print("the total is: ", total) # 15

Two Dimensional Lists

Two dimensional lists are analogues to 2 dimensional arrays in other

programming languages.

There are 2 ways to make a 2 dimensional list in Python, manually and program

ably. We first do manually.

list2 = [[1,2,3],[4,5,6],[7,8,9]]
print(list2

A 2 dimensional list is arranged as rows and columns. The rows are horizontal and
the columns are vertical.

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

62
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Column 0 Column 1 Column2

Row 0 1 2 3
Row 1 4 5 6

Row 2 7 8 9

You assign new values to a 2 dimensional array by row and column index, where

row indexes start at 0 and column index also start at 0.

list_name [row_index][col_index] = value

assign value by row and column

list3[1][2] = 5

You retrieve values also from a 2 dimensional array by row and column index.

Where row indexes start at 0 and column index also start at 0.

list_name [row_index][col_index] = value

retrieve value by row and column

x = list3[1][2]

print(x) # 5

To find out how many rows you have you use len on the 2 dimensional list. In our

2 dimensional list we have 3 rows.

rows = len(list2)

print(rows) # 3

A 2 dimensional list is actually a series of 1 dimensional list’s where each row is a

1 dimensional list.

print first row of a 2 dimensional list

print(list3[0])

To find out how many column you have in a particular row you use len on that

row. In our 2 dimensional list we have 3 columns.

[1, 2, 3]

63
copyright © 2021 www.onlineprogramminglessons.com For student use only

cols = len[list2[0]]

print(cols) #3

To make a two dimensional list program ably you make a one dimensional list and

then assign additional one dimensional lists to it.

make a one-dimensional list of size 3

list3 = [None] * 3;

We use None as a value because the one dimensional will include another one-

dimensional array. (None means nothing or null in other programming languages)

assign one dimensional list’s of size 3 to the one-dimensional list

list3[0] = [0] * 3

list3[1] = [0] * 3

list3[2] = [0] * 3

print(list3) # [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

assign value by row and column

list3[1][2] = 5

retrieve value by row and column

x = list3[1][2]

print(x) # 5

 # print first row of a 2 dimensional list

 print(list3[0]) # [1, 2, 3]

Sets

Sets are like lists but only store unique values. The set operations are not as

extensive as a list.

To create a empty set

s1 = set()

print(s1) # set()

To create a list with pre-initialized values

s2 = {1,2,3,3,4,5}

print(s2) # {1, 2, 3, 4, 5}

64
copyright © 2021 www.onlineprogramminglessons.com For student use only

get the number of elements in an set

x = len(s2)

print (x) # 5

Add a value to a set

s1.add(5)

print(s1) # {5}

Print a set

print(s2) # {1, 2, 3, 4, 5}

try to write a value to a set

s[0] = 5

You cannot assign a value to a set, python will generate this error:

remove a value from a set

s2.remove(3) # {1, 2, 4, 5}

print(s2)

test if a value is in a set

x = 2 in s2

print (x) # True

x = 1 in s2 # True

print (x)

update values from another set

s1.update(s2)

print(s1) # {1,2,4,5}

intersection of 2 sets

 s3 = s1.intersection(s2)

print(s3) # {5}

union of 2 sets

 s3 = s1.union (s2)

print(s3) # {1,2,3,5}

TypeError: 'set' object does not support item assignment

65
copyright © 2021 www.onlineprogramminglessons.com For student use only

 # put a set in a list

 s4 = {1,2,3}

 list1 = [s4]

 print(list) # [{1, 2, 3}]

 # put a list in a set using the set constructor

 s5=set([1,2,3])

 prinr(s5) # {1, 2, 3}

put a string in a set using the set constructor and get individual letters

S6=set('tomorrow')

print(s6) # {'t', 'w', 'm', 'o', 'r'}

Which is quite different from initializing a set with a string

S7 = {'tomorrow'}

print(s7) # {'tomorrow'}

to do

Make sets s1 and s2 using the set constructor with 2 of your favorite words.

s1=set('hello') # {'l', 'e', 'h', 'o'}
s2=set('goodbye') # {'b', 'o', 'g', 'd', 'y', 'e'}

Using union and intersection make sets s3 and s4, and print out the results.

s3 = s1.union(s2)
print(s3) # {'h', 'b', 'g', 'y', 'l', 'e', 'o', 'd'}
s4 = s1.intersection(s2)
print(s4) # {'e', 'o'}

to do:

A Set has many other operations like copy, clear, difference, union, intersection,

pop, update etc. You can try these on your own.

Make a couple of sets of your favourite animals.

66
copyright © 2021 www.onlineprogramminglessons.com For student use only

Example: union would include elements from both sets.

 s3 = s1.union(s2)

Tuples

Tuples store a group of values. They are not as powerful as lists and their main

purpose is to return multiple values from functions or represent multiple values

when they are needed like in a list. They are read only, meaning you cannot

change their values once they are created.

 # make a empty tuples

 t = ()

print(t) # ()

make a tuple

t = (1,2,3)

print(t) # (1,2,3)

retrieve a value from a tuple

x = t[0]

print(x) # 1

print values from a tuple

print(t[0]) # 1

print(t[1]) # 2

print(t[2]) # 3

try to write a value to a tuple

t[0] = 5

#put a tuple in a list

List1 = [t]

print(list1) # [(1, 2, 3)]

TypeError: 'tuple' object does not support item assignment

67
copyright © 2021 www.onlineprogramminglessons.com For student use only

make a list from a tuple

print(list(t)) # [1,2,3]

Example using a tuple to receive values from a function

function that returns value 1,2,3

def myfunc():

return (1,2,3)

call function and receive values into tuple variables a,b,c

(a,b,c) = myFunc()

print(a): # 1

print(b): # 2

print(c): # 3

Dictionaries

Dictionaries store a key and a value. A dictionary can have many keys and

corresponding values. Think of a dictionary is like a telephone book with the name

as the key and the telephone number as the value.

 # make empty dictionary

d = {}

print (d) # {}

add values to a dictionary
d["name"] = "Tom"
d["age"] = 24
d["phone"]= "967-1111"
print(d)

{'name': 'Tom', 'age': 24, 'phone: '967-1111'}

68
copyright © 2021 www.onlineprogramminglessons.com For student use only

dict_values(['tom', 24, '967-1111'])

dict_keys(['name', 'age', 'phone'])

{'name': 'Tom', 'age': 24, 'phone': '967-1111'}

{'name': 'Sue', 'age': 24, 'phone': '967-1111'}

True

Tom

24

967-1111

 # change a item in a dictionary

d["name"] = "Sue"

print(d)

make dictionary with hardcoded specified keys and values

d2 = {"name": "tom", "age": 24, "phone": "967-1111"}

print (d2)

get values from a dictionary

print(d2["name"]) # Tom

print(d2["age"]) # 24

print(d2["phone"]) # 967-1111

#print keys of a dictionary

keys = d2.keys()

print(keys)

print values of a dictionary

values = d2.values()

print(values)

check if a key is in a dictionary

print(“Tom” in d2)

 # remove an item in a dictionary by key

del d2["name"]

print(d2) {'age': 24, 'phone': '967-1111'}

69
copyright © 2021 www.onlineprogramminglessons.com For student use only

{}

update a dictionary from another dictionary

d2.update({"email":"tom@mail.com"})

 # clear all items in a dictionary

 d2.clear()

 print(d2)

Type all the above examples in your file lesson4.py and, make sure you get the

same results. We will be using the lists, tuples and dictionaries in future lessons.

HOMEWORK 5

Question 1

Make an list of your favorite animals like: elephant, cat and dog etc.

Print out the list of animals.

Ask the user of your program to type in one of the animals from your list, that they

don’t like.

Then ask them to type in an animal (not in the list) they do like.

Replace the animal in the list they don’t like with an animal they do like. Then

reprint the animal list with the heading “Animals I like”.

Make a second list and put in the animal they don’t like and the new animal they
do like. Print out the second list with the heading “Animals I like and don’t
like”.You need to use the list remove and append methods.
Put your code in a file called homework5.py

{'name': 'tom', 'age': 24, 'phone': '967-1111', 'email': 'tom@mail.com'}

70
copyright © 2021 www.onlineprogramminglessons.com For student use only

Question 2

From the animal list from question 1 put the animal lists in sets.

set1 = set(animals)
 set2 = set(animals2).

Make another set that combines all the animals together that are liked.

Print out this set. (hint use union set1 and set2)

Make another set that combines all the animals that are not liked.

Print out this set. (hint use intersection set1 and set2)

 Put your code in a file called homework5.py

Question 3

Make a dictionary d1 of your favorite animal kinds like (cat, tiger, zebra). Give

each animal a name (Fluffy, Sally, Rudolf) . Use the animal name as the key and

the animal kind as the value.

Example: key: fluffy value: cat

Then make another dictionary d2, use the same animal kinds (cat, tiger, zebra)

as the key and the animal sound (meow, roar, heehee) as the value.

Example: key: cat value: meow

Print out the keys (animal name’s) of the first dictionary.

Ask the user to type in one of the animal names.

Get the animal kind from the first dictionary using the animal name.

Print to the screen the name of the animal and what kind of animal it is like:

“Fluffy is a cat”

As the user what sound the animal makes.

What sound does a cat make?

71
copyright © 2021 www.onlineprogramminglessons.com For student use only

From the second dictionary use the animal kind to get the sound that the animal

makes.

Then tell the user what sound the animal makes like “Cat’s meow”

 Put your code in a file called homework5.py

Question 4

Change Question 3 so that when the user types in the name of one of the animals,

the program asks what kind of animal it is.

For example if the user selects “fluffy”

Then the program asks,

What kind of animal is “fluffy” ?

If they guess correctly then ask the user what sound does a cat make?

If they guess correctly congratulate them.

If they do not guess correctly then just tell them “cat’s meow”

If they do not guess the kind of animal correctly then just tell them

“fluffy is a cat”;

 Put your code in a file called homework5.py

72
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 6 PROGRAMMING STATEMENTS

Programming statements allow you to write complete Python Program scripts.

We have already looked at simple input, print and assignment statements. We

now need to control the flow of our program. Branch control statements allow

certain program statements to execute and others not. Loop control statements

allow program statements to repeat themselves.

Start a new python program lesson6.py to test all the control statements

Branch Control Statements

Branch control statements control program flow, analogous from choosing which

road to follow when there are many different choices to choose from.

if statement

The if branch control statements use conditional operators from the previous

lessons to direct program flow.

If condition :

 Statement(s)

When the condition is evaluated to be true the statements belonging to the if

statement will execute.

if statement

x = 5

if x == 5:

 print("x is 5")

x is 5

73
copyright © 2021 www.onlineprogramminglessons.com For student use only

if with a else statement

We now add an else statement. An if-else control construct is a two-way branch

operation.

If condition :

 statements

else:

 statements

if – else statement

x = 2

if x == 5:

 print("x is 5")

else:

print ("x is not 5")

elif statement

We can also have extra else if statements to make a multi-branch. Python

contracts else if to elif

multi if else

x = 10

if x == 5:

 print("x is 5")

elif x < 5:

 print("x less than 5")

 elif x > 5:print("x greater than 5")

 print("I like Python Programming")

x is not 5

x greater than 5

74
copyright © 2021 www.onlineprogramminglessons.com For student use only

Our multi branch if-else can also end with an else statement.

multi if-else else

x = 5

if x < 5:

print("x less than 5")

elif x > 5:

 print("x greater than 5")

else:

 print("x is 5")

nested if statements

if statements can be nested to make complicated conditions simpler

nested if statement

x = 6

if x >= 0:

 if x > 5:

 print("x greater than 5")

 else:

 print("x less than equal 5")

x is 5

x greater than 5

75
copyright © 2021 www.onlineprogramminglessons.com For student use only

while loop

Our next control statement is the while loop

while condition:

statement(s)

The while loop allows you to repeat programming statements repeatedly until

some condition is satisfied

while loop

x = 0

while x <5:

 print(x)

 x+=1

to do:

change while loop to print out 1 to 5

change while loop to print out 5 to 1

for loop

The other loop is the for loop. Ii is much more powerful then the while loop but

can be difficult to use.

All loops must have count mechanism. The for loop uses the range function that

supplies a range of numbers like 0,1,2,3,4 having a start value, end value and

step value. Example: range(0,5) starts at 0 ends at 4 and increments by 1.

for counter in range(start_value, end_value-1, increment):

 statement(s)

The default value for increment is 1. The default start value is 1.

0

1

2

3

4

76
copyright © 2021 www.onlineprogramminglessons.com For student use only

Using a for loop to loop 1 to 5 using the range function. The i variable cannot be

changed and belongs to the for loop. The loop stops at 5 not 6 because the stop

is end_value – 1.

for loop using range

for i in range(0,5):

 print (i)

same as

for i in range(5):

 print (i)

to do:

change for loop to print out 1 to 5

Here is a for loop that counts backwards using a negative increment

for loop using range counting backward

for i in range(4,-1,-1):

 print (i)

change for loop to print out 5 to 1

0

1

2

3

4

4

3

2

1

0

0

1

2

3

4

77
copyright © 2021 www.onlineprogramminglessons.com For student use only

Nested for loops

Nested for loops are used to print out 2 dimensional objects by row and column

nested for loop

for r in range(1,6):

 print(r, ":", end="")

 for c in range(1,6):

 print(c,end=" ")

 print("")

Note we use the end directive so we do not start a new line every time we print

out a column value

Loops can also be used to print out characters in a string variable

print out characters in a string using range

s = "Hello"

for i in range(len(s)):

 print(s[i])

1 : 1 2 3 4 5

2 : 1 2 3 4 5

3 : 1 2 3 4 5

4 : 1 2 3 4 5

5 : 1 2 3 4 5

H

e

l

l

o

78
copyright © 2021 www.onlineprogramminglessons.com For student use only

print out characters in a string using in operator

s = "Hello"

for c in s:

 print(c)

todo:

print our string backwards

We also can print out the values in a list

For loops can also print out values from lists

print out values in a list using range

list1 = [1,2,3,4,5]

for i in range(len(list1)):

 print (list[i])

We also can print out the values in a list

For loops can also print out values from lists

print out values in a list using in operator

list1 = [1,2,3,4,5]

for x in list1:

 print (x)

1

2

3

4

5

H

e

l

l

o

1

2

3

4

5

79
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here we print out values from a two-dimensional array

print out two-dimensional list

list2 = [[1,2,3],[4,5,6],[7,8,9]]

for r in list2:

 for c in r:

 print (c,end=" ")

 print("")

For loops can also print out values from a set

print out values in a set

set1 = {1,2,3,3,5}

for x in set1:

 print (x)

 print("")

Put all letters from a string and put into a set

s = "tomorrow"

print(s)

make empty set

set1 = set()

put characters in set

for c in s

 set1.add(c)

1 2 3

4 5 6

7 8 9

1

2

3

5

80
copyright © 2021 www.onlineprogramminglessons.com For student use only

tomorrow

mrtwo

print out characters in set

for x in set1:

 print (x,end= ‘ ‘)

print("")

We print out all unique letters of the word stored in the set.

For loops can also be used print out dictionaries. We would want to print out the

dictionary in order by key or in order by values.

make dictionary

d = {"name": "Bob", "age": 24, "studentid": "S1234"}

print out dictionary

for key,value in d.items():

 print (key, ": ",value)

Note: items() actually returns a list of (key, value) pair tuples.

This allows the key and value in the for loop to iterate as key and value.

print dictionary by key

for key in d.keys() :

 print (key)

name : Bob

age : 24

studentid : S1234

name

age

studentid

dict_items([('name', 'Bob'), ('age', 24), ('studentid', 'S1234')])

81
copyright © 2021 www.onlineprogramminglessons.com For student use only

print dictionary by value

for value in d.values() :

 print (value)

print dictionary sorted by key

for key in sorted(d.keys()):

 print (key, ": ",d[key])

print dictionary sorted by value

for value in sorted(d.values(), key=str):

 for key in d.keys():

 if d[key] == value:

 print (key, ": ",value)

 break

We used the sorted function to return a list of sorted dictionary values.

Note: we use key=str option on the dictionary values to convert all elements to

string data type while sorting. Our values may have different data types string

and int. We need to convert all data values to a string data type for sorting. We

pass the str faction to the sorted function as the sort key. (The sort key is different

from dictionary key)

The above loop to sort a dictionary by value is a little inefficient. A more efficient

way is to pass a comparison function to the sorted function so it knows which

elements to sort, sort on key or sort on value

Age : 24

Idnum : S1234

Name : Bob

age: 24

studentid: Bob

name: s1234

Bob

24

S1234

82
copyright © 2021 www.onlineprogramminglessons.com For student use only

sort dictionary by value using a comparison function

The fcmp function receives a (key, value) pair tuple from the dictionary and either

returns the key x[0] or returns the value x[1] enclosed in a optional str function.

def fcmp(x):

 return str(x[1])

The sorted function receive list of dictionary items as tuples and the fcmp sort

comparison function as a sort key function. We set the key parameter of the

sorted function to our comparison function fcmp: key=fcmp (Note: The key

parameter is different from dictionary key)

sort_by_value = sorted(d.items(), key=fcmp)

The fcmp function receives the (key,value) tuples as the x parameter of the fcmp

function from the dictionary one by one.

fcmp(x)

where :

x = ('name', 'Bob')

x = ('age', 24)

x = ('studentid', 'S1234')

To sort by key then fcmp uses x[0] to return the key for comparison like ‘name’;

To sort by value the fcmp function uses x[1] to return the value for comparison

like ‘Bob’

It all depends what the fcmp function returns to what get sorted. Sort by

dictionary key or sort by dictionary value.

The sorted function returns a list of sorted dictionary tuple items, that we can

print out.

print(sort_by_value)

[('age', 24), ('name', 'Bob),('studentid', 'S1234')]

83
copyright © 2021 www.onlineprogramminglessons.com For student use only

lambda (a,b):

 return a * b

We are actually sorting the array of dictionary items of tuples

print(d.items)

sort using the sorted function

The comparison fcmp function instructs the sorted function to sort on the values

as a string

 str(x[1])

if you want to sort on the key you would use:

 str(x[0])

Again we use the str function to convert all items values to a string so we can sort

the same data types.

For convenience we can also use an inline function instead of a separate function.

Inline functions are known a anonymous function called lambda. An anonymous

function is a function with no name and has arguments and an expression to

evaluate using the arguments.

lambda arguments : expression

The expression is executed and the result is returned:

For example:

x = lambda a, b : a * b

y = x(3, 4) # 3 * 12

print(y) # 12

 dict_items([('name', 'Bob'), ('age', 24), ('studentid', 'S1234')])

84
copyright © 2021 www.onlineprogramminglessons.com For student use only

lambda arguments : expression

 a,b a * b

Our lambda compare function would be:

 lambda x: str(x[1])

function name input parameter return programming statement

Here is the code to sort a dictionary using the sorted function and a lambda

anonymous comparison function

it returns a list of sorted name, value pair tuples

we are actually sorting the array of dictionary items tuples

 dict_items([('name', 'Bob'), ('age', 24), ('studentid', 'S1234')])

using the sorted function, the lambda function receives one of the tuples x and

return the string value x[1]

note: if we did not have mixed data types then we could use x[1] not str(x[1])

sort_by_value = sorted(d.items(), key=lambda x: x[1])

 sort_by_value = sorted(d.items(), key=lambda x: str(x[1]))

[('age', 24), ('name', 'Bob),('studentid', 'S1234')]

85
copyright © 2021 www.onlineprogramminglessons.com For student use only

To do:

Make sure you try all the loop statements and are working before proceeding. .

Make a dictionary of all your favorite animals using the animal type as the key and

the animal name as the value. Print out the dictionary sorted by name value. Next

make a dictionary of all your favorite animals using the animal name as the key

and the animal type as the value. Print out the dictionary sorted by animal type

value.

LESSON 6 HOMEWORK

Put all your homework code in a homework6.py file

Exam Grader

Ask someone to enter an exam mark between 0 and 100. If they enter 90 or

above printout an “A”, 80 or above print out a “B”, 70 or above print out a “C”,

60 or above print out a “D” and “F” if below 60. Hint: use if else statements.

You can visualize a grade chart like this:

Mark Range Exam Grade
90 to 100 A

80 to 89 B
70 to 79 C

60 to 69 D
0 to 59 F

Bonus: validate the entered mark between 0 and 100, if they are out of bounds

ask them to re-enter a correct number between 0 and 100.

Make a loop so they can enter marks continuously, use -1 to exit

86
copyright © 2021 www.onlineprogramminglessons.com For student use only

Print out a comment from the following chart for each exam grade they get.

Mark Range Exam Grade Comment
90 to 100 A “Excellent”,

80 to 89 B “Good”,
70 to 79 C “Okay”,

60 to 69 D “Print Study Harder”
0 to 59 F “Talk to your teacher”

Mini Calculator

Make a mini calculator that takes two numbers and a operation like - , +, * and /.
Prompt to enter two number’s and a operation like this:

Enter first number: 3
Enter second number: 4
Enter (+, -. *. /) operation: +

Then print out the answer like this:

3 + 4 = 7

Hint: if elif else statements
The else statement should be used to indicate a invalid operation
Use a while or do while loop so that they can repeatedly enter many calculations.
Terminate the program when they enter a letter like ‘X’ for the first number.
Hint: use upper or lower to look for the ‘X’

87
copyright © 2021 www.onlineprogramminglessons.com For student use only

Triangle Generator:

Use nested for loops to print out a triangle using ‘*’ like this:

 *
 * *
 * * *
 * * * *
 * * * * *

Ask the user how many rows they want, validate your input, you cannot have
negative rows.

Hint: use 2 nested for loops, start with a square of stars
To print out a character like ‘*’ or ‘ ‘ use

 print(' *', end='''')

to print a new line use:

 print('''')

Enhanced Triangle Generator:
Use nested for loops to print out a triangle using ‘*’ like this:

 *
 * * *
 * * * * *
 * * * * * * *
 * * * * * * * * *

Ask the user how many rows they want.

Hint: use 2 nested for loops, start with a square of stars

88
copyright © 2021 www.onlineprogramminglessons.com For student use only

Reverse a String

Reverse a String using a while loop or a for loop. You will have to put the
reversed characters in a second string or in the same string using slicing. You
cannot in Python directly change the characters in the original String.

Test if a number is prime

Make a function called isPrime(x) that tests if a number is prime. A prime number
Is a number that can be only divided by 1 and itself. In a loop divide the number
between 2 to number-1 (or 2 to square root of number+1. For square root use:

 import math
 x = int(math.sqrt(n))

If the number can be divided by any of the divisors then the number is not prime,
else it is prime. Use the % (mod) operator to test if a number is evenly divided by
another number. Example: x % i == 0. Don’t forget to start from number 2. Print
out the first 100 prime numbers.

The first 10 prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29

Print out all factors of a number

Make a function call factors(x) that will print out all the factors of a number. The
factors of a number is all the divisors divided by the number evenly. Ask the user
of your program to enter a number then print out all the factors.

 Example:
Enter a number: 50
The Factors of 50 are:
1
2
5
10
25
50

89
copyright © 2021 www.onlineprogramminglessons.com For student use only

Print out all prime factors of a number

Make a function call prime_factors(x) that will print out all the prime factors of a
number. The prime factors of a number is all the prime number divisors divided
by the number evenly.

Example: 12 = 2 × 2 × 3
Following are the steps to find all prime factors.

0) Enter a number n
1) While n is divisible by 2 (use & 2), print 2 and then integer divide n by 2

n = int(n//2)
2) In a for loop from i = 3 to square root of n + 1

and increment by 2 use int(math.sqrt(n+1))
 in a while loop while n is divisible by i (use mod %)
 print i
 integer divide n by integer i int(n//i)

3) print n if it is greater than 2.

For square root use:

 import math
 x = int(math.sqrt(n+1))

Example using:

Enter a number: 12
The prime factors of 12 are:
2 2 3

90
copyright © 2021 www.onlineprogramminglessons.com For student use only

Make a Guessing game

Ask the user of your game to guess a number between 1 and 100. If they guess

too high tell them “Too High”. If they guess too low tell them they guess “Too

Low”. If they guess correct tell them “Congratulations you are Correct!”. Keep

track in a list how many tries the user took. At the end of the game, print out the

number of games played and the average tries of all games if they played more

than 1 game. Ask the user if they want to play another game.

You will first need to generate a random number to guess.

You can use this code to generate a random number:

x = random.randint(1, MAX_NUMBER)

Where MAX_NUMBER is a constant placed at the top of your program.

MAX_NUMBER = 100

You will need to include the following at the top of your program, for python to

recognize the randint function.

import random

Also make another constant MAX_TRIES for the number of tries allowed.

MAX_TRIES = 10

You should have functions to print a welcome message explaining how to play the

game, generate a random number, get a guess from the keyboard, check if a

guess is correct and print out the game scores. The main function should just call

your functions in a loop. Call your python file homework6.py or

GuessingGame.py

91
copyright © 2021 www.onlineprogramminglessons.com For student use only

Object Oriented Guessing Game

Make a GuessGame class that will keep track of the guess number and tries per

game and class variables total tries and number of games. You should have

methods to generate a random number, check if a guess is correct, too low or too

high, increment tries, return the score per game and class methods to calculate

and return average score of all games and the number of games played.

The Game __init__ method will generate and store the random number to guess,

and tries per game.

Class variables are placed right after the class definition. Class variables are

shared between all instances, so that they will have the same value for all objects.

 Class variables are declared without the self keyword.

Class Game:

 TotalTries = 0

 NumGames = 0

You will also need to make a class function to return the average score and

numGames. Class functions do not have the self keyword

 # calculate and return average score

 def getAverageTries():

 return TotalTries / NumGames

 # return number of games

 def getNumGames():

 return TotalTries// NumGames

You call the class functions using the class name not the object variable.

print("total games",GuessGame.getNumGames())
print("average score",GuessGame.getAverageScore(),tries)

92
copyright © 2021 www.onlineprogramminglessons.com For student use only

The main function should just handle inputs from the keyboard and printing

output to the console. The GuessGame class should not handle any input and

output, and is used, mainly to store the random number and tries per game. The

main function would instantiate a new GuessGame object per game. After each

game is played ask the user if they want to play another game.

After all games have been played print the average tries per game. Call your

python file homework6.py or GuessingGame2.py

Sentence Generator

A Sentence is composed of the following:

<article><adjective><noun><adverb><verb><article><adjective><noun>

Make a list of articles like: 'a', 'an' and 'the'

 articles = ['a', 'an','the’]

Then make a list of adjectives like: 'fat', 'big', 'small'

Then make a list of nouns like: 'cat', 'rat', 'house'

Then make a list of adverbs like: 'slowly', 'gently', 'quickly'

Then make a list of verbs like 'ate', 'sat on', 'pushed'

EACH LIST SHOULD HAVE THE SAME AMOUNT OF ENTRIES LIKE 3 ENTRIES EACH

Make a dictionary to hold all the lists:

words = {'articles':articles, 'adjectives':adjectives, 'nouns':nouns,

'adverbs':adverbs, 'verbs':verbs}

Next make a list of dictionary keys to make a sentence:

keys = ['articles', 'adjectives', 'nouns', 'adverbs', 'verbs', 'articles', 'adjectives', 'nouns']

Finally make a sentence using the dictionary entries, using the key list and by

selecting random words from the dictionary list values.

93
copyright © 2021 www.onlineprogramminglessons.com For student use only

import random

sentence = ''''

for key in keys:

 sentence += words[key][random.randint(0,2)] + '' ''

Then print out the sentence. You should get something like this:

print(sentence)

Which has picked random words from the dictionary sentence structure:

<article><adjective><noun><adverb><verb><article><adjective><noun>

You can put your code in your homework6.py file or make a sentence.py file

The big cat slowly ate the small rat

94
copyright © 2021 www.onlineprogramminglessons.com For student use only

I like programming

I like Python

LESSON 7 File I/O

File Access

Files store data that can be read and written to. Make a Leson6.py file to store all

the following python statements.

Writing lines to a file

We first write lines to a file so that we can read it back. We use the open method

to open the file using the "w" file mode specifier and then use the write method

to print a line to the file. We then use the close method to close the file. If you do

not close the file you will lose all the data written to the file.

write lines to a file

f = open("test.txt", "w")

f.write("I like programming")

f.write("\n")

f.write("I like Python")

f.write("\n")

f.close()

“\n” is the end of line terminator, alternatively you can put the “\n” at the end of

each line you write like this:

 f.write("I like programming\n")

reading lines from a file

We then read the file back and print it to the screen. We use the open method to

open the file with the "r" file mode specifier and then use the readlines method

to read the lines from the file. We use the close method to close the file. If you

do not close the file then the file may not be able to be used by other programs.

95
copyright © 2021 www.onlineprogramminglessons.com For student use only

Open the file for read

f = open('test.txt', "r")

read all lines in the file to a list

lines = f.readlines()

print(lines)

close the file

f.close()

Note: readlines actually returns a list of lines like:

 ['I like Programming\n',’I like Python\n']

We can use a for loop to read each line from a file traversing through the

readlines function

Open the file for read

f = open('test.txt')

read line one at a time

till the file is empty

for line in f.readlines():

 print (line)

f.close() # close file

When you print out each line in the list you can use the function strip to remove

the “\n” end of line character, so you do not get empty lines.

 print (line.strip())

I like programming

i like Python

['I like programming\n', 'I like Python\n']

96
copyright © 2021 www.onlineprogramminglessons.com For student use only

We can also read the file line by line using the readline function

Open the file for read

f = open('test.txt')

Read the first line

line = f.readline()

read line one at a time

till the file is empty

while line:

 print (line)

 line = f.readline()

f.close() # close file

writing lines to end of a file (appending lines to a file)

You can also write lines to end of an existing file use the "a" file mode specifier

write lines to end of a file

f = open("test.txt", "a")

f.write("I like Python")

f.write("\n")

f.close()

read the file again

Open the file for read

f = open('test.txt')

read line one at a time

till the file is empty

for line in f.readlines():

 print (line)

f.close() # close file

I like programming

I like Python

I like programming

I like Python

I like Python

97
copyright © 2021 www.onlineprogramminglessons.com For student use only

Write lines to a csv file.

A csv file is known as comma separated values and are used to store data by rows

and commas.

write lines to end of a file

f = open("test.csv", "w")

f.write("one,two,three,four")

f.write("\n")

f.close()

Read lines from a csv file.

A csv file is known as comma separated values and are used to store data by rows

and commas. We read a line from the file using the readline function them use

the strip method to remove the end of line character and then use the split

function to separate the words between the commas. The words are placed in a

list called tokens.

read csv file

Open the file for read

f = open('test.csv')

Read the first line

line = f.readline()

read line one at a time

till the file is empty

while line:

 # strip removes ‘\n’

 # split separates line into tokens

 tokens = line.strip().split(",")

print list of tokens

 print (tokens)

['one,two,three,four']

one

two

three

four'

98
copyright © 2021 www.onlineprogramminglessons.com For student use only

printing out individual token

 for t in tokens:

 print(t)

 line = f.readline()

f.close()

Catch file error

You need to catch a error when a file cannot be opened. If you do not then

program will stop working. The try – except block will catch and report the

file error.

 try:
 f = open('test.txt', 'r')
 for line in f.readlines():
 print(line)
 f.close()

 except IOError:
 print ('cannot open file test.txt')

Writing Object to Files

You can write objects to files using pickle, this is called serialization.

We first make a book class that we can be later written out to a file.

class Book:

 def __init__(self, title, author):

 self.title = title

 self.author = author

 def __str__(self):

 return "Book: " + self.title + " written by: " + self.author

99
copyright © 2021 www.onlineprogramminglessons.com For student use only

We then make book object from the book class definition:

b = Book("Wizard of Oz","L. Frank Baum")

Now we write book object to a binary file called book.p using pickle.dump. You

must import pickle before you can use it.

import pickle

f = open("book.p", "wb")

pickle.dump(b, f)

f.close()

We then read the book back from file using pickle.load.

f = open("book.p", "rb")

book = pickle.load(f)

f.close()

We then print out the book object.

print(book)

LESSON 7 HOMEWORK

Question 1

Open a file for write and write a small story to it of between 5 to 10 lines. Call

your file “story.txt”

Book: Wizard of Oz written by: L. Frank Baum

100
copyright © 2021 www.onlineprogramminglessons.com For student use only

Using try and except open the text file and count the number of letters, word,

sentences and lines it. Words are separated by spaces and new lines. Sentences

are separated by periods “.” or other punctuation like “?”.

 Lines are separated by ‘\n’. Words may contain numbers and punctuation like

apple80 and don’t. You can separate a line read from a file into words using the

split function. You can remove punctuation on a word by using the replace

function.

 word = word.replace(",","")

Keep track of each word count in a dictionary.

Write a report to a file called report.txt, the number of letters, words,

sentences and lines. Use the ‘f’ formatter to write each report line to the file.

s = f'Number of words: {numwords}\n'

You just put the variable that store’s the value in { } brackets. Print out the words

and word count in descending order.

You can use:

sorted_words = sorted(wordList.items(), key=lambda x: x[1], reverse=True)

Open the report file and display the report file lines to the screen. Call your

python file homework7.py.

Question 2

Write a program that writes out another python program to a file. Then open up

the file you wrote that contains the python program and execute it.

Algorithm:

1. Open up a file for write with a py extension like “test.py”

2. Write lines to a file with a input statement or print statements like:

3. f.write(“print(‘I like python’)\n”)

 you need to alternate between single ‘ quotes and double “ quotes

101
copyright © 2021 www.onlineprogramminglessons.com For student use only

4. close the file

5. open the test.py file in your python IDE and run the program

 It should print out

Call your python program ‘homework7q2.py’

Bonus:

Add more print , input, etc python statements, you could even write out this

question code so you have a program the writes out itself!

I like programming

102
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 8

LIST COMPREHENSION, ITERATORS, GENERATORS AND HIGHER ORDER

FUNCTIONS

List Comprehension is an easy way to append items to a list. The syntax is a little

complicated to understand, but if you accept that it works, then this is the best

approach to take. It is best to do things first, and understand later.

The syntax is very intimidating, but List Comprehension is very powerful

 new_list = [expression for loop iteration]

List Comprehension always returns a new list, the expression is the value that is
appended to the new list and the loop iteration is used to specify how many
iterations that are going to take place.

Here is a List Compression example that builds a list with the values 1 to 10.

 new_list = [i for i in range(10)]

 print (new_list)

would print out

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In our above example the expression is i and for loop iteration is:

for i in range(10)

which is the same i in the expression

new_list = [expression for loop iteration]

new_list = [i for i in range(10)]

103
copyright © 2021 www.onlineprogramminglessons.com For student use only

This list compression statement is equivalent to:

 new_list = []
 for i in range(10)
 new_list.append(i)

We can expand our expression to do some calculation like square root

 new_list = [i*i for i in range(10)]
 print (new_list)

would print out

 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can add a filter condition to our List Comprehension to print out even

number squares. Our filter condition is made using an if statement.

 new_list = [expression for loop iteration filter condition]

The condition is applied to the x in the iteration for loop, not to the output value

appended to the output list.

 # print out even square numbers
squares = [x*x for x in range(10) if x % 2 == 0]
print (squares)

would print out:

[0, 4, 16, 36, 64]

new_list = [expression for loop iteration filter condition]

squares = [x*x for x in range(10) if x % 2 == 0]

104
copyright © 2021 www.onlineprogramminglessons.com For student use only

To do:

Write a List Comprehension to print out odd number squares

Doing list compression on another list

Here is a List Comprehension example that does operation on another list

The syntax is

 new_list = [expression for item in old_list]

old_list = [1, 2, 3, 4, 5]
new_list = [x*2 for x in old_list]
print(new_list)

would print out

[2, 4, 6, 8, 10]

This example basically iterates through the old_list item by item and each item is

multiplied by 2 and then appended to the new list.

The List Comprehension statement is equivalent to:

old_list = [1, 2, 3, 4, 5]
new_list = []
for x in old_list
 new_list.append(x * 2)
print(new_list)

would print out:

[2, 4, 6, 8, 10]

Here is a list example to add a condition to filter to a input list. We will print out

the even number times 2 of our input list applying a condition filter to it. The

condition is applied to the values of the old list, not to the output of the new list

105
copyright © 2021 www.onlineprogramminglessons.com For student use only

The syntax is

new_list = [expression for item in list if conditional]

old_list = [1, 2, 3, 4, 5]
new_list = [x*2 for x in old_list if x % 2 == 0]
print(new_list)

would print out:

[4, 8]

To do:

Write a List Comprehension to print out the odd numbers times 2.

List Comprehension tuples

The output list may also contain tuples

print list of tuples
old_list = [1, 2, 3, 4, 5]
new_list = [(x,x*2) for x in old_list]
print(new_list) # [(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)]

print even tuples
old_list = [1, 2, 3, 4, 5]
new_list = [(x,x*2) for x in old_list if x % 2 == 0]
print(new_list) # [(2, 4), (4, 8)]

to do

print a list of odd tuples squared

[(1, 1), (3, 9), (5, 25)]

 new_list = [expression for item in list if conditional]
 new_list = [x*2 for x in old_list if x % 2 == 0]

106
copyright © 2021 www.onlineprogramminglessons.com For student use only

['cat\n', 'dog\n', 'lion\n']

List Comprehension examples

List Comprehension has many uses like: initializing lists with values, converting

values etc. Here are examples to create a 1-dimensional array with List

Comprehension

oneD_array = [0 for i in range(3)]
print(oneD_array)
[0, 0, 0]

Here are examples to create 2-dimensional array with List Comprehension

num_rows = 2
num_columns=3
twoD_array = [[0 for i in range(num_columns)] for j in range(num_rows)]
print(twoD_array)
[[0, 0, 0], [0, 0, 0]]

Here is another example to sort a list of mixed data types using List

Comprehension

mixed_list = ['a',3,'b',5]
sorted_list = sorted([str(x) for x in mixed_list])
print(sorted_list) # ['3', '5', 'a', 'b']

It basically converts each element in the mixed list to a string so that the sorted

function can sort strings, The sorted function cannot sort mixed data types at the

same time string and ints.

Using List Comprehension to remove ‘\n’ from a list of strings

list1 = ["cat\n","dog\n","lion\n"]

print(list1)

107
copyright © 2021 www.onlineprogramminglessons.com For student use only

['cat', 'dog', 'lion']

list2 = [x.replace("\n", ''") for x in list1]

print(list2)

In this example the ‘\n’ has been replace by a "" which is a empty string.

HOMEWORK

Question 1

Use List Comprehension to convert a list of five string numbers to integer and

return a sorted list of integer numbers

Example

Before:

['3','5','7','2','6']

After:

[2, 3, 5, 6, 7]

Put your homework in a python file called homework9.py

Iterators

Iterators allow you to traverse through a collection value by value. A collection is

may be a list, set or etc of values. We have already traversed through a list using

a for loop. A list is iterable meaning it automatically returns an iterator object for

traversals. In the following code the for loop uses the iterator of the fruits list to

traverses though the fruit list element by element,

108
copyright © 2021 www.onlineprogramminglessons.com For student use only

fruits = ['apple','orange','banana','pear']

for fruit in fruits:

print(fruit)

An iterator has methods __iter__() and __next__().

The __iter__() method creates an iterator and the __next__() method retrieves

the next value, as the iterator traverses through the values.

In the following example we use a iterator to traverse the fruit list fruit by fruit.

itr = iter(fruits)

for i in range(len(fruits)):

 print(next(itr))

The following for loop automatically does the same thing as above.

for fruit in fruits:

print(fruit)

The for loop actually creates an iterator object and executes the next() method

for each loop.

making your own iterator

We will make an iterator that returns a sequence of square numbers.

class SquareIterator:
 def __iter__(self):
 self.x = 1
 return self

apple

orange

banana

pear

apple

orange

banana

pear

109
copyright © 2021 www.onlineprogramminglessons.com For student use only

def __next__(self):
 if self.x <= 10:
 x = self.x
 self.x += 1
 return x*x
 else:
 raise StopIteration

The __iter__ method initializes the SquareIterator with x starting at 1. The next()

method returns the square number then increments x for the next square

number. When the square iterator finishes its sequence the StopIteration

exception is raised. The for loop will catch the StopIteration exception and stop

the for loop. We run the Squares Iterator like this:

 # make and run iterator

itr = iter(SquaresIterator())

for x in itr:

 print(x)

Alternatively you can just call the next in a loop and exit the loop when the

StopIteration exception is thrown like this:

g = squareGenerator()

while(True):

 try:

 print(next(g))

 except StopIteration:

 break

This iterator only works on python version 3.x

1

2

4

9

16

25

36

49

64

81

100

1

2

4

9

16

25

36

49

64

81

100

110
copyright © 2021 www.onlineprogramminglessons.com For student use only

Here is the version for python version 2.7. The __next__() method has been

replaced by next() (without the underscores __)

class SquareIterator:

 def __iter__(self):

 self.x = 1

 return self

 def next(self):

 if self.x <= 10:

 x = self.x

 self.x += 1

 return x*x

 else:

 raise StopIteration

 # make and run iterator

 itr = iter(SquareIterator())

for x in itr:

 print(x)

Alternatively you can run the iterator in while loop calling the next method and

break the loop when the StopIteration exception is throw

itr = SquareIterator()

while(True):

 try:

 print(itr.next())

 except StopIteration:

 break

1

2

4

9

16

25

36

49

64

81

100

1

2

4

9

16

25

36

49

64

81

100

111
copyright © 2021 www.onlineprogramminglessons.com For student use only

to do

Change the SquareIterator to a SquareRoot Iterator.

LESSON 8 HOMEWORK Part1

Question 2

Make a iterator that receives a list of numbers and return the numbers in list in

reverse. You will need to make a __init__() function that receives a list

Call your iterator ReverseIterator.

Put your homework in a python file called homework9.py

Generators

A Generator uses the yield statement that suspends a function’s execution and

then send’s back a value to the caller through a iterator. Each value is retrieved

by calling the next () method from the iterator. The function then resumes

execution and will run until another yield statement is executed.. This allows the

function to produce a series of values over time. The values are retrieved from

the function one by one by calling the next method from the returned iterator.

For every iterator next method call a value is returned and the function resumes

execution until the next yield is encountered and suspends again. Any function

with a yield statement becomes a generator.

Simple generator

This simple generator just returns the value x when the next method of the

iterator is called.

def simpleGenerator():

 x = 5

 yield x

112
copyright © 2021 www.onlineprogramminglessons.com For student use only

The simpleGenerator returns an iterator of values

g = simpleGenerator()

We iterate through the return iterator by calling the next method and print out

the values. In this case it is the value 5

x = next(g)

 print (x)

Alternatively you can use a for loop instead. You need to make another generator

because all the values of the previous generator have all been read.

g = simpleGenerator()

for x in g:

 print (x)

A generator may have more than 1 yield statement

def simpleGenerator2():

 x = 5

 yield x

 x += 5

 yield x

The simpleGenerator2 returns a value for each iterator next method called.

We run the generator like this:

g = simpleGenerator2()

5

5

113
copyright © 2021 www.onlineprogramminglessons.com For student use only

You can get the values from the generator for each next method called

x = next(g)

print (x)

x = next(g)

print (x)

We iterate through the return iterator in a for loop and print out the values.

for x in g:

 print (x)

Square Generator

The square generator generate a sequence of squared values. The function

suspends operation when the yield statement is encountered, and the function

resumes execution when the value is retrieved by calling the next method.

def squareGenerator(n):

 for x in range(n):

 yield x*x

Here we call the squareGenerator the returns an iterator object.

g = squareGenerator(10)

print out values using the next method call

for i in range(10):

 print(next(g)

1

2

4

9

16

25

36

49

64

81

100

5

10

5

10

114
copyright © 2021 www.onlineprogramminglessons.com For student use only

We can also print out the squared values with a while loop and catching the

StopIteration exception

g = squareGenerator()

while(True):

 try:

 print(next(g))

 except StopIteration:

 break

We can also print out the values from the iterator result in a for loop.

for x in g:

print(x)

You can retrieve all the values at once from the squareGenerator by enclosing the

generator in a list.

g = squareGenerator(10)

x = list(g)

print(x)

Sending a value to a Generator

We can send a value the generator yield method using the send method. This

comes in handy then you want to change the value inside the generator when it

is running.

1

2

4

9

16

25

36

49

64

81

100

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

115
copyright © 2021 www.onlineprogramminglessons.com For student use only

The send method sends a value to the generators yield method

g.send(8))

the yield method return a value

 val = (yield i)

if the value is not None then we set the generator value i to val

Here is a counter generator that will receive values from a send method, and

update the counter generator count value.

def counterGenerator (n):

 i = 0

 while i < n:

 val = (yield i)

 # If value provided, change counter

 if val is not None:

 i = val

 # else increment value

 else:

 i += 1

Here we make a counter generator to count from 0 to 9. when the

counterGenerator receives a value from the send method its count value changes.

We use the next(g) method call to retrieve values from the generator. We use the

g.send method to send values to the generator

116
copyright © 2021 www.onlineprogramminglessons.com For student use only

g = counterGenerator(10)

try:

 print (next(g)) # 0

 print (next(g)) # 1

 print (g.send(8)) # 8

 print (next(g)) # 9

 print (next(g)) # 10

except StopIteration:

 pass

The syntax for python version 2.7 is much different

for python version 2.7
def counterGenerator (n):
 i = 0
 while i < n:
 val = (yield i)
 # If value provided, change counter
 if val is not None:
 i = val
 # else increment value
 else:
 i += 1
try:
 g = counterGenerator(10)
 print (g.next()) # 0
 print (g.next()) # 1
 print (g.send(8)) # 8

 print (g.next()) # 9

 print (g.next()) # 10

except StopIteration:

 pass

117
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 8 HOMEWORK Part3

Question 3

Make a FactorialGenerator that out put all the !factorials of a number 1 to n;

Example factiorial !5 = 5*4*3*2*1 = 120

Set n = 10.

Send a value to the generator after it reaches 5 to start over again.

Zip

Zip allows you the compress values together from separate lists into 1 list,

numbers = [1, 2, 3]

letters = ['a', 'b', 'c']

zipped = zip(numbers, letters)

A iterator of tuples is returned. We can enclose the returned iterator in a list to

retrieve the tuples as a list.

zlist = list(zipped)

print(zlist)

From the zipped list we can print out the tuples on separate lines:

for x in zlist:

 print(x)

(1, 'a')

(2, 'b')

(3, 'c')

[(1, 'a'), (2, 'b'), (3, 'c')]

118
copyright © 2021 www.onlineprogramminglessons.com For student use only

We can even iterate through the zipped list , and do some operation on the values

inside the tuple. (each letter b is replicated by a)

for a,b in zlist:

 print (b * a)

Unzipping a ZIP

We can use List Comprehension to unzip a list:

Our zipped list from above is:

zlist = [(1, 'a'), (2, 'b'), (3, 'c')]
list1 = [i for i,j in zlist]
list2 = [j for i,j in zlist]

print(list1) # [1, 2, 3]
print(list2) # ['a', 'b', 'c']

We can even use zip to unzip a list

Here is the zlist again

zlist = [(1, 'a'), (2, 'b'), (3, 'c')]

We first use the *operator on *zlist to separate the zlist

 [(1, 'a'), (2, 'b'), (3, 'c')]

into separate arguments

 (1, 'a') (2, 'b') (3, 'c')

We then use zip on the *zlist:

unzipped = zip(*zlist)

a

bb

ccc

119
copyright © 2021 www.onlineprogramminglessons.com For student use only

We print the unzipped object in a list

print(list(unzipped))

Lesson 8 Homework Part4

Question 4

Make a 2 lists of numbers 1 to 5

Zip the two number lists together

Use List Comprehension to multiply the individual numbers together into another

list, that just printout the odd numbers.

Example:

List1 = [1,2,3,4,5]

list2 = [1,2,3,4,5]

The result should be list 3:

list3 = [1,9,15,25]

Higher Order Functions

Higher order functions use functions as arguments. These functions are used to

do operations on each element of list that is also passed t it.

[(1,2,3) , ('a', 'b', 'c')]

120
copyright © 2021 www.onlineprogramminglessons.com For student use only

map function

The map function receives a function and a list. The map applies the function to

each item in a list. The map returns a iterator of values that is the result of

applying the function to each item in the list.

 iterator = map(function, list)

A simple example is adding 1 to each element in a list.

We first make a list of numbers

list1 = [1,2,3,4,5]

We then define a function to add 1 to its input parameter x

def f(x):

return x + 1

We then use the map function to apply the function f to each element in the list

itr = map(f,list1)

The map function returns an iterator of the result of adding 1 to each element in

the list.

We need to the convert an iterator into a list for printout

list2 = list(itr)

print(list2) # [2, 3, 4, 5, 6]

each element in the list now has 1 added to it

The above code is similar to:

list1 = [1, 2, 3, 4, 5]

list2 = []

for i in list1:

 list2.append(f(i))

121
copyright © 2021 www.onlineprogramminglessons.com For student use only

to do:

Make a square function and use the map to square the numbers in a list

using an anonymous function lambda

An anonymous function is a inline function that has no defined name and can be

used within another programming statement to calculate a value on the fly. Since

the function does not need a name it is given the anonymous name lambda. A

lambda function is very convenient.

lambda parameters(s) : statement(s)

A anonymous function to add 1 to x would be

lambda x: x+1

x is the input parameter and x+1 is a programming statement that returns a value

which is equivalent to:

def f(x):

return x + 1

we can use our anonymous function in a map function as follows

itr = map(lambda x: x+1, list1)

this is quite convenient!

Our complete code using lambda is now:

list1 = [1, 2, 3, 4, 5]

itr = map(lambda x: x+1, list1)

print(list(itr)) # [2, 3, 4, 5, 6]

to do:

Make a lambda square function and use the map function to square the

numbers in a list.

122
copyright © 2021 www.onlineprogramminglessons.com For student use only

Using lambda function’s

We can equate a variable to a one parameter lambda function like this:

f = lambda x: x*x

we can call the lambda function like this:

x = f(5)

we print out the result like this:

print(x)

lambda function with more than 1 parameters

 f = lambda x,y: x + y

 x = f(2,3)

 print (x)

lambda function with no parameters

 f = lambda : 5

 x = f ()

 print(x)

 Higher order lambda functions

Make function 1

 f = lambda x: x*x

25

5

5

123
copyright © 2021 www.onlineprogramminglessons.com For student use only

make lambda function 2 that takes lambda function 1

 f2 = lambda x: f(x) + x

call function f2 with function 1, function 1 receives a 5

 x = f2(f(5))

print out results

 print(x)

which is:

f(5) = 25

f2(f(5)) = f(25) + 25 = 625 + 25 = 650

to do

Try your own higher order lambda function f and f2 like cubing squaring and/or

adding etc

Lesson 8 Homework Part 5

Question 5

Make a list of numbers 1 to 5. Using a map and a lambda inline function square

the numbers of the list. Feed the results to a List Comprehension that will cube

the even squared numbers. Print the list before and after.

You should get something like this:

List of numbers 1 to 5: [1, 2, 3, 4, 5]

Squared numbers: [1,4,9,16,25]

Cubed of even squared numbers: [64, 4096]

650

124
copyright © 2021 www.onlineprogramminglessons.com For student use only

Filter function

The filter function operates similar to map but returns an iterator of values that

meet a certain condition like selecting, even or odd numbers.

iterator = filter(function, list)

We first make a function called even that returns true if a number is even

def even(x):

 return x % 2 == 0

we then apply the filter function

list1 = [1, 2, 3, 4, 5, 6]

itr = filter(even,list1)

list2 = list(itr)

print(list2) # 2 4 6

notice only the even numbers are printed out

For convenience we can also use a lambda anonymous function

list1 = [1, 2, 3, 4, 5, 6]
itr = filter(lambda x: x % 2 == 0,list1)
list2 = list(itr)
print(list2)

TODO

Make a odd function and use the filter function to print out the odd numbers.

Use the filter function and a lambda function to print out the odd numbers.

125
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 8 HOMEWORK Part6

 Question 6

Using List Comprehension or a Generator make a list of numbers 1 to 10.

Use a map, a filter and a lambda function to print out all the odd squared

numbers.

You should get something like this:

List of numbers 1 to 10: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

List of odd squared numbers: [1, 9, 25, 49, 81]

Reduce

Reduce takes the first 2 numbers of a list and applies a function to them like

adding or subtracting and then applies the function to the result and the next

number and return the result.

list = reduce(function,list)

The function paramater takes 2 arguments (x,y)

We make a function that adds 2 numbers

def add(x,y):

 return x+y

We can now use our add function with reduce on a list

You need to import functools to use reduce

from functools import reduce
list1 = [1,2,3,4,5]
result = reduce(add, list1)
print(result) # 15 = 1 + 2 + 3 + 4 + 5

126
copyright © 2021 www.onlineprogramminglessons.com For student use only

reduce works like this

x = 0
list1 = [1,2,3,4,5]
for y in list1:
 x = x + y
print (x) #15

Basically you adding each number in the list [1,2,3,4,5] to the result

1 + 2 = 3
3 + 3 = 6
6 + 4 = 10
10 + 5 = 15

We can also call reduce with a lambda

list1 = [1, 2, 3, 4, 5]
result = reduce(lambda x, y: x + y, list1)
print(result) #15

You can also use functions that compare values. It starts at the first number and

compares the left number to the right number till it gets to the last number.

We first make a less, greater or equal compare function

def greater(x,y):

 return x > y

We can now test if all the numbers are increasing in the list

list1 = [1, 2, 3, 4, 5]
result = reduce(greater, list1)
print(list2) # False

For convenience we can replace our greater function with a lambda inline

function. Using the lambda function can now test if all the numbers are

increasing in the list.

127
copyright © 2021 www.onlineprogramminglessons.com For student use only

list1 = [1, 2, 3, 4, 5]
result = reduce(lambda x, y: x > y, list1)
print(result) # False

Using the lambda function we can now test if all the numbers are decreasing in

the list .

result = reduce(lambda x, y: x < y, [1, 2, 3, 4, 5])

print(result) # True

to do:

Apply the reduce function on a function that multiplies 2 numbers together and

compares if it is greater than adding them together.

LESSON 8 HOMEWORK Part 7

Question 7

Make a lambda in line function that uses list comprehension to produce a

sequence of numbers 1 to n that has an input variable n. Using the lambda inline

function pass 5 to n, then feed the numbers to a map and a function to square

them using another lambda inline function. Then use a filter to return the even

squared numbers using another lambda inline functions and then use reduce to

add them together using another lambda inline function..

You should have results like this:

Numbers 1 to n using lambda function passing 5 to it: [1, 2, 3, 4, 5]

Numbers squared using map : [1, 4, 9, 16, 25]

Even squared numbers using filter : [4, 16]

Result of adding squared numbers using reduce: 20

Bonus: Try filtering out the odd square numbers instead.

Put all your homework into a file called homework8.py

128
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 9 RECURSION

When a function calls itself it is known as recursion. Recursion is analogues to a

while loop. Most while loop statements can be converted to recursion, most

recursion can also be converted back to a while loop.

The simplest recursion is a function calling itself printing out a message.

def print_message():

 print("I like programming\n");

 print_message();

Unfortunately this program will run forever.

We can add a counter n to it so it can terminate at some point.

def print_message(n):

 if(n > 0):

 print("I like programming");

 print_message(n-1)

You should now run the recursion function

You would call the function like this:

print_message(5);

It will print I like programming 5 times.

Every time the print_message function is called n decrements by 1

I like programming

I like programming

I like programming

I like programming

I like programming

...

I like programming

I like programming

I like programming

I like programming

I like programming

129
copyright © 2021 www.onlineprogramminglessons.com For student use only

When n is 0 the recursion stops. You may place the statement print("I like

programming") before or after the recursive call. If you put it before than the

message is printed first before each recursive call.

If you put after than the message is printed after all the recursive calls are made.

This is quite a difference in program execution.

The operation is very similar to the following while loop:

n = 5

while(n > 0):

 print("I like programming")

 n -= 1

Recursion is quite powerful, a few lines of code can do so much.

n start’s at 5 and decreases by 1 each time the print_message function is called:

For each recursive call each individual value of n is saved.

5
4
3
2
1

when n becomes 0 then recursion stops.
0

Then the function unwinds and the stored n values get restored in reverse order

1
2
3
4
5

130
copyright © 2021 www.onlineprogramminglessons.com For student use only

For the next example we will count all numbers between 1 and n. This example

may be more difficult to understand, since recursion seems to work like magic,

and operation runs in invisible to the programmer.

def countn(n):

 if n == 0:

 return 0

 else:

 return countn(n-1) + 1

You call countn with a number like this:

 x = countn(5) # would return 5 because 1 + 1+ 1+ 1+ 1 = 5

 print(x) # 5

When (n == 0) this is known as the base case. When n == 0 the recursion stops

and 0 is return to the last recursive call. Otherwise the countn function is called

and n is decremented by 1

It works like this:

 main calls countn(5) with n = 5
 countn(5) calls countn(4) with n=4
 countn(4) calls countn(3) with n=3
 countn(3) calls countn(2) with n = 2
 countn(2) calls countn(1) with n = 1
 countn(1) calls countn(0) with n = 0
 countn(0) returns 0 to count(1) since n == 0
 countn(1) adds 1 to the return value 0 and then returns 1 to count(2)
 countn(2) adds 1 to the return value 1 and then returns 2 to count(3)
 countn(3) adds 1 to the return value 2 and then returns 3 to count(4)
 countn(4) adds 1 to the return value 3 and then returns 4 to count(5)
 countn(5) adds 1 to the return value 4 and then returns 5 to main()
 main() receives 5 from count(5) and prints out 5

131
copyright © 2021 www.onlineprogramminglessons.com For student use only

The statement return countn(n-1) + 1 is used to call the function recursively and

also acts as a place holder for the value returned by the called function.

We could rewrite the recursive part as follows:

 x = countn(n-1)

 return x + 1

x will now receive the return value from the function call and 1 will be added to

the return value and this new value will be returned to the caller.

If you can understand the above then you understand recursion

132
copyright © 2021 www.onlineprogramminglessons.com For student use only

 If you cannot then maybe the following diagram will help you understand.

You probably don’t need to understand how recursion works right away.

Sometime you just need to accept things for now then understand later.

One day it will hit you when you are thinking about something else.

count(4)

count(3)

count(2)

count(5)

count(1)

count(0)

main()

0

0 + 1 = 1

1 + 1 = 2

2 + 1 = 3

3 + 1 = 4

4 + 1 = 5

133
copyright © 2021 www.onlineprogramminglessons.com For student use only

Basically recursion works like this:

For every recursive function call the parameter and local variables are stored.

Technically they are stored in temporary memory called a stack.

Every time the function returns the previous numbers that were stored are

restored and now become the current number, to be used to do a calculation. The

numbers are restored in reverse order.

Function call/ return N

call count(n-1) 5
call count(n-1) 4

call count(n-1) 3

call count(n-1) 2
call count(n-1) 1

count(n-1) returns 0 0
count(n-1) returns 0 + 1 1

count(n-1) returns 1 + 1 2

count(n-1) returns 2 + 1 3
count(n-1) returns 3 + 1 4

count(n-1) returns 4 + 1 5

The thing to remember about recursion is it always return’s back where it is

called. Here are some more recursive function examples:

Sum numbers 1 to n

We sum numbers from 1 to n.

def sumn(n):

 if n==0:

 return 0

 else:

 return sumn(n-1) + n

134
copyright © 2021 www.onlineprogramminglessons.com For student use only

You would call sumn like this:

 x = sumn(5) # would return 15

 print(x) # print 15

It works similar to countn instead of adding 1 its adds n.

0+1+2+3+4+5 = 15

Our counter n serves 2 purposes a recursive counter and a number to add.

Multiply numbers 1 to n (factorial n)

We can also make a multn function which multiples n rather than adding n. This

is basically factorial n.

def multn(n):

 if n==0:

 return 1

 else:

 return multn(n-1) * n

You would call multn like this

x = multn(5) # would return 120

print(x) # print 120

It works similar to addn instead of adding n it multiplies n.

 1*1*2*3*4*5 = 120

Our base case returns 1 rather than 0 or else our result would b 0;

Power xn

Another example is to calculate the power of a number xn

In this case we need a base parameter b and an exponent parameter n.

135
copyright © 2021 www.onlineprogramminglessons.com For student use only

def pown(b, n):

 if n ==0 :

 return 1

 else

 return pown(b,n-1) * b

You would call pown like this:

 x = pown(2,3) # would return 8 because 2*2*2= 8 since 23=8

print(x) # 8

Every time a recursive call is made the program stores the local variables in a call

stack. Every time recursive call finishes executing, the save local variables

disappear and the previous local variables are available. These are the ones

present before the recursive function was called. These save variables may now

be used in the present calculations.

For the above example 23=8 the call stack would look like this.

 n=0
 b=2 1
 n=1 n=1
 b=2 b=2 2
 n=4 n=2 n=2 n=2
 b=2 b=2 b=2 b=2 4
n=5 n=5 n=3 n=3 n=3 n=3
b=2 b=2 b=2 b=2 b=2 b=2 8

Every time the recursive function finished executing it returns a value. Each

returning value is multiplied by the base b. In the above case the returning values

are 1,2,4 and 8

The return value is the value from the previous function multiplied by b (2)

return pown(b,n-1) * b;

the function first returns 1 then 1 * b = 1* 2 = 2 then 2 * 2 = 4 and finally 4 * 2 = 8

136
copyright © 2021 www.onlineprogramminglessons.com For student use only

efficient power xn

A more efficient version of pown can be made relying on the fact then even n can

return b * b rather than just return * b for odd n

def pown2(b,n):

 if (n == 0):

 return 1;

 if (n %2 == 0):

 return pown2(b, n-2) * b * b

 else:

 return pown2(b, n-1) * b

You would call pownn like this:

x = pown2(2,3) # returns 8

print(x) # 8

Operation is now much more efficient 1 * 2 * 4 = 8

Summing a sequence

Adding up all the numbers in a sequence n * (n + 1) / 2

n n *(n + 2)/2

0 0
1 1
2 4
3 9
4 12
5 15

Total: 42

137
copyright © 2021 www.onlineprogramminglessons.com For student use only

def seqn(n):

 if n == 0:

 return 1

 else:

 return (n * (n + 2))// 2 + seqn(n-1)

 You would call seqn like this:

x = seqn(5) # returns 42

print(x) #42

You should print out the individual values of the sequence for n as it calculates

the sum of the sequences

 x = (n * (n + 2))// 2

 print(x)

 return x + seqn(n-1)

Fibonacci sequence

Recursion is ideal to directly execute recurrence relations like Fibonacci sequence.

The Fibonacci numbers are the numbers in the following integer sequence.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 …..

In mathematical terms, the sequence fn of Fibonacci numbers is defined by the
recurrence relation.

 fn = fn-1 + fn-2

with seed values

 f0 = 0 and f1 = 1

138
copyright © 2021 www.onlineprogramminglessons.com For student use only

A recurrence relation is an equation that defines a sequence based on a rule that

gives the next term as a function of the previous term(s).

def fib(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fib(n-1) + fib(n-2)

You would call fib like this:

x = fib(10) # would return 55

print(x) # 55

Notice The recursive statement is identical to the recurrence relation

Combinations

We can also calculate combinations using recursion.

Combinations are how many ways can you pick r items from a set of n distinct

elements.

 nCr means n choose r

n is the number of elements in the set

r is the items you want to choose from the set

Example:

Pick two letters from set S = {A, B, C, D, E}

Answer is:

 {A, B}, {B, C}, {B, D}, {B, E}{A, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E}

139
copyright © 2021 www.onlineprogramminglessons.com For student use only

There are 10 ways to choose. 2 letters from a set of 5 letters. The combination

formula is

 n!

 n C r = -------------

 r! (n – r)!

The Recurrence relation for calculated combinations is:

base cases:

nCn= 1 where r = n

nC0= 1 where r = 0

recursive case:

nCr= n-1Cr + n-1Cr-1 for n > r > 0

Our recursive function for calculating combinations, based on the recurrence

relation is:

def combinations(n, r):

 if r == 0 or n == r:

 return 1

 else:

 return combinations(n-1, r) + combinations(n-1, r-1)

You would run combinations like this:

x = combinations(5,2) # returns 10

print(x) # 10

140
copyright © 2021 www.onlineprogramminglessons.com For student use only

Print a string out backwards

With recursion printing out a string backwards is easy, it all depends where you

put the print statement. If you put before the recursive call then the function

prints out the characters in reverse. Since n goes from n-1 to 0.If you put the

print statement after the recursive call then the characters are printed not

reverse since n goes from 0 to n.

reverse a string

This function prints out a string in reverse.

def print_reverse(s,n):

 if n == 0:

 print(s[0])

 else:

 print(s[n],end="")

 print_reverse(s, n-1)

You would run print_reverse like this:

s = "tomorrow"

print_reverse(s,len(s)-1)

Check if a string is a palindrome

A palindrome is a word that is spelled the same forward as well as backwards:

Like "radar" and "racecar"

We make a pointer i to the start of the word and a pointer j to the end of the

word.

 r a d a r

 ^ ^

 i j

worromot

141
copyright © 2021 www.onlineprogramminglessons.com For student use only

We then move the i forward and the j backward until they meet.

 r a d a r

 ^ ^

 i j

 r a d a r

 ^ ^

 i j

 If pointer i and j meet then the word is a palindrome, else it is not.

return True if string is a palindrome otherwise return False

def is_palindrome(s, i, j):

 if i >= j:

 return True

 else:

 if s[i] != s[j]:

 return False

 else:

 return is_palindrome(s,i+1, j-1)

You would call the is_palindrome function like this:

s = "radar"

x = is_palindrome(s, 0,len(s)-1) # return True

print(x) # True

s= "apple"

x =is_palindrome(s, 0,len(s)-1) # return False

print(x) # False

142
copyright © 2021 www.onlineprogramminglessons.com For student use only

Permutations

Permutations are how many ways you can rearrange a group of numbers or

letters. For example for the string “ABC” the letters can be rearranges as follows:

ABC

ACB

BAC

BCA

CBA

CAB

Basically we are swapping character and then print them out

We start with ABC if we swap B and C we end up with ACB

print permutations of string s
def print_permutations(s, i, j):
 # print out permutation
 if i == j:
 print(s)
 else:
 for k in range(i, j+1):
 # swap i and k
 c = s[i]
 # s[i] = s[k]
 s = s[:i] + s[k] + s[i+1:]
 #s[k] = c
 s = s[:k] + c + s[k+1:]

 # recursive call
 print_permutations(s, i + 1, j)
 # put back, swap i and k
 c = s[i]
 #s[i] = s[k]
 s = s[:i] + s[k] + s[i+1:]
 #s[k] = c;
 s = s[:k] + c + s[k+1:]

143
copyright © 2021 www.onlineprogramminglessons.com For student use only

You would call the print_permutations function like this:

s = "ABC";

print_permutations(s, 0,len(s)-1);

to do:

try different strings

Combination sets

We have looked at combinations previously where we wrote a function to

calculate home many ways you can choose r letters from a set of n letters.

nCr n choose r

Combinations allow you to pick r letters from set S = {A, B, C, D, E}

 n = 5 r = 2 nCr 5C 2

Answer:

 {A, B}, {B, C}, {B, D}, {B, E}{A, C}, {A, D}, {A, E}, {C, D}, {C, E}, {D, E}

We are basically filing a second character array with all possible letters up to r.

Start with ABCDE we would choose AB then AC then AD then AE etc. We use a

loop to traverse the letters starting at n =0, and fill the comb string. When n = r

we then print out the letters stored in the comb string

 # combinations
def print_combinations(s, combs,start, end, n, r):
Current combination is ready to be printed
 if n == r:
 for j in range (r+1):
 print(combs[j],end="")
 print("")
 return;

ABC

ACB

BAC

BCA

CBA

CAB

144
copyright © 2021 www.onlineprogramminglessons.com For student use only

 # replace n with all possible elements.
 i = start
 while(i <= end and end - i + 1 >= r - n):
 combs = combs[:n] + s[i] + combs[n+1:]
 print_combinations(s, combs, i+1, end, n+1, r)
 i+=1

You would call the print_combinations function like this:

s = "ABCDE";

combs = " " * (len(s) + 1)

r = 2

s, combs,start, end, n, r (5 choose 2)

print_combinations(s, combs,0,len(s)-1,0,r)

to do
try different strings and r values

Determinant of a matrix using recursion.

In linear algebra, the determinant is a useful value that can be computed from the
elements of a square matrix. The determinant of a matrix A is denoted det(A),
detA , or |A

In the case of a 2 × 2 matrix, the formula for the determinant is:

 | a b |
 |A| = | | = ad – bc
 | c d |

For a 3 × 3 matrix A, and we want the s formula for its determinant |A| is

 | a b c | | e f | | d f | | d e | | |
 |A| = | d e f | = a | | - b | | + c | |
 | g h i | | h i | | g I | | g h |

 = aei + bgf – ceg – bdi - afh

A B

A C

A D

A E

B C

B D

B E

C D

C E

D E

145
copyright © 2021 www.onlineprogramminglessons.com For student use only

Each determinant of a 2 × 2 matrix in this equation is called a "minor" of the
matrix A. The same sort of procedure can be used to find the determinant of a
4 × 4 matrix, the determinant of a 5 × 5 matrix, and so forth.

Our code actually follows the above formula, calculating and summing the minors.

calculate determinant of a matrix
def determinant(matrix, size):
 sign=1
 b = [[0]*3 for i in range(3)] # make empty 2d array
 # base case
 if size == 1:
 return (matrix[0][0]);

 else:
 det=0
 for c in range(size):
 m=0
 n=0
 for i in range(size):
 for j in range (size):
 b[i][j] = 0
 if i!=0 and j!=c:
 b[m][n] = matrix[i][j];
 if n< (size-2):
 n+=1
 else:
 n=0
 m+=1
 det = det + sign*(matrix[0][c]*determinant(b,size-1));
 sign = -1*sign; # toggle sign
 return (det)

146
copyright © 2021 www.onlineprogramminglessons.com For student use only

You call and run the determinant function like this:

m = [[6,1,1],[4,-2,5],[2,8,7]];

x = determinant(m,3)

print(x)

There are many more recursive examples, too numerous to present. If you do all

the following to do questions you will be a recursive expert.

Todo

For questions 1 to 7 use the list: a = [1,2,3,4,5]

1. Write a function to print out a list forwards using recursion.

 called printForward(a, n):

2. Write a function to add up all numbers in a list using recursion

 called add(a,n):

3. Write a function to print out all the even numbers in a list using recursion

 called printEven(a,n):

4. Write a function to print out odd numbers in a list using recursion

 called printOdd(a,n):

5. Write a function to print out a list backwards using recursion

 called printBackwards(a, n):

6. Write a function to return the largest number in an list using recursion

 called largest(a,n):

7. Write a function to return the smallest number in an list using recursion

 called smallest(a,n):

-306

147
copyright © 2021 www.onlineprogramminglessons.com For student use only

8. Write a recursive function called reverse_string(s, n) that reverses a string in

place. The recursive string receives the string and returns the string in reverse. No

printing inside the function is allowed.

9. Write a recursive function search_number(a, n) that searches for a number in

an array and return the index of the number it found otherwise returns -1 if not

found.

10. Write a recursive function search_digit(d, x) that searches for a number in an

number and return True if the number if found otherwise returns False if not

found. Divide by 10 will get you the next number, mod 10 will get you the last

digit. Remember to do integer division.

Examples:

 print(search_digit(12346789,7)) # True

 print(search_digit(12346789,5)) # False

11. Write a recursive function called sum_digits (d) that adds up all the digits in a

number of any length. The recursive function receives an int number and returns

the sum of all the digits. Example: sum_digits (1234) = 10

Divide by 10 will get you the next number, mod 10 will get you the last digit.

Remember to do integer division.

12. Write a recursive function called format_number(s, n) that can insert

commas in a string number. For example 1234567890 becomes 1,234,567,890

13. Write a recursive function called format_string(s) using slices that can insert

commas in a string number. For example 1234567890 becomes 1,234,567,890

14. Write a recursive function is_even(n) that return True if a number has even

count of digits or false if the number of digits is odd.

15. Write a recursive function print_binary(d) that would print a decimal

number as a binary number. A binary number just has digits 0 to 1.

 Where a decimal number has digits 0 to 9. The decimal number 5 would be 0101

in binary, since 1*1 + 0* 2 + 1* 4 + 0 *8 = 1 + 4 = 5. We are going left to right.

148
copyright © 2021 www.onlineprogramminglessons.com For student use only

To convert a decimal number to binary You just need to take mod 2 of a digit and

then divide the number by 2

5%2 = 1 -> 1

5/2 = 2

2 %2 = 0 -> 0

2/2 = 1

1 %2 = 1 -> 1

1/2 = 0

0 %2 = 0 -> 0

We are done so going backwards

5 in binary is 0 1 0 1

Recursion is good for going backwards.

16. Write a recursive function is_prime(n) that returns True if a number is prime

otherwise False.

 A prime number cam only is divides evenly by itself. 2,3,5,7, are prime numbers.

You can use the mod operator % to test if a number can be divided evenly by

numbers other than itself. Example: 4 %2 = 0 Because 4 can be divided evenly by

another number like 2 so therefore 4 is not a prime number

.17. Rewrite isPalindrome using substring slices [:] instead rather than using i and

j. Try to ignore spaces, and punctuation.

Put all your functions in a python file called Lesson9.py Include a main function

that tests all the recursive functions.

18. Make a recursive function called partition(a,n) that will partition an array in

place into odd and even numbers

Example: partition([1, 2, 3, 4, 5, 6],0)

149
copyright © 2021 www.onlineprogramminglessons.com For student use only

Array before:

[1, 2, 3, 4, 5, 6]

Array After:

 [1, 3, 5, 2, 4, 6]

19 Write a recursive function that calls another recursive function

The first function f1(start, end)

 could calculate factorial from start to end maybe 2 numbers at a time

The second function f2(n) would multiply the different ranges of factorial results

f2(5) would work like this

n start end result total
--
5 5 4 20 20
3 3 2 6 120
 1 1 0 1 120

print(f2(5)) # 120

20 Change function f2 from Question 19 to receive the f1 function as a parameter

fn(f1,n)

The result should be the same

print(fn(f1,5)) # 120

150
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 10 Regular Expressions

Regular expressions let you search for string patterns in a text string. Regular

expressions are a little difficult to understand and use but once you realize they

are just using letters to specify a pattern that you can match.

The simplest regular expression is a string of letters like "are" that you can use to

determine if a text string contains this word pattern.

Example: “Happy days are here again” contains the word pattern “are”.

Python has function’s used to locate patterns in a string, contained in the re

module

You would import as follows:

import re

re module Regular Exopression functions:

Function Description Example Using

findall
Returns a list containing all matches in
the string str

re.findall("are", str)

search
Returns a Match object if there is a
match anywhere in the string str

re.search("are", str)

match
Returns a Match object if there is a
match at the beginning of the string str

re.search("are", str)

split
Returns a list where the string str has
been split at each match

re.split(",", str)

sub
Replaces one or many matches with a
string in the string str

re.sub("always", "forever", str)

Each regular expression returns a match object. A Match Object is an object

containing information about the search and the result.

Note: If there is no match, the value None will be returned, instead of the Match
Object.

Match object function methods and properties

span() returns a tuple containing the start-, and end positions of the match.
.string returns the string passed into the function
.group() returns the part of the string where there was a match

151
copyright © 2021 www.onlineprogramminglessons.com For student use only

Using search

The search() function searches the string for a match, and returns the above
Match object if there is a match at the beginning of the string str.

Example using:

str = "I like Python"
m = re.search("like",str)
print(m.span())
print(m.string)
print(m.group())

We have search for the pattern "like" in the text string "I like Python" where

the match object has found the pattern in columns 2 to 6

span =(2, 6) match found in columns 2 to 6

string = the sting to be searched: “I like Python”

group = we only have 1 group result: “like”

To do:

search for something that you can find and not found in the string “I like Python”

Using match

The match() function searches the string for a match, and returns the above
Match object if there is a match.

If there is more than one match, only the first occurrence of the match will be
returned:

Example using:

s = "I like Python"
m = re.match("like",s)
print(m.span())
print(m.string)
print(m.group())

(2, 6)

I like Python

like

(2, 6)

I like Python

like

152
copyright © 2021 www.onlineprogramminglessons.com For student use only

We have search for the pattern "like" in the text string "I like Python" where

the match object has found the pattern in columns 2 to 6

Using findall

The findall() function returns a list containing all matches found in a string.

Example using:

s = "I like Python always"
m = re.findall("y",s)

 print(m)

The findall has found 2 y's in our string "I like Python always". It is too bad it does

not tell us the words containing the y's and where the word is located in the

string.

To do: try using a word rather than a letter

Using split

The split() function returns a list where the string has been split at each match:

s = "I like Python always"
m = re.split(" ",s)
print(m)

todo: try splitting on a letter or a comma

['y', 'y']

['I', 'like', 'Python', 'always']

153
copyright © 2021 www.onlineprogramminglessons.com For student use only

Using sub

The sub() function replaces a string with the another string of your choice:

s = "I like Python always"
m = re.sub("always","forever",s)
print(m)

We have replaced the word “always” to “forever”

Regular expression have sequences, metacharacters and sets to make regular

expressions more powerful.

A special sequence is a \ followed a characters and has a special meaning, like \s

to represent white space.

Metacharacters are characters with a special meaning, like + which means 1 or

more matches.

A set is a set of characters inside a pair of square brackets [] with a special
meaning, where [A-Z] matches any letter A to Z.

Here are the tables of Sequence, metacharacters and sets:

Sequences

A special sequence is a \ followed by one of the characters in the list below, and has a special meaning:

Sequence Description Example
\A Returns a match if the specified characters are at the beginning

of the string "\AThe"

\b Returns a match where the specified characters are at the

beginning or at the end of a word

(the "r" in the beginning is making sure that the string is being

treated as a "raw string")

r"\bain"

r"ain\b"

\B Returns a match where the specified characters are present, but

NOT at the beginning (or at the end) of a word

(the "r" in the beginning is making sure that the string is being

treated as a "raw string")

r"\Bain"

r"ain\B

\d Returns a match where the string contains digits (numbers from

0-9)
"\d"

\D Returns a match where the string DOES NOT contain digits "\D"

\s Returns a match where the string contains a white space

character

"\s"

I like Python forever

154
copyright © 2021 www.onlineprogramminglessons.com For student use only

\S Returns a match where the string DOES NOT contain a white

space character

"\S"

\w Returns a match where the string contains any word characters

(characters from a to Z, digits from 0-9, and the underscore _

character)

"\w"

\W
Returns a match where the string DOES NOT contain any word

characters

"\W"

\Z Returns a match if the specified characters are at the end of the

string
"Python\Z"

Metacharacters

Metacharacters are characters with a special meaning that allows the

metacharacter to represent many other characters. Example the dot . can

represent any character.

Metacharacter Description Example
[] A set of characters from start to end separated by a - "[a-m]"

\
Signals a special sequence

(can also be used to escape special characters like \(
"\d"

. Any character (except newline character) "."

^ Starts with "^happy"

$ Ends with "days$"

* Zero or more occurrences "a*"

+ One or more occurrences "a+"

? Zero or more occurrence a?

{} Exactly the specified number of occurrences "a{2}"

|

Either or

"yes|no"

() Capture and group “(\w+)”

Sets

A set is a set of characters inside a pair of square brackets [] with a special meaning.

Set Description
[arn] Returns a match where one of the specified characters (a, r, or n) are present

[a-n] Returns a match for any lower case character, alphabetically between a and n

[^arn] Returns a match for any character EXCEPT a, r, and n

[0123] Returns a match where any of the specified digits (0, 1, 2, or 3) are present

[0-9] Returns a match for any digit between 0 and 9

[0-5][0-9] Returns a match for any two-digit numbers from 00 and 59

155
copyright © 2021 www.onlineprogramminglessons.com For student use only

[a-zA-Z]
Returns a match for any character alphabetically between a and z, lower case OR

upper case

[+]
In sets, +, *, ., |, (), $,{} has no special meaning, so [+] means: return a match

for any + character in the string

Using metacharacters, sets and sequences

If you want to match a digit use \d

If you want to match a UPPER CASE letter use [A-Z]

If you want to match a lowercase letter use [a-z]

If you want to match UPPER and lower case letter use [a-zA-Z]

If you want to match a space use \s

To match 1 or more spaces \s+

To match 3 digits \d{3}

To match one or more letters [a-zA-Z]+

To match letters and numbers \w

To match 1 or many letters and numbers \w+

To match 0 or many letters and numbers \w*

To match 0 or 1 letters and numbers \w?

To make a group ()

T match any letter .

Validating text strings using match function

The match() function of re module in Python will search the regular expression

pattern and return the first occurrence. The Python RegEx Match method checks

for a match only at the beginning of the string. So, if a match is found in the first

line, it returns the match object. But if a match is found in some other line, the

Python RegEx Match function returns None.

156
copyright © 2021 www.onlineprogramminglessons.com For student use only

Examples:

us zip code

use d{5} to match 5 digits

m = re.match("\d{5}","12345")
 print(m)

m = re.match("\d{5}","1234")
 print(m) # none

to do: try numbers and letters

Canadian postal code

use [a-aA-AZ] to represent all upper and lower case letters

m = re.match("[a-zA-Z]\d[a-zA-Z]\d[a-zA-Z]\d","M2J2Y5")

to do:

(1) try out your own postal code

(2) put a space in your postal code and then adjust the regular expression

 to accommodate the space

Phone number

 (123) 456-7890

A phone number has 3 digits surrounded by round brackets: (123)

So we use \d to represent digits 0-9 and then use {3} for three digits contained in

round brackets. (\d{3})

The round brackets are metacharacters that have to be escaped with forward

slashes. \(\d{3}\)

157
copyright © 2021 www.onlineprogramminglessons.com For student use only

Continuing we have a space followed by three more digits \d{3} a hyphen –

followed by 4 more digits \d{4}

The following is a regular expression for a phone number.

\(\d{3}\) \d{3}-\d{4}

(123) 456 - 7890

\(\d{3}\) \d{3}-\ - \d{4}

We only have 1 slight problem, many people will forget to enter a space after the

round brackets so we use the metacharacter ? which means 0 or 1 character.

With a space:

m = re.match("\(\d{3}\) ?\d{3}-\d{4}","(123) 456-7890")

print(m)

with out a space:

m = re.match("\(\d{3}\) ?\d{3}-\d{4}","(123)456-7890")

print(m)

The final regular expression as follows to handle a space or empty space

(123) 456 - 7890

\(\d{3}\) ? \d{3} - \d{4}

To do: try you own phone number

<re.Match object; span=(0, 14), match='(123) 456-7890'>

<re.Match object; span=(0, 13), match='(123)456-7890'>

158
copyright © 2021 www.onlineprogramminglessons.com For student use only

using groups ()

A group allows you to pick out and extract parts of the matching text.

Example: picking parts of the first and last name of a name

groups

s = "Tom, Smith"

m = re.search("(\w+), (\w+)",s)

print(m)

print(m.group())

print(m.group(1))

print(m.group(2))

Regular Expression Homework

Question 1

 Write the regular expression to validate a web page url like:

http://www.cstutoring.com

Question 2

With the regular expression to validate a email and use a group the print out the

username and host.

Example:

students@cstutoring.com

username: students

host: cstutoring.com

Question 3

Write a regular expression to split a line where the word are separated by

commas that can contain one or many spaces. Print out the words in a loop each

on a separate line.

hint: use split method

159
copyright © 2021 www.onlineprogramminglessons.com For student use only

Example line:

Happy, days, are, here,again\n”

Example output:

Happy
days
are
here
again

Question4

Write a regular repression to remove all the new lines from a string

Example:

Before:

happy days are here again\n”

after:

happy days are here again”

Question 5

Write python code using regular expression(s) to locate all words with a certain

letter and print them out.

Hint #1: use split then match on each word.

Hint #2: use * metacharacter which means 0 or many

160
copyright © 2021 www.onlineprogramminglessons.com For student use only

LESSON 11 SQL and SQLite

SQL (Structured Query Language) allows you to read and write data from a

database. A data base stores information in tables. Tables have rows and columns

to represent the data you want to store. The columns store the values. A row

contains the data columns. A row is also known as a record.

An Example of a Person table would have columns FirstName, LastName, Address,

Phone and Email. Each row would contain data for a different person.

You can visualize the Person table like this.

Person Table

FirstName LastName Address Phone Email
Tom Smith 42 Ocean Ave 876-9876 tom@mail.com

Sue Jones 1 One St 645-8654 sue@mail.com
Mary Berry 7 Hanover St 454-5432 mary@mail.com

A database stores many tables. Tables can represent many things. A data base

may have tables to represent a Store. A store would have tables for customers,

inventory, orders, etc.

161
copyright © 2021 www.onlineprogramminglessons.com For student use only

Python makes database programming easy for you. Python has the Sqlite

database built into Python3

The first thing we have to do is to connect to a database.

We first import sqlite3

import sqlite3

Then we use the sqlite3 connect function to connect to our data base.

connect to data base

conn = sqlite3.connect("lesson11.db")

If the data base does not exist it will be made automatically. The data base is just

a binary file with the same name you gave it. It will be stored in the same folder

where your python file’s are stored: Lesson11.db

Creating database table

The next thing we need to do is to add a table to your data base. The table will

contain data about a person. We create our Person table, by specifying the

column names and data types each column will hold.

We first need to know what kind of data a column can represent. Here are the

available sqlite column data types.

Python Column Data types:

Data Type Description Example

NULL Represents no value

INTEGER signed integer 1234

REAL floating point value 10.5
TEXT text string, "tom Smith"

BLOB blob of data (large strings) A very large text message

SQL is a data base language to access a data base. SQL has commands to select

insert, update and delete rows into a table

Once we know the data types of the columns we then we can use the SQL Create

statement to create the following Person table.

162
copyright © 2021 www.onlineprogramminglessons.com For student use only

Person Table

FirstName LastName Address Phone Email
Tom Smith 42 Ocean Ave 876-9876 tom@mail.com

Sue Jones 1 One St 645-8654 sue@mail.com
Mary Berry 7 Hanover St 454-5432 mary@mail.com

Here is the SQL Create statement to define the column names and data types for

the person table.

sql create statement

sql = "CREATE TABLE Person”

sql += "(FirstName TEXT, LastName TEXT, Address Text, Phone TEXT, Email TEXT)"

If you run the program, more than once then you only want to create the person

table only if does not exist to avoid table already created error.

sql = "CREATE TABLE IF NOT EXISTS Person”

sql += "(FirstName TEXT, LastName TEXT, Address Text, Phone TEXT, Email TEXT)"

Next we make a cursor object. The cursor object connects to the database and is

responsible to execute SQL statements, and to access the individual records in the

data base for fetching and inserting updating and deletion of rows.

create cursor object

cursor = conn.cursor()

Lastly we execute the SQL statement and the person table is created,

execute sql statement

cursor.execute(sql)

You need to commit the transaction after each execution.
 conn.commit()

163
copyright © 2021 www.onlineprogramminglessons.com For student use only

Inserting data into a table

The next thing we need to do is to insert data into the person table, using the SQL

Insert command.

Here is the SQL insert command syntax:

INSERT INTO table VALUES (value(s))

Our columns are: | FirstName | LastName | Address | Phone | Email |

insert data into Person table
sql = "INSERT INTO Person VALUES ('Tom', 'Smith', '42 Ocean Ave','876-9876','tom@mail.com')"
cursor.execute(sql)
sql = "INSERT INTO Person VALUES ('Sue', 'Jones', '1 One St','645-8654','sue@mail.com')"
cursor.execute(sql)
sql = "INSERT INTO Person VALUES ('Mary', 'Berry', '7 Hanover St','454-5432','mary@mail.com')"
cursor.execute(sql)

commit transaction
conn.commit()

Inserting data into a table using a tuple or list

When you insert data from a tuple or a list you must also specify the column
names and use a ? to indicate where the column values are to be substituted for.

Insert statement syntax:

INSERT INTO (column name(s)) table VALUES (?,?,?,?,?)

sql = "INSERT INTO Person (FirstName, LastName, Address, Phone, Email) VALUES (?,?,?,?,?)"
values = ('Joe','Toe','5 Apple St','555-5555','joe@mail.com')
cursor.execute(sql,values)
conn.commit()

reading rows from the database

We use the SQL Select statement to select which columns we want to read from

the data base.

164
copyright © 2021 www.onlineprogramminglessons.com For student use only

Select statement syntax:

SELECT column_names FROM table_name

We can specify each column name that we want to access.

 sql = "SELECT FirstName, LastName, Address, Phone, Email FROM Person"

rows = cursor.execute(sql).fetchall()

Alternately we can use the wildcard * to select all columns of a particular row.

read rows from data base

Sql = "SELECT * FROM Person"

rows = cursor.execute(sql).fetchall()

When we call the execute method from the cursor object and the fetchall

method, would return a list tuples where each tuple represents 1 row of data by

calling. The fetchall method fetches all rows from the Person table.

We can then print out the row from the list of row tuples.

print out rows

for row in rows:

 print(row)

We need to commit the changes we made to the data base.

commit transaction

conn.commit()

('Tom', 'Smith', '42 Oceam Ave', '876-9876', 'tom@mail.com')
('Sue', 'Jones', '1 One St', '645-8654', 'sue@mail.com')
('Mary', 'Berry', '7 Hanover St', '454-5432', 'mary@mail.com')
('Joe', 'Toe', '5 Apple St', '555-5555', 'joe@mail.com')

165
copyright © 2021 www.onlineprogramminglessons.com For student use only

DB Browser for SQLite

DB Browser for SQLite (DB4S) is a high quality, visual, open source tool to create,

design, and edit database files compatible with SQLite.

Available from:

https://sqlitebrowser.org/

We first display the person table structure

166
copyright © 2021 www.onlineprogramminglessons.com For student use only

Next we display the person table data

Using Where clause

The where clause lets you select specific data row by matching one or many

column values.

Syntax of select statement with where clause

 Select column(s) from table_name where column=?

167
copyright © 2021 www.onlineprogramminglessons.com For student use only

The ? is a place holder where the value is substituted from a value that is placed

as a tuple in the execute statement. The column=? Is known as a condition that is

validated true or false.

select where phone = 876-9876
phone = '876-9876'
sql = "SELECT * FROM Person where phone = ?"
rows = cursor.execute(sql,(phone,),).fetchall()

print out rows
for row in rows:
 print(row)

Note: You need to have an extra comma in the tuple and function call when we

have only 1 item.

rows = cursor.execute(sql,(phone,),).fetchall()

 ^^

Compound where conditions

A where clause can have more than 1 condition using AND and OR operators.

AND means both conditions must be true to be evaluated as true
OR means either conditions must be true to be evaluated as true

Here is an example using looking for 2 different phone numbers

compound where clause
phone1 = '876-9876'
phone2 = '645-8654'
sql = "SELECT * FROM Person WHERE phone = ? OR phone = ?"
rows = cursor.execute(sql,(phone1,phone2,)).fetchall()

print out rows
for row in rows:

print(row)

('Tom', 'Smith', '42 Ocean Ave', '876-9876', 'tom@mail.com')

168
copyright © 2021 www.onlineprogramminglessons.com For student use only

Fetching data from a data base

Using the sql Select class we can fetch all rows, the specified number of rows or

just one row.

Fetch method Description

cursor.fetchall() Fetches all the rows of a query result. It returns all the rows as a
list of tuples. An empty list is returned if there is no record to
fetch.

cursor.fetchmany(size) Returns the number of rows specified by size argument. When
called repeatedly this method fetches the next set of rows of a
query result and returns a list of tuples. If no more rows are
available, it returns an empty list.

cursor.fetchone() Returns a single record or None if no more rows are available

Todo:

Try each of the above fetch methods

Accessing Database data

Getting the number of rows

n = len(rows).

Accessing a particular row

row = rows[0]

Accessing a particular column in rows

column = rows[0][3]

Accessing a particular column in a row

column = row[3]

('Tom', 'Smith', '42 Ocean Ave', '876-9876', 'tom@mail.com')
('Sue', 'Jones', '1 One St', '645-8654', 'sue@mail.com')

169
copyright © 2021 www.onlineprogramminglessons.com For student use only

UPDATING ROWS

You can update specified column value in a table using the SQL UPDATE

command.

Here is the update command syntax:

UPDATE table SET column = ? WHERE column = ? "

Where ? is a place holder that will get substituted to a specified value

update phone number
firstname = 'Tom'
lastname = 'Smith'
phone = '111-2222'
sql = "UPDATE Person SET phone = ? WHERE firstname = ? and lastname = ?"
cursor.execute(sql,(phone, firstname, lastname))

commit transaction
conn.commit()

print results
firstname = 'Tom'
lastname = 'Smith'
sql = "SELECT DISTINCT * FROM Person where firstname = ? and lastname = ?"
rows = cursor.execute(sql,(firstname,lastname),).fetchall()

print out rows
for row in rows:
 print(row)

Note: we have used the keyword DISTINCT so we only get 1 row selected else we
would get more than 1

('Tom', 'Smith', '42 Ocean Ave', '111-2222', 'tom@mail.com')

170
copyright © 2021 www.onlineprogramminglessons.com For student use only

Deleting Rows

There will be situations where you will need to remove rows using a specified

condition.

To delete a row you use the SQL DELETE command.

The syntax is as follows:

 DELETE FROM table WHERE column = ?

Where ? is a place holder that will get substituted to a specified value

delete a row
phone = '645-8654'
sql = "DELETE FROM Person WHERE phone = ?"
cursor.execute(sql,(phone,))

commit transaction
conn.commit()

print results
sql = "SELECT * FROM Person"
rows = cursor.execute(sql).fetchall()

print out rows
for row in rows:
 print(row)

Dropping Table

There will also be situations where you need to drop a table. You drop a table

using the SQL DROP command

The syntax is as follows:

 DROP TABLE table

('Tom', 'Smith', '42 Ocean Ave', '111-2222', 'tom@mail.com')

('Mary', 'Berry', '7 Hanover St', '454-5432', 'mary@mail.com')

171
copyright © 2021 www.onlineprogramminglessons.com For student use only

There is an alternate drop table to check if a table exists.

Its syntax as follows

 DROP TABLE IF EXISTS table

sql = 'DROP TABLE Person'
cursor.execute(sql)
conn.commit()

sql = 'DROP TABLE IF EXISTS Person'
cursor.execute(sql)
conn.commit()

Closing Connection

Once you finished using the database you need to close the connection.

close data base

conn.close()

Lesson 11 Homework Question 1

Create a Database that has a Book table

A book will have a Title, Author, Price and year published.

You may want to make a book class that has Title, Author, Price and Year.

The book class has a constructor, getters and setters and a __str__ method to

print out the book details.

The book class can be used to move book data base row data around

conveniently.

Make a main program that will create the Book table and has a menu where you

can insert, select, update and remove book’s using the Book class.

172
copyright © 2021 www.onlineprogramminglessons.com For student use only

Your Book table may look like this:

Column Name Description
Title TEXT

Author TEXT

Price REAL
Year INTEGER

Primary and Foreign keys

A primary key PK is a column that has a unique value for all the rows and is used to
identify a particular row using the primary key value. Each table has one and only
one primary key. A table may have more than 1 column as the primary key. For
example in a the case of a storing a first name and last name. One column for the
first name and another column for the second name. In this situation the name is
unique.

SQLite allows you to define a primary key in two ways:

First, if the primary key has only one column, you use the PRIMARY KEY column
constraint to define the primary key as follows:

CREATE TABLE table_name(

 column_1 INTEGER NOT NULL PRIMARY KEY,

 ...

);

Second, in case primary key consists of two or more columns, you use the
PRIMARY KEY table constraint to define the primary as shown in the following
statement

CREATE TABLE table_name(

 column_1 INTEGER NOT NULL,

 column_2 INTEGER NOT NULL,

 ...

 PRIMARY KEY(column_1,column_2,...)

);

173
copyright © 2021 www.onlineprogramminglessons.com For student use only

Foreign key

A Foreign key FK is a key in a table that is a primary key from another table, (like

a foreigner in a country from another country). A relation is made between the

table that has the primary key to the table that has the foreign key. A foreign key

is also a constraint that verifies the existence of the value present in one table to

another table.

You specify a foreign key for a primary key in table_name2 as follows

CREATE TABLE table_name2
(
 column_1 INTEGER NOT NULL,
 column_2 INTEGER NOT NULL,

 FOREIGN KEY(column2) REFERENCES table_name1 (table_name_primary_key_column name)
);

Column2 is the foreign key.

Column 2 has the same name as the primary key in table_name.

Auto increment of Primary Key

Auto increment automatically increments the value of a primary key id for each

insertion of a record. Primary keys are usually an INTEGER value so it makes auto

increment easy. Also auto increment is convenient. The auto increment primary

key id usually starts a 1 and then get’s incremented for each insertion.

The AUTOINCREMENT keyword is used to indicate auto increment.

Here is an example declaring a INTEGER primary key AS AUTOINCREMENT:

 Id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

When you insert into a table that uses a auto increment primary key id you must

not include the AUTOINCREMENT id as a value in the insert sql statement. It is

supplied for you automatically.

When you use insert statement for auto increment you must supply both the

column names and values.

 sql = "INSERT INTO Items (Name, Description, Price, Quantity)

 VALUES ('Apples', 'Shinny Red',1.95,100)"

174
copyright © 2021 www.onlineprogramminglessons.com For student use only

Primary Key and Foreign Key Example

A Customer has a CustomerID,Name,Address,Email,Phone

An Item has a ItemId, Name,Description,Price,Quantity

An Order has a OrderID,CustomerID and a ItemID

The CustomerID of the Customers table is a Primary Key
The ItemID of the Items table is a Primary Key
The CustomerID of the Customers table is a Primary Key
The ItemID of the Items table is a Foreign Key
The CustomerID of the Items table is a Foreign Key

Here is the table relationships:

 Customers Table

Orders Table

 Items Table

CustomerID PK

Name

Address
Phone

Email

OrderID

CustomerID FK

ItemID FK

OrderID PK
Name

Description
Price

Quantity

175
copyright © 2021 www.onlineprogramminglessons.com For student use only

The primary key of the Customers Table is the CustomerID

The primary key of the Items Table is OrderId

The orders table has the foreign keys CustomerID and OrderID.

The customerID represents the customer information for the order, and the

OrderID represents the Item ordered. An order may have many different

customers and order items.

The orders table does not have a primary key because customer and Orders ID are

not unique.

We first make the Create the SQL statement for the Customers Table

sql_customers_table = """
CREATE TABLE IF NOT EXISTS Customers (
 CustomerId INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
 Name TEXT NOT NULL,
 Address INTEGER NOT NULL,
 Email NOT NULL,
 PHONE NOT NULL
);
"""

We use the triple """ so we can enclose multi-line strings

We have made the CustomerID as the primary key and to be AUTOINCREMENT

NOT NULL means the value must be inserted.

Next we make the SQL Create statement for the Items Table

sql_items_table = """
CREATE TABLE IF NOT EXISTS Items (
 ItemId INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 Name Text NOT NULL,
 Description Text NOT NULL,
 Price REAL NOT NULL,
 Quantity INTEGER NOT NULL
);
"""

We have made the ItemID as the primary key and to be AUTOINCREMENT

176
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lastly we make the SQL Create statement for the Orders Table

sql_orders_table = """
CREATE TABLE IF NOT EXISTS Orders
(
 OrderID INTEGER NOT NULL,
 CustomerId INTEGER NOT NULL,
 ItemId INTEGER NOT NULL,
 Quantity INTEGER NOT NULL,
 Total REAL NOT NULL,
 FOREIGN KEY(CustomerId) REFERENCES Customers(CustomerId),
 FOREIGN KEY(ItemId) REFERENCES Items(ItemId)
);
"""

The orders table does not have a primary key but just an OrderId. We do not use a

primary key because there will be many order records all having the same

OrderId.

 The Orders table has 2 foreign keys:

 CustomerId INTEGER NOT NULL,
 ItemId INTEGER NOT NULL,

The reference to the primary key is listed at the bottom of the Order Table Create

Statement

 FOREIGN KEY(CustomerId) REFERENCES Customers(CustomerId),
FOREIGN KEY(ItemId) REFERENCES Items(ItemId)

Next we create the tables from the SQL Create statements

execute sql create statement's
cursor.execute(sql_customers_table)
cursor.execute(sql_items_table)
cursor.execute(sql_orders_table)

commit database to others

conn.commit()

177
copyright © 2021 www.onlineprogramminglessons.com For student use only

Once we make the Tables we need to insert the values into the tables

Inserting values into the Items table:

insert data int items table
sql = "INSERT INTO Items
 (Name, Description, Price, Quantity) VALUES ('Apples', 'Shinny Red',1.95,100)"
cursor.execute(sql)
itemid1 = cursor.lastrowid

sql = "INSERT INTO Items
 (Name, Description, Price, Quantity) VALUES ('Oranges', 'Sweet and Ripe',2.95,100)"
cursor.execute(sql)
itemid2 = cursor.lastrowid

Notice we have inserted the items without using the Item id, because the ItemID

is automatically generated for you.

We can obtain the auto generated ItemID from by using lastrowid property from

the cursor object.

itemid1 = cursor.lastrowid
 itemid2 = cursor.lastrowid

to do:

Print items tables

Inserting values into the Customers table:

To insert values into the customer table we use the INSERT SQL command.

insert data into customers
sql = "INSERT INTO Customers (Name, Address, Email,Phone) VALUES
('Sue Jones', '1 One St','645-8654','sue@mail.com')"
cursor.execute(sql)
customerid1 = cursor.lastrowid

sql = "INSERT INTO Customers (Name, Address, Email,Phone) VALUES
 ('Mary Berry', '7 Hanover St','454-5432','mary@mail.com')"
cursor.execute(sql)
customerid2 = cursor.lastrowid

178
copyright © 2021 www.onlineprogramminglessons.com For student use only

Notice we have inserted the items without using the CustomerID because the

CustomerID is automatically generated for you.

We can obtain the auto generated CustomerID from the lastrowid property from

the cursor object.

customerid1 = cursor.lastrowid
customerid2 = cursor.lastrowid

to do:

print out the CustomersTable

Inserting values into Orders Table

To insert data into the Orders Table we must know the primary keys of the

Customerid and Item id which we previously obtained using

cursor.lastrowid

We also can get the prices from the items table using the itemid1and itemid2 and

the fetchone method. We use the fetchone method since we only need 1 value.

get prices from items
sql = "select price from items where ItemId = ?"
price1 = cursor.execute(sql,(itemid1,)).fetchone()[0]
sql = "select price from items where ItemId = ?"
price2 = cursor.execute(sql,(itemid2,)).fetchone()[0]

Once we obtain primary keys id’s and the item prices we can insert them into the

Orders table.

insert data into orders
sql = "INSERT INTO orders (OrderId,CustomerId,ItemId,Quantity,Total) VALUES (?,?,?,?,?)"
cursor.execute(sql,(1,customerid1,itemid1,2,price1*2))
sql = "INSERT INTO orders (OrderId,CustomerId,ItemId,Quantity,Total) VALUES (?,?,?,?,?)"
cursor.execute(sql,(1,customerid1,itemid2,3,price2*3))
sql = "INSERT INTO orders (OrderId,CustomerId,ItemId,Quantity,Total) VALUES (?,?,?,?,?)"
cursor.execute(sql,(1,customerid2,itemid1,4,price1*4))
sql = "INSERT INTO orders (OrderId,CustomerId,ItemId,Quantity,Total) VALUES (?,?,?,?,?)"
cursor.execute(sql, (1,customerid2,itemid2,2,price2*2))

179
copyright © 2021 www.onlineprogramminglessons.com For student use only

to do:

Print out OrdersTable

Run your program, you should get something like this:

Customers
(1, 'Sue Jones', '1 One St', '645-8654', 'sue@mail.com')
(2, 'Mary Berry', '7 Hanover St', '454-5432', 'mary@mail.com')

Items
(1, 'Apples', 'Shinny Red', 1.95, 100)
(2, 'Oranges', 'Sweet and Ripe', 2.95, 100)
Orders
(1, 1, 2, 1.95)
(1, 2, 3, 2.95)
(2, 1, 4, 1.95)
(2, 2, 2, 2.95)

You can see that the orders table contain the order key of the customers and item

table as foreign keys.

INNER JOIN

Inner join allows you to join tables together usually using a select statement.

The syntax of inner join of 2 tables:

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

180
copyright © 2021 www.onlineprogramminglessons.com For student use only

The column names can be from either table. The join on, usually connects primary

keys to foreign keys. The tables can be listed in any order.

Example using inner join of 2 tables

Here we are joining the Customers table to the Orders table so we can print out

the customer name and order quantity and total price.

inner join 2 tables
select customer names and orders
sql = """SELECT Customers.Name,Orders.OrderID,Orders.Quantity,Orders.Total
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID
"""

We then print out the results:

rows = cursor.execute(sql).fetchall()

print out rows
for row in rows:

print(row)

Inner join using a where clause

With a where clause you can just select specific records.

select customer names and orders
sql = """SELECT Customers.Name,Orders.OrderID,Orders.Quantity,Orders.Total
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID where
Customers.Name = 'Sue Jones'
"""

('Sue Jones', 1, 2, 3.9)
('Sue Jones', 1, 3, 8.850000000000001)
('Mary Berry', 1, 4, 7.8)
('Mary Berry', 1, 2, 5.9)

181
copyright © 2021 www.onlineprogramminglessons.com For student use only

We then print out the results:

rows = cursor.execute(sql).fetchall()

print out rows
for row in rows:
 print(row)

TO DO:

Join the Orders Item table with the Orders Table . You should print out the item name and description.

Then use a where clause to print out the Order Item for a specified item id.

Inner join on 3 tables

Inner joining of 3 tables makes it much easier to print out information for all 3

tables all at once.

The syntax of inner join of 3 tables:

SELECT column_name(s)

FROM ((table1

INNER JOIN table2

ON table1.column_name = table2.column_name)

INNER JOIN table3

ON table1.column_name = table2.column_name);

('Sue Jones', 1, 2, 3.9)
('Sue Jones', 1, 3, 8.850000000000001)

182
copyright © 2021 www.onlineprogramminglessons.com For student use only

The column names can be from either table. The join on, usually connects

primary keys to foreign keys. The tables can be in any order.

Using inner join we can join the Customer table to the Items table so we can print

the customer and order item for each order in the order table.

sql = """SELECT Orders.OrderID,Customers.Name, Items.Name,Orders.Quantity,Orders.Total
FROM ((Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)
INNER JOIN Items ON Orders.ItemID = Items.ItemID);
"""

We then print out the results:

rows = cursor.execute(sql).fetchall()

print out rows
for row in rows:
 print(row)

To do

Use a where clause to select Customer name and/or item name.

CONSTRAINTS

Constraints prevent the data base from changing if the following transactions

involving primary keys and foreign keys are violated.

(1) You cannot enter a row into a table of the foreign keys does not exist.

(2) You cannot delete a row from a table if those foreign keys are used in another

table

(1, 'Sue Jones', 'Apples', 2, 3.9)
(1, 'Sue Jones', 'Oranges', 3, 8.85)
(1, 'Mary Berry', 'Apples', 4, 7.8)
(1, 'Mary Berry', 'Oranges', 2, 5.9)

183
copyright © 2021 www.onlineprogramminglessons.com For student use only

For constraints to work in sqlite you need to activate them right after you

connect to the database.

 conn.execute("PRAGMA foreign_keys = 1")

 like this:

connect to data base
conn = sqlite3.connect("lesson11.db")
activate constraints
conn.execute("PRAGMA foreign_keys = 1")

Here is our test program to test constraints:

In this situation we are deleting itemID primary key 1 from the item table that is

used in the Orders Table as a foreign key.

test constraints

delete a row where the primary key is used in another table as a foreign key
itemid = 1
sql = "DELETE FROM Items WHERE ItemID = ?"
cursor.execute(sql,(itemid,))

In this next situation we are inserting an unknown itemID foreign key 5 for the

Item table that is used in the Orders table.

insert data into orders with an unknown itemID

sql = "INSERT INTO orders

 (OrderId,CustomerId,ItemId,Quantity,Total) VALUES (?,?,?,?,?)"

cursor.execute(sql,(1,8,5,2,price1*2))

 cursor.execute(sql,(itemid,))

sqlite3.IntegrityError: FOREIGN KEY constraint failed

184
copyright © 2021 www.onlineprogramminglessons.com For student use only

Lesson 11 Homework Part2

Create a Database that has a Videos table

A Videos table will have a VideoID, Title, Price and Quantity in stock.

The VideoID should be a INTEGER Primary Key Auto Increment

Title is TEXT, Price is REAL and Quantity is INTEGER. Make all fields NOT NULL.

Make a Clients table that has a ClientID, name TEXT and an INTEGER representing

number of books that have been rented out. The ClientID should also be a

INTEGER Primary Key Auto Increment.

Make a table called Rentals that has a RentalID and two columns to store the

primary keys of the Video table and Client table as INTEGER NOT NULL foreign

keys. Also make a column to store true (1) or false (0) where true means the

video is rented out, and false meaning the video has been returned.

Optionally make classes Video, Client and Rental to move the data in and out of

the data base.

Make a main program that will connect to the database, create the tables and

insert some videos to rent and allow clients to rent out videos and return them.

Make a menu the displays videos to be rented out, rent a video, return a video

and display videos that have been rented out and list clients. Do not display video

to be rented out if their quantity is zero. Do not rent videos that have quantity 0.

When a video is rented out decrement the quantity in the video table and

increment the number of books rented out in the client table. Store the rental

status in the rental table as rented out. When the book is returned set the status

in the rental table as returned, decrement the quantity on the client table and

increment the quantity in the video table.

 cursor.execute(sql,(1,8,5,2,price1*2))

sqlite3.IntegrityError: FOREIGN KEY constraint failed

185
copyright © 2021 www.onlineprogramminglessons.com For student use only

 Call your py file lesson11b.py or videostore.py and your data base lesson11b.db

or videostore.db. Make sure you use constraints.

Your videostore data base diagram may look like this:

 Videos Table

Rentals Table

 Clients Table

VideoID PK
Title

Price

Quantity

RentalID

VideoID FK
ClientID FK

Rented

ClientID PK

Name
NumberVideos

186
copyright © 2021 www.onlineprogramminglessons.com For student use only

PYTHON PROJECTS

This is where all the things you learned previously connect together. Now

everything will make sense and understanding will be enforced. You previously

learned what all the programming statements do, and now it is the time you use

them. Recapping: when you want to store some values you use a variable. When

you want to print a value to the screen you use a print statement. When you

want to get a value from the key board you use a input statement. When you

want to store a sequence of values (like a shopping list) you use a list. When you

want to store a sequence of unique items you want to use a set. When you want

to store a value associated with another value (like a phone book) you use a

dictionary. When you want to group a bunch of programming statements

together to do a certain task you use a function. To return more than one value

from a function you use a tuple. To store common variables together and do

operations on them you use a class. Python program structure to follow for

projects:

 Python Program Layout

Class Definitions

Import statements

Constants

Global variables

Function Definitions

Main Function

187
copyright © 2021 www.onlineprogramminglessons.com For student use only

Project 1 Spelling Corrector

Read in a text file with spelling mistakes, find the incorrect spelled words and

offer corrections. The user should be able to choose the correct choice from a

menu. Look for missing or extra letters or adjacent letters on the keyboard.

Download a word dictionary from the internet as to check for correct spelled

words. Use a dictionary to store the words. Store the correct spelled file.

Project 2 Math Bee

Make a Math bee for intermixed addition, subtraction, multiplication and division

single digit questions. Use random numbers 1 to 9 and use division numbers that

will divide even results. Have 10 questions and randomly generate numbers and

operations. . Keep track of the users score. You will need to use the python

random class to generate random numbers.

You first need to import using:

import random

Then you call randint function from the random class, giving a start value and a

end value.

 x = random.randint(1,10)

Project 3 Quiz App

Make a quiz app with intermixed multiple choice, true and false questions.

You should have a abstract Question super class and two derived classes

MultipleChoice and TrueAndFalse. Each derived class must use the abstract

methods to do the correct operation. An abstract method is a method that has no

code and just contains a pass statement. An abstract class only contains abstract

methods. An abstract class cannot be instantiated. Store all questions in one file.

Store the results in another file indicating the quiz results.

188
copyright © 2021 www.onlineprogramminglessons.com For student use only

Project 4 Phone Book App

Make a phone book app that uses a dictionary to store names and phone

numbers. Use the name as the dictionary key and the phone number as the

dictionary value. You should be able to view, add, delete contacts as menu

operations. Contact names need to be displayed in alphabetically orders order by

name. Offer to lookup contacts by name or by phone number. Contacts should be

stored in a CSV file or SQL Contact Table, read in when app runs, and saved when

the app finished running. Use a separate function to make a selection menu that

returns a user selection. Bonus: View contacts by name or phone number. You

may want to make a optional Phone Book class.

Project 5 Address Book App

Make a address book app that uses a dictionary to store names and contact

information. You need a Contact class to store name and address, email and/or

phone number. Store the Contacts in a Dictionary. Use the name as the

dictionary key and the Contact object as the dictionary value. You should be able

to view, add, delete contacts as menu operations.

Make a menu in a separate function that returns the user selection.

1. List contacts by name

2. List contacts by address, email or phone

3. Add contact

4. Search for Contact by name

5. Search for Contact by address, email or phone

6. Remove Contact by name

7. Remove Contact by address, email or phone

8. Exit

Contacts need to be displayed in alphabetically order by name or address.

Contacts should be stored in a CSV file or SQL table , read when app runs, and

saved with app finished running.

You can use the sort or sorted list function and a lambda function to sort the list

of contacts as follows:

189
copyright © 2021 www.onlineprogramminglessons.com For student use only

sort the list in place ascending order by email
contacts.sort(key=lambda x: x.email)

return a new list ascending order by email
contacts = sorted(contacts, key=lambda x: x.email)

You can use the reverse=True argument to sort the list in descending order

sort the list in place descending order by email
contacts.sort(key=lambda x: x.email, reverse=True)

return a new contact list, using the sorted() list function
descending order by email
contacts = sorted(contacts, key=lambda x: x.email, reverse=True)

. You may want to make a optional Address Book class.

Project 6 Appointment App

Make an Appointment book app that uses a dictionary to store Appointments.

You need an Appointment class to store name, description, date and time. You

should be able to view, add, delete, scroll up and down appointments as menu

operations. Appointments need to be displayed in chronological orders.

Appointments should be stored in a CSV file or SQL table, read when app runs,

and saved with app finished running. Save the appointments as csv files. Use a

separate function to make a selection menu that returns a user selection. You will

also need to use the python datetime class. The datetime class store both date

and time.

You first import the datetime class using

import datetime

You can get the date and time for today with

dt = datetime.datetime.now()

190
copyright © 2021 www.onlineprogramminglessons.com For student use only

You can print out the date object like this

print(dt) # 2018-07-31 13:41:33.332930

Or format it like this using the strftime function like this:

print(dt.strftime("%a %b %d %H:%M:%S %Y"")) # Tue Jul 31 13:41:33 2018

You can make your own date time object from known year, month, day, hours,

minutes and seconds like this

d = datetime.datetime(year, month, day, hour, minute, second)

You can extract the date and times from the datetime object using the datetime

object getter functions

year = dt.year

month = dt.month

day = dt.day

hour = dt.hour

minute = dt.minute

second = dt.second

You can convert a string to a date time object using the strptime function like this

using the input format : "%Y-%m-%d %H:%M:%S"

dt = datetime.datetime.strptime("2018-07-31 13:41:33", "%Y-%m-%d

%H:%M:%S")

print(dt) # 2018-07-31 13:41:33

You can compare date objects using the standard compare operators < and >

print (dt > dt2) # False

print (dt < dt2) # True

191
copyright © 2021 www.onlineprogramminglessons.com For student use only

You can subtract 2 dates like this using the subtract - operator and returns days

and time

print (dt - dt2) # -1 day, 23:33:50.608299

You may want to make a optional AppointmentApp class.

Project 12 Grocery Store App

Make a Grocery Store App where Customers can purchase items. Preferred

customers get a discount. After all items have been entered a receipt is printed.

Step 1: Item class

Make a Item class with private variables product name, quantity ordered, price

and discount price.

If the item is not a discount item then the discount price is 0.

Make a constructor that will receive the item name, price and discount price.

Make getters and setters for each instance variable

Make a formatted __str__() method that will return item name price quantity

discount price surrounded by round brackets and extension price like this:

Carrots 2 1.29 (.89) 2.58 (1.78)

Step 2: GroceryStore class

Make a GroceryStore class that will store items bought, total items bought, total

the order and print out a receipt.

The Grocery Store class will store the customer’s name, and all items bought in an

array list.

The Grocery store constructor will receive the customer name.

The grocery store will have a method to add an item object.

192
copyright © 2021 www.onlineprogramminglessons.com For student use only

The Grocery store class will have a Get Total method, to be used to print out the

receipt

The grocery store class will also print out a receipt using the printReceipt method.

All instance variables are private and cannot have any getters and setters.

Step 3: DiscountStore class

The DiscountStore class inherits from the GroceryStore class

If the customer is a preferred customer then the DiscountStore class is used.

The DiscountStore class has methods to calculate discount percent, and count of

discount items. The discount class will override the getTotal class of the grocery

store class.

The discount store class will also print a receipt showing the number of discount,

items and the discount percent obtained.

Step 4 GroceryApp class.

The GroceryApp class is the main class where the cashier enters the customer

items, bought.

The cashier will ask if the customer is a preferred customer. if it is a preferred

customer then the DiscountStore class is used else us the Grocery Store class

Is used.

The cashier will enter the items bought. Once all items have been enters then

the receipt is printed out.

You will need to store a list of products in a file or SQL table to simulate the

entering of products.

The file will be like this:

Customer name

Preferred or not preferred

Number of products

Item name, quantity, price, discount price

193
copyright © 2021 www.onlineprogramminglessons.com For student use only

Example file:

Tom Smith

Preferred

3

Carrots , 2.49, 1.78, 2

Fish,12.67, 11.89,3

 Milk 4.89.3.75, 2

The main method will have a menu as follows:

(1) read order file

(2) print receipt

 (3) store receipt to a file

(4) exit program

END

