
copyright © 2021 www.onlineprogramminglessons.com For student use only
 1

Making a Bookstore App using React Last update April 9, 2021

Lesson 1 Introduction to React

Lesson 2 React Components

Lesson 3 Bookstore App Components

Lesson 4 Displaying Books for Sale

Lesson 5 Ordering Books and Shopping Cart

Lesson 6 Checkout Order

Lesson 7 Thank you Page and storing orders in a Firebase data base

Conventions used in these lessons:

bold - headings, keywords, code

italics - code syntax

underline - important words

copyright © 2021 www.onlineprogramminglessons.com For student use only
 2

Lesson1 Introduction to React

React let's you create web pages using components. Components contain data

values known as states. Components also send data known as props (properties)

to other components. Components display web content on the screen, using its

render method. Components are like building blocks. A web page using React

components can be visualized like this:

Component

 states

Component

 states

Component

 states

Component
props

states

 Index.html

Index.html (show result of index.js in a div)

props

props props

Index.js (call App component)

 props

copyright © 2021 www.onlineprogramminglessons.com For student use only
 3

Installing React

You need node.js and NPM to install React

Step 1 Install node.js

https://nodejs.org/en/download/

 if you all ready have node js installed on your computer you may want to reinstall

to the latest version. React only work on node.js version s 10 or greater.

Node.js is an open source server environment.

Node.js allows you to run JavaScript on the Node.js server.

NPM is used to create and run React apps and to install additional modules.

NPM is a package manager for Node.js packages and modules.

The NPM program is installed on your computer when you install Node.js

React uses node.js to create react apps and also uses modules provided by

node.js

Step 2 install create-react-app

From the start menu under Windows System open up a Command prompt

https://nodejs.org/en/download/

copyright © 2021 www.onlineprogramminglessons.com For student use only
 4

Navigate to the root of your drive

C:\Users\ADMIN>cd ..

C:\Users>cd ..

In the Command Prompt make a folder called reactPrograms using mkdir

command

 mkdir reactPrograms

(do not put any spaces in your folder name)

Navigate to this folder

 cd reactPrograms

copyright © 2021 www.onlineprogramminglessons.com For student use only
 5

In the command prompt window type on:

npm install -g create-react-app

The create-react app command initialize the folder so you can create react apps.

Step 3 create react app

On the windows prompt command line type

npx create-react-app bookstore_app

It will start out like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 6

If successful you will end up something like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 7

Step 4: run book store app

 cd bookstore_app

 npm start

You will get something like this:

Step 5 view react bookstore app

Start your web browser at localhost: 3000

http://localhost:3000/ actually is calling http://localhost:3000/index.html

Usually this is an automatic process, react usually automatically starts the web

browser opened at localhost:3000. If it does not start automatically then go to

your web browser ant type localhost:3000 in the address bar.

http://localhost:3000/

copyright © 2021 www.onlineprogramminglessons.com For student use only
 8

You should get something like this:

BookStore app file structure

The Bookstore App has many created files. The public folder contains index.html

what the web browser runs where as the src folders contains the index.js file that

is used to display the web content rendered from the react components. The

node_modules contain all the modules that react will use. (too many files too

show.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 9

Basic Folder Structure Explained

1. package.json: This File has the list of node dependencies which are needed.

2. public/index.html: When the application starts this is the first page that is
loaded. This will be the only html file in the entire application since React is
generally written using JSX which I will explain later. Also, this file has a line
of code <div id=”root”></div>. All the application components are loaded
into this div.

3. src/index.js: This is the javascript file corresponding to index.html. This file
has the following line of code which is used to call App component to
display. ReactDOM.render(<App />, document.getElementById(‘root’));
The above line of code is telling that App Component to be loaded into an
html div element with id root located into the index.html file.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 10

4. src/index.css: The CSS file corresponding to index.js.

5. src/App.js : This is the file for App Component. App Component is the main
component in React which acts as a container for all other components.

6. src/App.css : This is the CSS file corresponding to App Component

7. build: This is the folder where the built files are stored. React Apps can be
developed using either JSX, or normal JavaScript itself, but using JSX
definitely makes things easier to code for the developer :). But browsers do
not understand JSX. So JSX needs to be converted into javascript before
deploying. These converted files are stored in the build folder after
bundling and minification.

Here are the index.html. index.js and App.js files created by React. The App.js file

renders the webpage contents and uses index.js to send it to the index.html file to

be displayed in an div element.

// index.html

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <meta name="theme-color" content="#000000" />
 <meta
 name="description"
 content="Web site created using create-react-app"
 />
 <link rel="apple-touch-icon" href="%PUBLIC_URL%/logo192.png" />
 <!--
 manifest.json provides metadata used when your web app is installed on a
 user's mobile device or desktop.
 See https://developers.google.com/web/fundamentals/web-app-manifest/
 -->
 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />
 <!--
 Notice the use of %PUBLIC_URL% in the tags above.
 It will be replaced with the URL of the `public` folder during the build.
 Only files inside the `public` folder can be referenced from the HTML.

 Unlike "/favicon.ico" or "favicon.ico", "%PUBLIC_URL%/favicon.ico" will
 work correctly both with client-side routing and a non-root public URL.
 Learn how to configure a non-root public URL by running `npm run build`.
 -->

copyright © 2021 www.onlineprogramminglessons.com For student use only
 11

<title>React App</title>
 </head>
 <body>
 <noscript>You need to enable JavaScript to run this app.</noscript>
 <div id="root"></div>
 <!--
 This HTML file is a template.
 If you open it directly in the browser, you will see an empty page.

 You can add webfonts, meta tags, or analytics to this file.
 The build step will place the bundled scripts into the <body> tag.

 To begin the development, run `npm start` or `yarn start`.
 To create a production bundle, use `npm run build` or `yarn build`.
 -->
 </body>
</html>

The index.js file basically just shows the react content by rendering the React App

component image.

// Index.js

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import reportWebVitals from './reportWebVitals';

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
);

// If you want to start measuring performance in your app, pass a function
// to log results (for example: reportWebVitals(console.log))
// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals();

App.js for now just displays the React logo

// App.js

import logo from './logo.svg';
import './App.css';

copyright © 2021 www.onlineprogramminglessons.com For student use only
 12

function App() {
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
);
}

export default App;

Here is the program code flow

App.js

function App()
{

}

Index.js

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
);

index.html

<div id="root"></div>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 13

The index.js file renders the App component using the ReactDOM.render
function.

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
);

Using the <App /> component and a reference to the root div located in the

index.html file.

React.StrictMode is used for highlighting potential problems in an application.

document.getElementById('root') is the element that is used to display the App.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 14

Lesson2 React Components

React components are used to build web pages. A Component display web page

content. Components can be made from JavaScript classes or JavaScript functions.

React Components made from JavaScript classes are known as React Class

Components.

React Components made from JavaScript functions are known as React Function

Components.

A Component combines HTML tags and JavaScript to render content.

A React Class Component has a explicit render method where as a React Function

Component does not and implicitly renders. The render method in the React Class

Component returns HTML tags converted to JavaScript code that can be rendered.

Like wise the React Function Component returns HTML tags converted to

JavaScript code that can also be rendered. Rendering means displaying HTML tags

on a web browser.

Here is a simple React Class Component that renders the message “I like React”

using a <h1> tag.

import React, { Component } from 'react';

class MyApp extends Component {
 render() {
 return (

 <div>
 <h1>I Like React</h1>
 </div>

);
 }
}

copyright © 2021 www.onlineprogramminglessons.com For student use only
 15

Here is React Component function that renders "I like React” also inside a <h1> tag.

function MyApp() {
 return (
 <div>
 <h1>I like React</h1>
 </div>
);
}

The return keyword return’s the HTML tags converted to JavaScript code that can

render content.

Here is a functional component using the arrow function definition that renders "I

like React”. The arrow function is similar to the JavaScript function but omits the function

keyword and the function code follows the => (arrow). They both do the same thing that

renders "I like React” in a <h1> tag. The arrow function is just a short compact form of a

JavaScript function definition.

const MyApp = () => {
 return (
 <div>
 <h1> I Like React </h1>
 </div>
);
}

We use the const keyword rather than the let or var keyword because a function

is considered a constant. const means code that will not be changed.

JavaScript XML (JSX)

The HTML code in the Components render method is known as JSX. JSX is a

syntax extension to JavaScript that produces React “elements” that is used for

rendering content.

JSX allows us to write HTML tags directly within the JavaScript code. The JSX is

translated into JavaScript code down to React.createElement() calls.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 16

For example The html code:

 <div>
 <h1> I like React</h1>
 </div>

Would be translated into

React.createElement(
 "div",
 null,
 React.createElement(
 "h1",
 null,

 " I like React"
)
);

JSX always need a top html tag element like <div>, if you want to include
additional html tags.

 <div>
 <h1> I like React</h1>
 <h1> I like Programming</h1>
 </div>

Rendering a Component

The ReactDOM.render() function is used to render a component.

The ReactDOM.render() function takes two arguments, a HTML code or React
components and an HTML element.

The purpose of the render function is to display the specified HTML code inside
the specified HTML element.

You can render a component in the index.js file by specifying the component

name as a HTML tag and calling the ReactDOM.render method.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 17

ReactDOM.render(
 <React.StrictMode>
 <MyApp />
 </React.StrictMode>,
 document.getElementById('root')
);

Alternately you can render JSX hardcoded

ReactDOM.render(<div>
 <h1> I like React</h1></div>
, document.getElementById('root'));

Or equate JSX to a const variable and render it.

const myElement = <div><h1> I like React</h1></div >;
ReactDOM.render(
 myElement

, document.getElementById('root'));

props

Props sends data to other components as parameters. Props stand for properties.

Components can send props and receive props. Props cannot be changed once

they are received and are read only.

In this example we send a name as a prop to the MyApp component.

<MyApp name=”Tom Smith” />

Here is the complete render example sending an prop to a app

ReactDOM.render(
 <React.StrictMode>
 <MyApp name=”Tom Smith” />
 </React.StrictMode>,
 document.getElementById('root')
);

copyright © 2021 www.onlineprogramminglessons.com For student use only
 18

The MyApp class component receives the props and renders the name from the

props object members.

The name value from the props object is placed in curly brackets like this

{pops.name} and the <h2> is now this:

 <h2>My Name is {props.name} </h2>

Our MyApp class component is now this:

import React, { Component } from 'react';

class MyApp extends Component {
 render() {
 return (
 <div>
 <h1>I like React</h1>
 <h2>My Name is {props.name}</h2>
 </div>
);
 }
}

Passing props to class components that have constructors

A constructor in a class component is used to receive prop and initialize other

variables. If a class component has a constructor then it must receive props.

import React, { Component } from 'react';

class MyApp extends Component {

 constructor(props) {
 super(props);
 }

copyright © 2021 www.onlineprogramminglessons.com For student use only
 19

 render() {
 return (

 <div>
 <h1>I like React</h1>
 <h2>My Name is {props.name}</h2>
 </div>

);
 }
}

functional components also receive props

function MyApp(props) {
 return (
 <div>
 <h1>I like React</h1>
 <h2>My Name is {props.name}</h2>
 </div>
);
}

LESSON2 Homework Question 1

Create the Name App in React. When you call the App component from index.js

send the App Component the name, city and states as props. In the App

component controller uses the received props display the name, state and city for

rendering.

Note:

Although the web browser will automatically update when you make changes to

your react code. there may be instances where you want to start fresh.

To return control back to the command prompt: type ctrl C [^C]

Terminate batch job (Y/N)? Y

And you will have the command line back again.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 20

To restart the app type:

npm start

You should get something like this:

States

A class component has a state object that allow a class component to store
values. Here is a state object that stores information about a person.

this.state = {
 name: "Tom Smith",
 city: "Atlanta",
 state: "Georgia"
 };

When the state object changes, the component re-renders by calling the render
method. Only class components can have states. Functional components do not
have states.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 21

reading state values

You can read values from the state object using the state object reference and the
member variable, and embed into the HTML tag’s like this

 <h1>Name: {this.state.name} </h1>

Or use a constant like this

const name = this.state.name

then embed the const value into the HTML tag

 <h1>Name: {name} </h1>

Alternatively you can read all the values from the state object into constant
variables like this

const {name, state, city} = this.state

And then put into the HTML tags like this

 <div>
 <h1>Name: {name} </h1>
 <h1>State: {state} </h1>
 <h1>City: {city} </h1>
 </div>

Changing state values

To change a value in the state object, use the setState method.

When a value in the state object changes, the component will re-render, meaning
that the output will change according to the new value(s).

You will change a state value like this:

this.setState({name: "Sue Jones"});

Here is an example of a class component having a state to store details about a
person. The render method will now display all the information about the person
when it renders.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 22

import React, { Component } from 'react';

class Person extends Component {
 constructor(props) {
 super(props);
 this.state = {
 name: "Tom Smith",
 city: "Atlanta",
 state: "Georgia"
 };
 }
 render() {

const {name, state, city} = this.state

 return (
 <div>
 <h1>Name: {name} </h1>
 <h1>State: {state} </h1>
 <h1>City: {city} </h1>
 </div>
);
 }
}

To use the above Person class it must be called from index.js or another

Component

Todo:

Change index.js so that it calls Person Component rather than App Component

You will need to put import Person from './Person'; at the top of your index.js file.

You do not need to send any values to the person class because it has all the values

initialized in its state.

You should get something like this when you run your program.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 23

Initializing a Component state with props from another component

There may be situation when you want to initialize state data from props. Props

can send data to a component that can be used to initialize it’s state.

For example we can send data to a person component in the index.js and then

the Person component can store this data in its state. The advantage is the props

data that is sent to the Components can be stored in its state where it can be

displayed and changed for later times. Prop data cannot be changed but state

data can.

ReactDOM.render(
 <React.StrictMode>
 <Person name="Tom Smith" city="Atlanta" state="Georgia" />
 </React.StrictMode>,
 document.getElementById('root')
);

The Person Component will receive the props from the index.js file when the

Person component is called. Here is the Person Component that receives props

and stores them it is state.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 24

import React, { Component } from 'react';

class Person extends Component {
 constructor(props) {
 super(props);
 this.state = {
 name: props.name,
 city: props.city,
 state: props.state
 };
 }
 render() {

 const { name, state, city } = this.state

 return (
 <div>
 <h1>Name: {name} </h1>
 <h1>State: {state} </h1>
 <h1>City: {city} </h1>
 </div>
);
 }
}

export default Person;

 Running the program you should get something like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 25

LESSON2 Homework Question 2

Call the App component from index.js, send the name, city and states as props. In

the App component controller send the received props to the Person Component

and have the Person Component to store the name, state and city in its state for

rendering.

You should get something like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 26

Lesson 3 BookStore App Components

We will have the following components:

Component Description

Home Display books for sale

ShoppingCart Display books ordered
Checkout Enter customer details to finalize order

Thankyou Show final order and store order in a Firebase data base

LookupOrders Show previous orders stored in Firebase data base.

A finished Bookstore web page may look like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 27

Our BookStoreApp Components block diagram:

Checkout

Home

ShoppingCart

App

states

Thankyou

Footer

Navigation

OrderLookup

copyright © 2021 www.onlineprogramminglessons.com For student use only
 28

Routing

Our first step is to make the preliminary individual components and then link

them up with navigation buttons. We will use routing to navigate between all

components

You need to install the react-router-dom module from node.js into your

application

Using NPM like this on the command lie

 npm install --save react-router-dom

The next step is to replace all the App.js code with the following code. The App.

Component will provide all the routing between all the other components. It will

use a BrowserRouter Component , a nested Navigation Component and a Switch

Component, and Footer component.

The BrowserRouter handles the routing. The Switch component is used to select

the component to render. We will select between the ShoppingCart, Checkout

and OrderLookup components. The Checkout component will automatically call

the Thankyou page when the Checkout page submit button is pressed. The

Navigation component produces the link buttons. The Footer component

provides the Footer message.

Here is the App.js file that is use for navigation. Replace App.js in your src folder

with this code:

// App.js
import './App.css';
import React, { Component } from 'react';
import { BrowserRouter, Route, Switch } from 'react-router-dom';
import Home from './Home';
import ShoppingCart from './ShoppingCart';
import Checkout from './Checkout';
import Thankyou from './Thankyou';
import Navigation from './Navigation';
import Footer from './Footer';
import OrderLookup from './OrderLookup';

copyright © 2021 www.onlineprogramminglessons.com For student use only
 29

class App extends Component {
 render() {
 return (
 <BrowserRouter>
 <div>
 <Navigation />
 <Switch>
 <Route path="/" component={Home} exact />
 <Route path="/shoppingCart"
 component={ShoppingCart} />
 <Route path="/checkout" component={Checkout} />
 <Route path="/orderlookup" component =
 {OrderLookup} />} />
 <Route component={Error} />
 </Switch>
 <Footer />
 </div>
 </BrowserRouter>
);
 }
}

export default App;

Here is the Navigation component that provides the link buttons. The NavLink
Component provides the Navigation button and the Component to link to. Make a
Navigation.js file and put it into your src folder.

// Navigation.js

 import React from 'react';
 import { NavLink } from 'react-router-dom';

const Navigation = () => {
 return (
 <div>
 <NavLink to="/">| Home </NavLink>
 <NavLink to="/shoppingCart">| Shopping Cart </NavLink>
 <NavLink to="/checkout">| Checkout </NavLink>
 <NavLink to="/orderlookup">| Order Lookup |</NavLink>
 </div>
);
}

export default Navigation;

copyright © 2021 www.onlineprogramminglessons.com For student use only
 30

The Footer component is just used to render the footer message. Make a

Footer.js file and put it into your src folder.

// Footer.js

import React from 'react';

const Footer = () => {
 return (
 <div>
 <p>Copyright (c) 2021 by booksRus.com</p>
 </div>
);
}

export default Footer;

The home Component will display the books for sale, but for now just prints the

message "books for sale". Make a Home.js file and put it into your src folder.

// Home.js

import React, { Component } from 'react';

class Home extends Component {
 render() {
 return (

 <div>
 <h1>Books for Sale</h1>
 </div>

);
 }
}

export default Home;

copyright © 2021 www.onlineprogramminglessons.com For student use only
 31

Lesson3 Homework

Complete the skeleton components ShoppingCart, Checkout, Thankyou,

OrderLookup and Error page. You can make a Functional Component like the

Error Component like this:

// Error.js

import React from 'react';

const Error = () => {
 return (
 <div>
 <p>Error: Page does not exist!</p>
 </div>
);
}

export default Error;

The Shopping Cart Functional Component would look like this:

// ShoppingCart.js
import React from 'react';
const ShoppingCart = () => {
 return (
 <div>
 <h1>Shopping Cart</h1>
 <p>Home page body content</p>
 </div>
);
}
export default ShoppingCart;

Do the same for Checkout, Thankyou and OrderLookup and make the functional

Components and put in your soured file.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 32

A functional component does the same thing a class component does but it is

more simpler to code and uses less overhead for React to execute. We use

functional components just when we need to renders something simple that

does not require props and states

Your src folder should now look like this:

Note:

To return back to the command type ctrl C [^C]

Terminate batch job (Y/N)? Y

And you will have the command line back again.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 33

We can now run the bookstore app:

 npm start

You should see something like this

copyright © 2021 www.onlineprogramminglessons.com For student use only
 34

Lesson4 Displaying Books for Sale

The Home Component will be used to display the books for sale. The App

Component will first read a list of books contained in a json file and the Home

component will display the books for sale in a html table. Storing the books for

display in a json file is a good idea, since we only need to update the json file to

display new books. Here is the bookstore.json file to be stored in the public folder.

{
 "books": [

 {
 "isbn": 123456789,
 "title": "Alice in Wonderland",
 "author": "Lewis Carrol",
 "price": 23.67,
 "image": "book1.jpg"
 },
 {
 "isbn": 876555445,
 "title": "Snow White and Seven Drawfs",
 "author": "Brothers Grimm",
 "price": 14.95,
 "image": "book2.jpg"
 },
 {
 "isbn": 234567544,
 "title": "Peter Pan",
 "author": "Frank Baum",
 "price": 24.95,
 "image": "book3.jpg"
 },
 {
 "isbn": 534536447,
 "title": "Wizard of Oz",
 "author": "J. M Barrie",
 "price": 29.95,
 "image": "book4.jpg"
 }
]
}

copyright © 2021 www.onlineprogramminglessons.com For student use only
 35

The bookstore.json file is stored in the public folder. Put the above

bookstore.json file in the public folder. The public folder will also store the book

images. You should down load 4 book images from the internet, call them

book1.jpg,book2.jpg, bok3.jpg and book4.jpg. Put these jpg file also in the public

folder where the bookstore.json file is. Your public folder should now look like this:

CartItem object (CartItem.js)

The CartItem object is used to store Book and Shopping Cart details. We make a

JavaScript object, to store both the book and cart item details. The book and cart

information is basically the same so we can use the CartItem object for both.

bookstore.json

Book image jpg files

copyright © 2021 www.onlineprogramminglessons.com For student use only
 36

// CartItem.js

function CartItem(isbn, title, price, image, qty, total) {

 this.isbn = isbn;

 this.title = title;

 this.price = price;

 this.image = image;

 this.qty = qty;

 this.total = total;

}

export default CartItem;

to do:

Put the CartItem in a JavaScript file called CartItem.js in the src folder. Make sure

you have export default CartItem; at the end of you file, so that your react

project knows about this file.

CartItem.js

copyright © 2021 www.onlineprogramminglessons.com For student use only
 37

Updating App Component (App.js)

We now update the App Component code to read in the json file that contains the

book. The App Component will store all the data for the book store app. This is a

better approach rather than having each component store its own data. The App

component will send the data to each component via props. The App component

will also handle the buy and remove button clicks.

App Component Constructor App.js

The App Component Constructor stores the books, cart and customer as state

variables. Where the books state variable is an array to store the books from the

book data loaded from the bookstore.json file. The cart state variable is an array

to store the shopping cart item for books that have been ordered. The customer

state variable is an object that will store the customer details. The App

constructor will also receives props. The props are read only values that cannot be

changed.

constructor(props) {
 super(props)
 this.state = {
 books: [],
 cart: [],
 customer: {}
 };
 }

To do: add constructor to your App component (App.js)

Loading the book data from the bookstore.json file

Next we load in the json books file (bookstore.js) that has the books to display for

sale. The componentDidMount method is used to load the books from the

bookestore.json file, it is invoked immediately after a component is mounted. It

uses the JavaScript fetch function to load the bookstore.json file.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 38

 // load books
 componentDidMount() {
 fetch('./bookstore.json')
 .then(response => response.json())
 .then(data => {
 this.setState({ books: data.books });
 })
 }

Once the data is read from the bookstore.json file the book store data is sent to

the books array by calling the setState function. When the setState function is

called, the render method is automatically called to display the books in a html

table by calling the Home component.

To-do: Add the componentDidMount() methods to the App Component. Put the

componentDidMount() method right after the App Component Constructor.

Download 4 book images from the internet, call them book1.jpg, book2.jpg,

book3.jpg and book4.jpg. Put these jpg file’s in the public folder.

Updating the App Component render method

We need the App component to send the book data to the Home Component as a

prop so we can display the books for sale.

 <Route path="/" render={() => <Home books={this.state.books} />} exact />

When we send a prop to a Component using Routing we use render rather than

component = {Component name}

copyright © 2021 www.onlineprogramminglessons.com For student use only
 39

The complete App component render method will now look like this

 render() {
 return (
 <BrowserRouter>
 <div>
 <Navigation />
 <Switch>
 <Route path="/" render={() => <Home books={this.state.books} />} exact />
 <Route path="/shoppingCart" component={ShoppingCart} />
 <Route path="/checkout" component={Checkout} />
 <Route path="/orderlookup" render={() => <OrderLookup />} />
 <Route component={Error} />
 </Switch>
 <Footer />
 </div>
 </BrowserRouter>
);

}

To do:

Update the render method in the App.js as shown above. Make sure you still have

export default App; at the bottom of your App.js file.

Here is the Complete App.js file:

// App.js
import './App.css';
import React, { Component } from 'react';
import { BrowserRouter, Route, Switch } from 'react-router-dom';
import Home from './Home';
import ShoppingCart from './ShoppingCart';
import Checkout from './Checkout';
import Thankyou from './Thankyou';
import Navigation from './Navigation';
import Footer from './Footer';
import OrderLookup from './OrderLookup';

class App extends Component {

 constructor(props) {
 super(props)
 this.state = {
 books: [],
 cart: [],
 customer: {}
 };
 }

 componentDidMount() {
 fetch('./bookstore.json')
 .then(response => response.json())
 .then(data => {
 this.setState({ books: data.books });
 })
 }

copyright © 2021 www.onlineprogramminglessons.com For student use only
 40

 render() {
 return (
 <BrowserRouter>
 <div>
 <Navigation />
 <Switch>
 <Route path="/" render={() => <Home books={this.state.books} />} exact />
 <Route path="/shoppingCart" component={ShoppingCart} />
 <Route path="/checkout" component={Checkout} />
 <Route path="/orderlookup" render={() => <OrderLookup />} />
 <Route component={Error} />
 </Switch>
 <Footer />
 </div>
 </BrowserRouter>
);
 }
}

export default App;

 rendering books data

We now update Home Component (Home.js) to display the book data Display

books for sale. The first thing we do is add a constructor to receive the book data

as a prop from the App component.

 constructor(props) {
 super(props)
 }

To do: Add the above constructor to your Home Component Home.js

The next thing we do we update the render method to display the book data in
HTML tables. All the book data is sent from the App component as a prop. The
book data was originally stored in a json file bookstore.json. The App component
reads in the bookstore.json file in its componentDidMount() method and then
stores the book data in its state as a array of books. The books array stores
individual book objects having properties: isbn, title, author, price and image. The
book objects are made automatically from the bookstore.json file when it is
loaded in. You can visualize the data flow like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 41

Here is the Home component render method:

render() {

 return (

 <div>
 <h1>Buy Books</h1>

{
<table>
 <thead>
 <th>ISBN</th>
 <th>Title</th>
 <th>Author</th>
 <th>Price</th>
 <th>Image</th>
 <th>Action</th>
 </thead>
<tbody>

App Component (App.js)
constructor(props)

componentDidMount()

(reads in book data from

bookstore.json file)

render()

Home Component (Home.js)

constructor(props)

(receive book data from App

component as a prop

render() (displays books)

State:

Books[]

(store book data)

prop

Bookstore.json

bookdata

copyright © 2021 www.onlineprogramminglessons.com For student use only
 42

 {
 this.props.books.map((book)=> {
 return (
 <tr>
 <td>{book.isbn}</td>
 <td>{book.title}</td>
 <td>{book.author}</td>

 <td>${book.price.toFixed(2)}</td>
 <td>

 </td>
 <td>
 <button onClick={(e) =>
 this.handleBuyClick(book.isbn, e)}>Buy Book</button>
 </td>
 </tr>
);
 })
 }
 </tbody>
</table>
}
</div>
)
}

To do: Add the above render function to your Home component (Home.js) .
Make sure you still haven export default Home; at the bottom of you Home.js
file.

You should now run the app

 npm start

You should get something like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 43

Here is the complete Home Component Home.js file:

// Home.js
import React, { Component } from 'react';

class Home extends Component {

 constructor(props) {
 super(props)
 }

copyright © 2021 www.onlineprogramminglessons.com For student use only
 44

 render() {
 return (
 <div>

 <h1>Buy Books</h1>
 {
 <table>
 <thead>
 <th>ISBN</th>
 <th>Title</th>
 <th>Author</th>
 <th>Price</th>
 <th>Image</th>
 <th>Action</th>
 </thead>
 <tbody>
 {
 this.props.books.map((book) => {
 return (
 <tr>
 <td>{book.isbn}</td>
 <td>{book.title}</td>
 <td>{book.author}</td>

 <td>${book.price.toFixed(2)}</td>
 <td>

 </td>
 <td>
 <button onClick={(e) =>
 this.handleBuyClick(book.isbn, e)}>Buy Book</button>
 </td>
 </tr>
);
 })
 }
 </tbody>
 </table>
 }
 </div>
)
 }

}

export default Home;

Lesson 4 Homework

Add styling to the html table in the App.css file.

You can style tables like this:

td, th {
 border: 1px solid blue;
}

copyright © 2021 www.onlineprogramminglessons.com For student use only
 45

table {
 table-layout: fixed;
 width: 80%;
 border-collapse: collapse;
 border: 3px solid blue;
 text-align: center;
 margin: auto
}

You should get something like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 46

Lesson 5 Ordering Books and Shopping Cart

The App Component stores the books for sale, shopping cart and customer data

in its state object.

Here is the App Component constructor and state object:

constructor(props) {
 super(props)
 this.state = {
 books: [],
 cart: [],
 customer: {}
 };

}

Buying Books

The App Component has a handleBuyClick method that is used to store the

ordered books in the cart member of the state object. The handleBuyClick

method is called by the Home Controller when the buy book button is clicked.

Here is the handleBuyClick(isbn) method:

 // buy button clicked
 handleBuyClick(isbn) {
 alert("buy: " + isbn);

 for (let i = 0; i < this.state.books.length; i++) {
 let book = this.state.books[i];

 if (book.isbn === isbn) {
 this.setState({
 cart:
 this.state.cart.concat
 (new CartItem(book.isbn, book.title,
 book.price, book.image, 1, book.price))
 });

 }
 }
 }

copyright © 2021 www.onlineprogramminglessons.com For student use only
 47

When the handleBuyClick method is called by the Home Controller the books
are looked up by the isbn number, then a new cart item is instantiated (created)
with the book data. The newly created cartItem is added to the cart.

Note we have used cart concat rather than cart push.

//this.state.cart.push(new CartItem(book.isbn, book.title,
// book.price, book.image, 1, book.price));

Todo: Type in or copy/paste and put the handleBuyClick(isbn)
In App.js right after the componentDidMount() method

You also need to put the CartItem import at the top of the App.js fie

import CartItem from './CartItem';

Sending the props to the Home Controller

The App Component in a route sends a reference to the book data as a as books
prop and a reference to buy book button event handler to the Home
component as a onClick prop. Again we use render rather than component when
we send props to a component when using a router.

<Route path="/" render={() => <Home books={this.state.books}
onClick={(i) => this.handleBuyClick(i)} />} exact />

This is the reference to the book data books prop

 books={this.state.books}

This is the reference to buy book button event handler onClick prop

 onClick={(i) => this.handleBuyClick(i)} />}
.

Todo: update the App component render method with the onClick prop.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 48

Handling the BuyButton click

The Home Component uses the book data stored in the App Controller to display
the books for sale. The Home Component renders a Buy Book button that is used
to buy a book when it is clicked. The Home Component has received a reference
to the handleBuyClick method located in the App Controller as a onClick prop.

The Home component uses the reference to the handleBuyClick method of the

App component to notify the App component to store the book selected when a

buy button is clicked on.

The home component references the handleBuyClick function reference as a
received onClick prop in its render method.

 <td>
 <button onClick={(e) => this.props.onClick(book.isbn, e)}>Buy Book</button>
 </td>

Note: the button component onClick handler calls the handleBuyClick
method using this.props.onClick(book.isbn, e) when the button is
clicked.

To do: update this button tag in your Home Controller

When the buy button is clicked the isbn number is sent to the handleBuyClick
function located in the App component. The App Controller uses the isbn number
to locate the book data and then store a new cart item in the shopping cart.

App Controller Home Controller

handleBuyClick BuyButton

prop

Buy book

copyright © 2021 www.onlineprogramminglessons.com For student use only
 49

Shopping Cart Component

The shopping cart displays the books selected for purchase as well as total of the

order.

The App Component sends the cart state member to the Shopping cart

component as a cart prop so the books in the shopping cart can be displayed.

Todo: You need to update the Shopping cart router so that it sends the cart to the

Shopping Cart Component.

<Route path="/shoppingCart" render={() => <ShoppingCart cart={this.state.cart} />}/>

Here is the complete Shopping Cart Code

// ShoppingCart.js

import React, { Component } from 'react';

class ShoppingCart extends Component {

 constructor(props) {
 super(props)

}

// display shopping Cart
render() {
 return (
 <div>
 <h2>Your Shopping Cart</h2>
 {
 <table>
 <thead>
 <th>ISBN</th>

<th>Title</th>
<th>Price</th>
<th>Image</th>
<th>Quanity</th>
<th>Total</th>
<th>Action</th>

 </thead>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 50

 <tbody>
 {
 this.props.cart.map((item) => {
 return (
 <tr>
 <td>{item.isbn}</td>
 <td>{item.title}</td>

 <td>${item.price.toFixed(2)}</td>
 <td>
 <img src={item.image}
 height='100' width='100' alt={item.image} />
 </td>
 <td>{item.qty}</td>

 <td>${parseFloat(item.total).toFixed(2)}</td>
 <td><button onClick={(e) =>
 this.props.onClick(item.isbn, e)}>
 Remove Book</button>
 </td>
 </tr>
);
 })
 }
 </tbody>
 </table>
 }
 </div>
)
}
}

export default ShoppingCart;

App Controller ShoppingCart Controller

State: cart Display

Shopping Cart

prop

Buy book

copyright © 2021 www.onlineprogramminglessons.com For student use only
 51

to do:

Update the shopping cart code.

When you buy a book the shopping cart should look like this.

Removing Books

The App Controller has the handleRemoveClick method to remove previous

ordered books. The Shopping cart has a Remove Buy button that will remove a

book if it is clicked.

The handleRemoveClick function receives the isbn number from the shopping

cart, when the Remove button is clicked. Here is the handleRemoveClick method
located in App Controller.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 52

 // remove button clicked for shopping cart
 handleRemoveClick(isbn) {
 alert('remove: ' + isbn);

 for (let i = 0; i < this.state.cart.length; i++) {

 let item = this.state.cart[i];
 if (item.isbn === isbn) {
 let newcart = this.state.cart; // copy
 newcart.splice(i, 1);
 this.setState({ cart: newcart }); // render refresh
 break;
 }

 }
 }

Basically when the isbn number is received it is searched for in the cart array and

then removes from the cart when found.

To do: Type in or copy/paste in the handleRemoveClick method and put in App
Controller right below the handleBuyClick method.

Handling the RemoveButton click

The App component sends a reference to the handleRemoveClick method to the

ShoppingCart component as a onClick prop.

<Route path="/shoppingCart" render={() => <ShoppingCart

cart={this.state.cart} onClick={(i) => this.handleRemoveClick(i)} />}/>

To do: update the shoppingCart route in the App component render method

The ShoppingCart receives the reference to the handleRemoveClick method as

a onClick prop.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 53

The received props object contains the onClick member that has the reference to

the handleRemoveClick function located in the App component.

The Shopping Cart onClick event handler will send the isbn number of the book as

well as the event e to the App component handleRemoveClick function.

<button onClick={(e) => this.props.onClick(item.isbn, e)}>Remove

Book</button>

Note: the button component onClick handler calls the removeBuyClick
method using this.props.onClick(book.isbn, e) when the button is
clicked.

The Shopping cart will look like this when the book is removed:

App Controller ShoppingCart Controller

handleRemoveClick RemoveButton

prop

Buy book

copyright © 2021 www.onlineprogramminglessons.com For student use only
 54

Here is the final App.js file

// App.js
import './App.css';
import React, { Component } from 'react';
import { BrowserRouter, Route, Switch } from 'react-router-dom';
import Home from './Home';
import ShoppingCart from './ShoppingCart';
import Checkout from './Checkout';
import Thankyou from './Thankyou';
import Navigation from './Navigation';
import Footer from './Footer';
import OrderLookup from './OrderLookup';
import CartItem from './CartItem';

class App extends Component {

 constructor(props) {
 super(props)
 this.state = {
 books: [],
 cart: [],
 customer: {}
 };
 }

 componentDidMount() {
 fetch('./bookstore.json')
 .then(response => response.json())
 .then(data => {
 this.setState({ books: data.books });
 })
 }

 // buy button clicked
 handleBuyClick(isbn) {
 alert("buy: " + isbn);

 for (let i = 0; i < this.state.books.length; i++) {
 let book = this.state.books[i];

 if (book.isbn === isbn) {
 this.setState({
 cart:
 this.state.cart.concat
 (new CartItem(book.isbn, book.title,
 book.price, book.image, 1, book.price))
 });

 }
 }
 }

copyright © 2021 www.onlineprogramminglessons.com For student use only
 55

 // remove button clicked for shopping cart
 handleRemoveClick(isbn) {
 alert('remove: ' + isbn);

 for (let i = 0; i < this.state.cart.length; i++) {

 let item = this.state.cart[i];
 if (item.isbn === isbn) {
 let newcart = this.state.cart; // copy
 newcart.splice(i, 1);
 this.setState({ cart: newcart }); // render refresh
 break;
 }

 }
 }

 render() {
 return (
 <BrowserRouter>
 <div>
 <Navigation />
 <Switch>

 <Route path="/" render={() => <Home books={this.state.books}
 onClick={(i) => this.handleBuyClick(i)} />} exact />
 <Route path="/shoppingCart" render={() => <ShoppingCart
 cart={this.state.cart} onClick={(i)
 => this.handleRemoveClick(i)} />} />
 <Route path="/checkout" component={Checkout} />
 <Route path="/orderlookup" render={() => <OrderLookup />} />
 <Route component={Error} />
 </Switch>
 <Footer />
 </div>
 </BrowserRouter>
);
 }
}

export default App;

copyright © 2021 www.onlineprogramminglessons.com For student use only
 56

Lesson 5 Homework.

Make sure you can buy and remove books before proceeding.

Add the feature so that when the button is clicked the quantity increments if the

book has been previously purchased before hand.

You need to copy the cart first, then adjust the quantities

 let newcart = this.state.cart; // copy

then update the cart with the copy

 this.setState({ cart: newcart }); // render refresh

Add the feature so that when a book is removed it decrements the quantity then

the quantity is decremented. When the quantity reaches zero then remove the

book from the cart.

You need to copy the cart first, then adjust the quantities

 let newcart = this.state.cart; // copy

then update the cart with the copy

 this.setState({ cart: newcart }); // render refresh

In the Shopping component break up the render method into reusable sub

components constant functions. Put all subcomponents in the ShoppingCart.js file.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 57

Lesson 6 Checkout Order

The Checkout App displays a form where the customer enters all their details. The

Checkout Component stores the customer data as a state. When the submit

button is pressed, the customer data will be sent as a prop to the App Component

for storage. The App component will then call the Thankyou page directly.

Here is the updated Checkout component

import React, { Component } from 'react';

class Checkout extends Component {

 constructor(props) {
 super(props)

 this.state = {
 name: '',
 street: '',
 city: '',
 state: '',
 email: '',
 phone: '',
 nameerr: '',
 streeterr: '',
 cityerr: '',
 stateerr: '',
 emailerr: '',
 phoneerr: ''
 }

 }

 handleChange = event => {
 const { name, value } = event.target

 this.setState({
 [name]: value,
 })
 }

copyright © 2021 www.onlineprogramminglessons.com For student use only
 58

 submitForm = () => {

 // validate form
 let error = false;
 if (this.state.name === "") {
 this.setState({ namerr: "please enter a name" })
 error = true;
 }
 else this.setState({ namerr: "" })

 if (this.state.street === "") {
 this.setState({ streeterr: "please enter a street" })
 error = true;
 }
 else this.setState({ streeterr: "" })

 if (this.state.city === "") {
 this.setState({ cityerr: "please enter a city" })
 error = true;
 }
 else this.setState({ cityerr: "" })

 if (this.state.state === "") {
 this.setState({ stateerr: "please enter a state" })
 error = true;
 }
 else this.setState({ stateerr: "" })

 if (this.state.email === "") {
 this.setState({ emailerr: "please enter a email" })
 error = true;
 }
 else this.setState({ emailerr: "" })

 if (this.state.phone === "") {
 this.setState({ phoneerr: "please enter a phone" })
 error = true;
 }
 else this.setState({ phoneerr: "" })

copyright © 2021 www.onlineprogramminglessons.com For student use only
 59

 // no error
 if (!error) {
 this.props.handleSubmit(
 {
 name: this.state.name,
 street: this.state.street,
 city: this.state.city,
 state: this.state.state,
 email: this.state.email,
 phone: this.state.phone

 })
 }
 }

 // display checkout form
 render() {
 const { name, street, city, state, email, phone } = this.state;

 return (
 <form>
 <table>
 <tr><td>
 <label>Name</label>
 </td><td>
 <input
 type="text"
 name="name"
 value={name}
 onChange={this.handleChange} />
 </td>
 <td>
 {this.state.namerr}
 </td>
 </tr>

 <tr>
 <td>
 <label>Street</label>
 </td>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 60

 <td>
 <input
 type="text"
 name="street"
 value={street}
 onChange={this.handleChange} />

 </td>
 <td>
 {this.state.streeterr}
 </td>
 </tr>

 <tr>
 <td>
 <label>City</label>
 </td>
 <td>
 <input
 type="text"
 name="city"
 value={city}
 onChange={this.handleChange} />
 </td>
 <td>
 {this.state.cityerr}
 </td>
 </tr>

 <tr>
 <td>
 <label>State</label>
 </td>
 <td>
 <input
 type="text"
 name="state"
 value={state}
 onChange={this.handleChange} />
 </td>
 <td>
 {this.state.stateerr}
 </td>

 </tr>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 61

 <tr>
 <td>
 <label>Email</label>
 </td>
 <td>
 <input
 type="text"
 name="email"
 value={email}
 onChange={this.handleChange} />
 </td>
 <td>
 {this.state.emailerr}
 </td>
 </tr>

 <tr>
 <td>
 <label>Phone</label>
 </td>
 <td>
 <input
 type="text"
 name="phone"
 value={phone}
 onChange={this.handleChange} />
 </td>
 <td>
 {this.state.phoneerr}
 </td>
 </tr>
 <tr>
 <td colspan="2" >
 <input type="button" value="Submit" onClick={this.submitForm} />
 </td>
 </tr>
 </table>
 </form>
);
 }

}

export default Checkout;

copyright © 2021 www.onlineprogramminglessons.com For student use only
 62

todo: type in or copy/paste the above whole Checkout component and put into
the Checkout.js file. Replace the Checkout function with the entire Checkout
component class.

How the Checkout Component works:

Every time data is entered into one of the text boxes the data is collected by the
Handlechange function. The received event.target object contains the textbox
name and value. The appropriate customer data is then updated, by calling the
setState function. When the setState function is called the Checkout component
is re-rendered..

Here is the handleChange event function that receives and stores the check box
data. It updates the state variable that has the same name as the text box with
the received value.

handleChange = event => {
 const { name, value } = event.target

 this.setState({
 [name]: value,
 })
 }

submitting data

When the submit button is pressed the data is validated as shown in the

following code snippet.

submitForm = () => {

 // validate form
 let error = false;
 if (this.state.name == "") {
 this.setState({ namerr: "please enter a name" })
 error = true;

 }

If there is an Error then the appropriate error message is set and then the

Checkout Component renders and the error message is then displayed.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 63

If there is no error then a customer object is created and the App component

handleSubmit function is called using the prop reference.

The handleSubmit function handler is sent previously by the App component

as a prop to the Checkout component when it is called by the router.

<Route path="/checkout" render={() =>
 <Checkout handleSubmit={this.handleSubmit} />} />

Todo: update the above checkout route in the app.js file

Checkout form with no errors:

If there is no Error then the customer data object is attached to a prop to be sent

to and received by the App Component.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 64

// no error
if (!error) {
 this.props.handleSubmit(
 {
 name: this.state.name,
 street: this.state.street,
 city: this.state.city,
 state: this.state.state,
 email: this.state.email,
 phone: this.state.phone

 })

 }

When the submit button in the Checkout Component is pressed the handle

submit handler located in the App Component is called from the Checkout

Component. The Checkout also sends the customer data as a prop to the App

Component.

The handleSubmit function of the App component receives the customer object

created previously by the Checkout component.

In the App component the stored shopping cart is attached to the received

customer object and the customer object is then stored in the state.

App.js

 state

handleSubmit

handler

Books[]

cart[]

customer

redirect

Checkout.js

Submit

button

Call handleSubmit

with customerdata

 Prop reference to

handleSubmit

reference

Customer

form

copyright © 2021 www.onlineprogramminglessons.com For student use only
 65

Also in the handleSubmit function, the redirect state variable is also set to true.

When the redirect state variable is true, then the App component is rendered

and the thankyou page is displayed automatically. Here is the handleSubmit

function of the App component.

// handle check out submit button
handleSubmit = customer => {
 alert("submit customer " + customer)
 //customer.order = Object.assign({}, this.state.cart);
 customer.order = this.state.cart
 alert(JSON.stringify(customer))
 this.setState({ customer: customer })
 this.setState({redirect:true})

}

To do: Add the handle Submit function handler to the App component located inApp.js
Put right after the handleRemoveClick(isbn) function.

Here is the render method that includes the thankyou page redirect.

// display checkout form
render() {

 if (this.state.redirect) {
 return (
 <div>
 <Thankyou customer={this.state.customer}
 cart={this.state.cart} />;
 </div>);
 }

 return (
 <BrowserRouter>
 <div>
 <Navigation />
 <Switch>

 <Route path="/" render={() =>
 <Home books={this.state.books} onClick={(i) =>
 this.handleBuyClick(i)} />} exact />

 <Route path="/shoppingCart" render={() =>
 <ShoppingCart cart={this.state.cart}
 onClick={(i) => this.handleRemoveClick(i)} />}/>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 66

 <Route path="/checkout" render={() =>
 <Checkout handleSubmit={this.handleSubmit} />} />

 <Route path="/orderlookup" render={() =>
 <OrderLookup />} />

 <Route component={Error} />
 </Switch>
 <Footer />
 </div>
 </BrowserRouter>
);
 }

}

Todo: update your App component render method in App.js

Lesson 6 Homework

Before proceeding make sure everything is working.

In the Checkout component break up the render method into sub component

constant functions. Put all subcomponents in the Checkout.js file.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 67

Lesson 7 Thank you page and storing orders in Firebase Database

The Thankyou page will display the customer details and the current book order.

The Thankyou page also stores the customer and book order in the firebase data

base.

A database is permanent storage where order details can be stored retrieved

again at a later time. We will store the customer details and book order in the

firebase database.

We will use the Firebase RealTime Database rather than the cloud Firestore since

it is more complicated to use. The RealTime Database also runs on the cloud and

easily talks to React. The Firebase database uses JSON to store and retrieve

records. To use the Firebase database, you will first need to register and obtain

an apiKey and a product-id from the Firebase web site.

at https://firebase.google.com/

This may be a complicated process to do but I’m sure you will be able to get one,

eventually. If not you probably you can use ours. You also need to get the

configuration code for your project. The configuration code is displayed when you

get your API key.

https://firebase.google.com/

copyright © 2021 www.onlineprogramminglessons.com For student use only
 68

Storing customer orders in the firebase data base

The first thing you need to do is add the Firebase configuration code in the

Firebase.js file like this:

// firebase.js

import firebase from 'firebase'

import 'firebase/firestore';

const config = {
 apiKey: "AIzaSyAyEsdsHgSA5v4PsgCviRv_fggK5zTimK4",
 authDomain: "testfire-5e6b0.firebaseapp.com",
 databaseURL: "https://testfire-5e6b0.firebaseio.com",
 projectId: "testfire-5e6b0",
 storageBucket: ""
};

firebase.initializeApp(config);

export default firebase;

todo: put the above code in a Firebase.js java file in your src file

copyright © 2021 www.onlineprogramminglessons.com For student use only
 69

your src folder should now look like this:

Our apiKey is: AIzaSyAyEsdsHgSA5v4PsgCviRv_fggK5zTimK4

You can put yours in instead of ours.

Our project-id is: testfire-5e6b0

Later you will need to use your project-id rather than use ours.

The Firebase.js file must import firebase:

import firebase from 'firebase'

import 'firebase/firestore';

copyright © 2021 www.onlineprogramminglessons.com For student use only
 70

We then initialize the data base with the above config object with this statement.

 firebase.initializeApp(config);

You will also need to import the firebase module from the command line like this:

npm install firebase

To do: install firebase module.

Thankyou component constructor

The Thankyou component constructor will write the customer order details to the

firebase database.

The Thankyou component constructor receives the customer details and book

order through the props sent by the Thankyou page.

For convenience the received customer object contains the customer details and

order details as a sub object combined together.

import React, { Component } from 'react';
import firebase from './Firebase';

class Thankyou extends Component {

 constructor(props) {
 super(props)

Checkout.js Thankyou.js Firebase database

Orders table Customer

 order

Display

order

prop

Store

order
constructor

copyright © 2021 www.onlineprogramminglessons.com For student use only
 71

 // store order in data base
 const ref = firebase.database().ref();
 const orders = ref.child("orders");
 orders.push(this.props.customer)
 alert(JSON.stringify(this.props.customer))

}

todo: Update Thankyou.js as a class Component and then type in or copy/paste

the Thankyou constructor and add firebase import into your Thankyou.js file.

How the Thankyou page constructor works

The customer object received from the props contains the customer details and

the book order as a sub object in the customer object.

In the Thankyou component constructor we first get a reference to the firebase

data base

const ref = firebase.database().ref();

We then get a reference to our data base table “orders”

const orders = ref.child("orders");

If the database table does not exist it is then automatically create for you, when

we insert out first data record.

A data base may have many tables.

We then use the Firebase push function to put the customer order into the

“orders” data base table.

 orders.push(this.props.customer)

Before running the program you need to set the read and write permissions for

the data base. If you are using our firebase data base then this is already done for

you.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 72

 Go the firebase console and click on rules, and change read and write to true

then click on the publish button that automatically appears. You can go to your

console with this URL containing your project-id:

https://testfire-5e6b0.firebaseio.com/

The database console should appear like this:

Viewing data on the firebase data base

To view the tables in your firebase data base go to

https://testfire-5e6b0.firebaseio.com/

You should get a list of table names like this

copyright © 2021 www.onlineprogramminglessons.com For student use only
 73

To see what’s in the orders table click on orders. You will get a list of records id’s

like this.

To see what’s in a particular record just click on one of the record ids and you will

get something like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 74

Thankyou page Render method

The render method of the Thankyou page will calculate the order total then

display the customer details and then the book order which is essentially the
shopping cart.

// display order
render() {

 // calculate total
 let total = 0;
 this.props.cart.forEach((item) => {
 total += item.total
 });

 return (
 <div>
 <h1>Thankyou For Your Order</h1>

 <table>
 <tr><td>
 <label>Name</label>

 </td>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 75

 <td>
 {this.props.customer.name}
 </td>
 </tr>

 <tr>
 <td>
 <label>Street</label>
 </td><td>
 {this.props.customer.street}

 </td>

 </tr>
 <tr>
 <td>
 <label>City</label>
 </td>

 <td>
 {this.props.customer.city}
 </td>
 </tr>

 <tr>
 <td>
 <label>State</label>
 </td>
 <td>
 {this.props.customer.state}
 </td>

 </tr>
 <tr>
 <td>
 <label>Email</label>
 </td>

 <td>
 {this.props.customer.email}
 </td>
 </tr>

 <tr>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 76

 <td>
 <label>Phone</label>
 </td>

 <td>
 {this.props.customer.phone}
 </td>
 </tr>

 </table>

 {/* display cart in a table*/}
 <table>

 <thead>
 <th>ISBN</th>

 <th>Title</th>
 <th>Price</th>
 <th>Quanity</th>
 <th>Total</th>

 </thead>

 <tbody>
 {
 this.props.customer.order.map((item) => {
 return (
 <tr>
 <td>{item.isbn}</td>
 <td>{item.title}</td>

 <td>${item.price.toFixed(2)}</td>
 <td>{item.qty}</td>

 <td>${parseFloat(item.total).toFixed(2)}</td>

 </tr>
);
 })
 }
 </tbody>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 77

 <tr>
 <td>Total</td>
 <td>${total.toFixed(2)}</td>
 </tr>

 </table>
 Back to Main
 </div>
);
 }
}

export default Thankyou;

todo: type in or copy the render method in your Thankyou.js file.

Run the program. Your Thankyou page should look like this:

copyright © 2021 www.onlineprogramminglessons.com For student use only
 78

Lesson 7 Homework

Question 1

Before proceeding make sure everything is working.

In the Thankyou component break up the render method into sub component

constant functions. Put all subcomponents in the Thankyou.js file.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 79

Lesson 8 Lookup Orders

The Lookup Order Component allows the customer to look up previous order.

The orders were previously stored in the firebase database ”orders” table.

All we need to do is have a small form to enter the customer name that when

submitted will search the order table for the customer records stored in the

orders table.

The OrderLookup Component constructor state stores the lookup name, the

name validation error message and select customer order object,

OrderLookup Component constructor also store a reference to the order table in

our firebase data base.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 80

// OrderLookup.js
// Look up customer order from data base
import React, { Component} from 'react';
import firebase from './Firebase';

class OrderLookup extends Component {

 constructor(props) {
 super(props);
 this.state = {
 name: '',
 namerr: '',
 customer: null
 };

 // reference to data base
 this.ref = firebase.database().ref();

}

Todo: update the OrderLookup class and constructor

handle change event handler

The name form capture’s the lookup name in a handleChange event.

// get customer name
handleChange = event => {
 const { name, value } = event.target

 this.setState({
 [name]: value,
 })

}

To do: add the handle change event handler right after the OrderLookup

constructor.

copyright © 2021 www.onlineprogramminglessons.com For student use only
 81

Submit button handler

When the submit button is pressed, we get a reference to the orders data base

table from the firebase database

const orderstable = this.ref.child("orders");

We need to store a reference to the this reference because it is not available in

the call back function

 const mythis = this; // store reference to this

The name is then extracted from the state object

const name = this.state.name.trim();

We then request to extract all the records from the orders table.

ordersdb.once("value", function (snapshot) {

The orders table is then extracted from the firebase data base.

const orders = snapshot.val()

We then search the orders table for the customer name. Once a customer name

is found, the state customer is set with the customer object. and then the renter

method is called to render the customer order.

 for (var order in orders) {
 const customer = orders[order];

 if (customer.name === name) {
 mythis.setState({ customer: customer });
 return;
 }
 }

copyright © 2021 www.onlineprogramminglessons.com For student use only
 82

Here is the complete Submit function:

// submit button event handler
submitForm = () => {

 // validate form
 if (this.state.name === "") {
 this.setState({ namerr: "please enter a customer name" })
 }
 else {
 this.setState({ namerr: "" })

 // get orders table from data base
 const orderstable = this.ref.child("orders");
 const mythis = this; // store reference to this
 const name = this.state.name.trim();

 orderstable.once("value", function (snapshot) {

 const orders = snapshot.val()
 alert(JSON.stringify(orders))

 // look for customer name
 for (var order in orders) {

 // get customer order
 const customer = orders[order];

 // check for customer name
 if (customer.name === name) {
 mythis.setState({ customer: customer });
 return;
 }
 }

 // no customer found
 mythis.setState({ customer: null });

 });
 }
 }

Todo: add the Submit function to the OrderLookup Component

copyright © 2021 www.onlineprogramminglessons.com For student use only
 83

Render method

The render method displays the lookup name form if no customer is looked up,

and displays the lookup name form and the customer order details when a

customer is looked up. We have used an if statement in the render method to

enforce this logic. Although there are other ways to do this like using the

conditional and &&. We find using an if statement is more convenient then using

the conditional and &&. We must not display the customer details when the

lookup customer located in the state object is null.

The customer object contains the order details as a sub object customer.order;

Here is the render method

// display customer order
render() {

 const { name } = this.state;

 if (this.state.customer==null) {
 return (
 <div>
 <h2>Look up customer order</h2>
 <form>
 <table>
 <tr>
 <td>
 <label>Name</label>
 </td>
 <td>
 <input
 type="text"
 name="name"
 value={name}

 onChange={this.handleChange} />
 </td>
 <td>
 {this.state.namerr}
 </td>
 </tr>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 84

 <tr>
 <td colspan="2" >
 <input type="button"
 value="Submit" onClick={this.submitForm} />
 </td>
 </tr>
 </table>
 </form>
 </div>
);
 }

 return (
 <div>
 <h2>Look up customer order</h2>
 <form>
 <table>
 <tr><td>
 <label>Name</label>
 </td><td>
 <input
 type="text"
 name="name"
 value={name}
 onChange={this.handleChange} />
 </td>
 <td>
 {this.state.namerr}
 </td>
 </tr>
 <tr>
 <td colspan="2" >

 <input type="button"
 value="Submit" onClick={this.submitForm} />

 </td>
 </tr>
 </table>
 </form>

 <h1>Your Order</h1>
 <table>
 <tr><td>
 <label>Name</label>
 </td>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 85

 <td>
 {this.state.customer.name}
 </td>
 </tr>

 <tr>
 <td>
 <label>Street</label>
 </td><td>
 {this.state.customer.street}

 </td>

 </tr>

 <tr>
 <td>
 <label>City</label>
 </td>

 <td>
 {this.state.customer.city}
 </td>
 </tr>

 <tr>
 <td>
 <label>State</label>
 </td>

 <td>
 {this.state.customer.state}
 </td>

 </tr>
 <tr>
 <td>
 <label>Email</label>
 </td>

 <td>
 {this.state.customer.email}
 </td>
 </tr>

copyright © 2021 www.onlineprogramminglessons.com For student use only
 86

 <tr>
 <td>
 <label>Phone</label>
 </td>

 <td>
 {this.state.customer.phone}
 </td>
 </tr>

 </table>

 {/* display cart in a table*/}
 <table>

 <thead>
 <th>ISBN</th>

<th>Title</th>
<th>Price</th>
<th>Quanity</th>
<th>Total</th>

 </thead>

<tbody>
 {
 this.state.customer.order.map((item) => {
 return (
 <tr>
 <td>{item.isbn}</td>
 <td>{item.title}</td>
 <td>${item.price.toFixed(2)}</td>
 <td>{item.qty}</td>
 <td>${parseFloat(item.total).toFixed(2)}</td>
 </tr>
);
 })
 }
 </tbody>
 </table>
 </div>
);
 }
}

copyright © 2021 www.onlineprogramminglessons.com For student use only
 87

export default OrderLookup;

todo: add the render method to the OrderLookup Component

Lesson8 Homework

Question 1

Before proceeding make sure everything is working.

In the OrderLookup component break up the render method into sub

components functions . Put all subcomponents in the Checkout.js file.

Question 2

In the render method replace the if statement with the conditional and &&.

Question 3

In situations where there are many customer orders with the same name show all

book orders for that customer. You can use a next button or just show all the

different orders.

End

